-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdataset_dataloader.py
202 lines (156 loc) · 5.72 KB
/
dataset_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from tqdm import tqdm
import os
import time
from random import randint
import numpy as np
import pandas as pd
import nibabel as nib
import matplotlib.pyplot as plt
from matplotlib import cm
import matplotlib.animation as anim
import matplotlib.patches as mpatches
import matplotlib.gridspec as gridspec
import seaborn as sns
import imageio
from skimage.transform import resize
from skimage.util import montage
from IPython.display import clear_output
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
from torch.optim import Adam
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.nn import MSELoss
import albumentations as A
from albumentations import Compose, HorizontalFlip
from albumentations.pytorch import ToTensor, ToTensorV2
class BratsDataset(Dataset):
def __init__(self, df: pd.DataFrame, phase: str="test", is_resize: bool=False):
self.df = df
self.phase = phase
self.augmentations = get_augmentations(phase)
self.data_types = ['_flair.nii', '_t1.nii', '_t1ce.nii', '_t2.nii']
self.is_resize = is_resize
def __len__(self):
return self.df.shape[0]
def __getitem__(self, idx):
id_ = self.df.loc[idx, 'Brats20ID']
root_path = self.df.loc[self.df['Brats20ID'] == id_]['path'].values[0]
# load all modalities
images = []
for data_type in self.data_types:
img_path = os.path.join(root_path, id_ + data_type)
img = self.load_img(img_path)#.transpose(2, 0, 1)
if self.is_resize:
img = self.resize(img)
img = self.normalize(img)
images.append(img)
img = np.stack(images)
img = np.moveaxis(img, (0, 1, 2, 3), (0, 3, 2, 1))
if self.phase != "test":
mask_path = os.path.join(root_path, id_ + "_seg.nii")
mask = self.load_img(mask_path)
if self.is_resize:
mask = self.resize(mask)
mask = np.clip(mask.astype(np.uint8), 0, 1).astype(np.float32)
mask = np.clip(mask, 0, 1)
mask = self.preprocess_mask_labels(mask)
augmented = self.augmentations(image=img.astype(np.float32),
mask=mask.astype(np.float32))
img = augmented['image']
mask = augmented['mask']
return {
"Id": id_,
"image": img,
"mask": mask,
}
return {
"Id": id_,
"image": img,
}
def load_img(self, file_path):
data = nib.load(file_path)
data = np.asarray(data.dataobj)
return data
def normalize(self, data: np.ndarray):
data_min = np.min(data)
return (data - data_min) / (np.max(data) - data_min)
def resize(self, data: np.ndarray):
data = resize(data, (78, 120, 120), preserve_range=True)
return data
def preprocess_mask_labels(self, mask: np.ndarray):
mask_WT = mask.copy()
mask_WT[mask_WT == 1] = 1
mask_WT[mask_WT == 2] = 1
mask_WT[mask_WT == 4] = 1
mask_TC = mask.copy()
mask_TC[mask_TC == 1] = 1
mask_TC[mask_TC == 2] = 0
mask_TC[mask_TC == 4] = 1
mask_ET = mask.copy()
mask_ET[mask_ET == 1] = 0
mask_ET[mask_ET == 2] = 0
mask_ET[mask_ET == 4] = 1
mask = np.stack([mask_WT, mask_TC, mask_ET])
mask = np.moveaxis(mask, (0, 1, 2, 3), (0, 3, 2, 1))
return mask
class AutoEncoderDataset(Dataset):
def __init__(self, df: pd.DataFrame, phase: str = "test"):
self.df = df
self.phase = phase
self.augmentations = get_augmentations(phase)
self.data_types = ['_flair.nii', '_t1.nii', '_t1ce.nii', '_t2.nii']
def __len__(self):
return self.df.shape[0]
def __getitem__(self, idx):
id_ = self.df.loc[idx, 'Brats20ID']
root_path = self.df.loc[self.df['Brats20ID'] == id_]['path'].values[0]
# load all modalities
images = []
for data_type in self.data_types:
img_path = os.path.join(root_path, id_ + data_type)
img = self.load_img(img_path)
img = self.normalize(img)
images.append(img.astype(np.float32))
img = np.stack(images)
img = np.moveaxis(img, (0, 1, 2, 3), (0, 3, 2, 1))
return {
"Id": id_,
"data": img,
"label": img,
}
def load_img(self, file_path):
data = nib.load(file_path)
data = np.asarray(data.dataobj)
return data
def normalize(self, data: np.ndarray):
"""Normilize image value between 0 and 1."""
data_min = np.min(data)
return (data - data_min) / (np.max(data) - data_min)
def get_augmentations(phase):
list_transforms = []
list_trfms = Compose(list_transforms)
return list_trfms
def get_dataloader(
dataset: torch.utils.data.Dataset,
path_to_csv: str,
phase: str,
fold: int = 0,
batch_size: int = 1,
num_workers: int = 4,
):
'''Returns: dataloader for the model training'''
df = pd.read_csv(path_to_csv)
train_df = df.loc[df['fold'] != fold].reset_index(drop=True)
val_df = df.loc[df['fold'] == fold].reset_index(drop=True)
df = train_df if phase == "train" else val_df
dataset = dataset(df, phase)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=True,
shuffle=True,
)
return dataloader