-
Notifications
You must be signed in to change notification settings - Fork 221
/
Copy pathinference.py
149 lines (115 loc) · 5.24 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2020 Magic Leap, Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Originating Author: Zak Murez (zak.murez.com)
import argparse
import os
import numpy as np
import torch
from atlas.data import SceneDataset, parse_splits_list
from atlas.model import VoxelNet
import atlas.transforms as transforms
def process(info_file, model, num_frames, save_path, total_scenes_index, total_scenes_count):
""" Run the netork on a scene and save output
Args:
info_file: path to info_json file for the scene
model: pytorch model that implemets Atlas
frames: number of frames to use in reconstruction (-1 for all)
save_path: where to save outputs
total_scenes_index: used to print which scene we are on
total_scenes_count: used to print the total number of scenes to process
"""
voxel_scale = model.voxel_sizes[0]
dataset = SceneDataset(info_file, voxel_sizes=[voxel_scale],
voxel_types=model.voxel_types, num_frames=num_frames)
# compute voxel origin
if 'file_name_vol_%02d'%voxel_scale in dataset.info:
# compute voxel origin from ground truth
tsdf_trgt = dataset.get_tsdf()['vol_%02d'%voxel_scale]
voxel_size = float(voxel_scale)/100
# shift by integer number of voxels for padding
shift = torch.tensor([.5, .5, .5])//voxel_size
offset = tsdf_trgt.origin - shift*voxel_size
else:
# use default origin
# assume floor is a z=0 so pad bottom a bit
offset = torch.tensor([0,0,-.5])
T = torch.eye(4)
T[:3,3] = offset
transform = transforms.Compose([
transforms.ResizeImage((640,480)),
transforms.ToTensor(),
transforms.TransformSpace(T, model.voxel_dim_val, [0,0,0]),
transforms.IntrinsicsPoseToProjection(),
])
dataset.transform = transform
dataloader = torch.utils.data.DataLoader(dataset, batch_size=None,
batch_sampler=None, num_workers=2)
scene = dataset.info['scene']
model.initialize_volume()
torch.cuda.empty_cache()
for j, d in enumerate(dataloader):
# logging progress
if j%25==0:
print(total_scenes_index,
total_scenes_count,
dataset.info['dataset'],
scene,
j,
len(dataloader)
)
model.inference1(d['projection'].unsqueeze(0).cuda(),
image=d['image'].unsqueeze(0).cuda())
outputs, losses = model.inference2()
tsdf_pred = model.postprocess(outputs)[0]
# TODO: set origin in model... make consistent with offset above?
tsdf_pred.origin = offset.view(1,3).cuda()
if 'semseg' in tsdf_pred.attribute_vols:
mesh_pred = tsdf_pred.get_mesh('semseg')
# save vertex attributes seperately since trimesh doesn't
np.savez(os.path.join(save_path, '%s_attributes.npz'%scene),
**mesh_pred.vertex_attributes)
else:
mesh_pred = tsdf_pred.get_mesh()
tsdf_pred.save(os.path.join(save_path, '%s.npz'%scene))
mesh_pred.export(os.path.join(save_path, '%s.ply'%scene))
def main():
parser = argparse.ArgumentParser(description="Atlas Testing")
parser.add_argument("--model", required=True, metavar="FILE",
help="path to checkpoint")
parser.add_argument("--scenes", default="data/scannet_test.txt",
help="which scene(s) to run on")
parser.add_argument("--num_frames", default=-1, type=int,
help="number of frames to use (-1 for all)")
parser.add_argument("--voxel_dim", nargs=3, default=[-1,-1,-1], type=int,
help="override voxel dim")
args = parser.parse_args()
# get all the info_file.json's from the command line
# .txt files contain a list of info_file.json's
info_files = parse_splits_list(args.scenes)
model = VoxelNet.load_from_checkpoint(args.model)
model = model.cuda().eval()
torch.set_grad_enabled(False)
# overwrite default values of voxel_dim_test
if args.voxel_dim[0] != -1:
model.voxel_dim_test = args.voxel_dim
# TODO: implement voxel_dim_test
model.voxel_dim_val = model.voxel_dim_test
model_name = os.path.splitext(os.path.split(args.model)[1])[0]
save_path = os.path.join(model.cfg.LOG_DIR, model.cfg.TRAINER.NAME,
model.cfg.TRAINER.VERSION, 'test_'+model_name)
if args.num_frames>-1:
save_path = '%s_%d'%(save_path, args.num_frames)
os.makedirs(save_path, exist_ok=True)
for i, info_file in enumerate(info_files):
# run model on each scene
process(info_file, model, args.num_frames, save_path, i, len(info_files))
if __name__ == "__main__":
main()