-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathHeterogeneousVec.agda
306 lines (234 loc) · 12.4 KB
/
HeterogeneousVec.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
{- Heterogeneous vectors -}
module HeterogeneousVec where
open import Data.List renaming (map to lmap) hiding (zip)
open import Relation.Binary
open import Level
open import Data.Fin
open import Function
open import Relation.Binary.PropositionalEquality
open import Data.Product hiding (map;zip)
-- Types
data HVec {l} {I : Set} (A : I -> Set l) : List I → Set l where
⟨⟩ : HVec A []
_▹_ : ∀ {i is} → (v : A i) → (vs : HVec A is) → HVec A (i ∷ is)
pattern ⟨⟨_,_⟩⟩ a b = a ▹ (b ▹ ⟨⟩)
pattern ⟪_⟫ a = a ▹ ⟨⟩
infixr 6 _▹_
infixr 5 _∈_
data _∈_ {l} {I} {A : I → Set l} : {i : I} {is : List I} → A i →
HVec A is → Set l where
here : ∀ {i} {is} {v : A i} {vs : HVec A is} → v ∈ v ▹ vs
there : ∀ {i i'} {is} {v : A i} {w : A i'} {vs : HVec A is}
(v∈vs : v ∈ vs) → v ∈ w ▹ vs
-- Operations
{- List indexing. -}
_‼_ : ∀ {l} {A : Set l} (xs : List A) → Fin (length xs) → A
[] ‼ ()
(x ∷ _) ‼ zero = x
(_ ∷ xs) ‼ (suc n) = xs ‼ n
{- HVec indexing -}
_‼v_ : ∀ {l I} {is : List I} {A : I → Set l} →
(vs : HVec A is) → (n : Fin (length is)) → A (is ‼ n)
⟨⟩ ‼v ()
(v ▹ _) ‼v zero = v
(_ ▹ vs) ‼v suc n = vs ‼v n
{- Concat -}
_++v_ : ∀ {l I} {is is' : List I} {A : I → Set l} →
(vs : HVec A is) → (vs' : HVec A is') → HVec A (is ++ is')
⟨⟩ ++v vs' = vs'
(v ▹ vs) ++v vs' = v ▹ (vs ++v vs')
{- Zipping -}
zip : ∀ {l₀ l₁ I} {A : I → Set l₀} {B : I → Set l₁} {is : List I} →
(vs : HVec A is) → (vs' : HVec B is) → HVec (λ i → A i × B i) is
zip ⟨⟩ ⟨⟩ = ⟨⟩
zip (v ▹ vs) (v' ▹ vs') = (v , v') ▹ zip vs vs'
{- Map -}
map : ∀ {l₀ l₁ I} {A : I → Set l₀} {A' : I → Set l₁} {is : List I} →
(f : (i : I) → (A i) → (A' i)) → (vs : HVec A is) → HVec A' is
map {is = []} f ⟨⟩ = ⟨⟩
map {is = i₀ ∷ is} f (v₀ ▹ vs) = f i₀ v₀ ▹ map f vs
mapId : ∀ {l₀ I} {A : I → Set l₀} {is : List I} →
(vs : HVec A is) → map (λ _ a → a) vs ≡ vs
mapId ⟨⟩ = refl
mapId (v ▹ vs) = cong (_▹_ v) (mapId vs)
{-
Extension of predicates
-}
data _⇨v_ {l₀ l₁ I} {A : I → Set l₀} (P : (i : I) → A i → Set l₁) :
{is : List I} → HVec A is → Set (l₀ ⊔ l₁) where
⇨v⟨⟩ : P ⇨v ⟨⟩
⇨v▹ : ∀ {i} {is} {v} {vs} → (pv : P i v) →
(pvs : _⇨v_ P {is} vs) → P ⇨v (_▹_ {i = i} v vs)
open import Data.Unit
_*′ : ∀ {I } {A : I → Set} → (R : (i : I) → (A i) → A i → Set) → {is : List I} → (HVec A is) → (HVec A is) → Set
(R *′) {[]} ⟨⟩ ⟨⟩ = ⊤
(R *′) {x ∷ is} (v ▹ as) (v₁ ▹ as') = R x v v₁ × (R *′) as as'
open import Relation.Unary using (Pred)
_⇨v : ∀ {l₀ l₁ I} {A : I → Set l₀} (P : (i : I) → A i → Set l₁) →
{is : List I} → Pred (HVec A is) (l₀ ⊔ l₁)
P ⇨v = P ⇨v_
⇨₂ : ∀ {l₀ l₁ I} {A : I → Set l₀} {P : (i : I) → A i → Set l₁} →
{is : List I}
(as : HVec (λ i → Σ[ a ∈ A i ] (P i a)) is) →
(P ⇨v map (λ _ → proj₁) as)
⇨₂ {P = P} {[]} ⟨⟩ = ⇨v⟨⟩
⇨₂ {P = P} {i ∷ is} ((a , p) ▹ as) = ⇨v▹ p (⇨₂ {P = P} {is} as)
⇨vtoΣ : ∀ {l₀ l₁ I} {A : I → Set l₀} {P : (i : I) → A i → Set l₁}
{is} {vs : HVec A is} → P ⇨v vs → HVec (λ i → Σ[ a ∈ A i ] P i a) is
⇨vtoΣ ⇨v⟨⟩ = ⟨⟩
⇨vtoΣ (⇨v▹ {v = v} pv p⇨vs) = (v , pv) ▹ ⇨vtoΣ p⇨vs
map⇨v : ∀ {l₀ l₁ l₂ I is} {A : I → Set l₀} {vs : HVec A is}
{P : (i : I) → A i → Set l₁} {P' : (i : I) → A i → Set l₂} →
(f : ∀ {i'} {a : A i'} → P i' a → P' i' a) →
P ⇨v vs → P' ⇨v vs
map⇨v f ⇨v⟨⟩ = ⇨v⟨⟩
map⇨v f (⇨v▹ pv pvs) = ⇨v▹ (f pv) (map⇨v f pvs)
proj₁⇨v : ∀ {l₀ l₁ I} {A : I → Set l₀} {P : (i : I) → A i → Set l₁}
{is} {vs : HVec A is} → P ⇨v vs → HVec A is
proj₁⇨v {vs = vs} _ = vs
⇨v-pointwise : ∀ {l₀ l₁ I} {is : List I} {A : I → Set l₀}
{P : (i : I) → A i → Set l₁} →
(vs : HVec A is) → P ⇨v vs →
(n : Fin (length is)) → P (is ‼ n) (vs ‼v n)
⇨v-pointwise {is = []} ⟨⟩ p ()
⇨v-pointwise {is = i ∷ is} (v ▹ vs) (⇨v▹ pv pvs) zero = pv
⇨v-pointwise {is = i ∷ is} (v ▹ vs) (⇨v▹ pv pvs) (suc n) = ⇨v-pointwise vs pvs n
{-
Extension of relations
-}
data _∼v_ {l₀ l₁ I} {A : I → Set l₀} {R : (i : I) → Rel (A i) l₁} :
{is : List I} → Rel (HVec A is) (l₀ ⊔ l₁) where
∼⟨⟩ : ⟨⟩ ∼v ⟨⟩
∼▹ : ∀ {i} {is} {t₁} {t₂} {ts₁ : HVec A is} {ts₂ : HVec A is} →
R i t₁ t₂ → _∼v_ {R = R} ts₁ ts₂ → (t₁ ▹ ts₁) ∼v (t₂ ▹ ts₂)
pattern ∼⟨⟨_,_⟩⟩∼ a b = ∼▹ a (∼▹ b ∼⟨⟩)
_* : ∀ {l₀ l₁ I} {A : I → Set l₀} (R : (i : I) → Rel (A i) l₁) → {is : List I} → Rel (HVec A is) (l₀ ⊔ l₁)
R * = _∼v_ {R = R}
{- Alternatively we can take a relation R over A as a predicate over A × A;
under this view, the extension of R is the same as the extension of the
predicate over the zipped vectors.
-}
private
_*' : ∀ {l₀ l₁ I} {A : I → Set l₀} (R : (i : I) → Rel (A i) l₁) → {is : List I} → Rel (HVec A is) (l₀ ⊔ l₁)
_*' {A = A} R {is} a b = _⇨v_ {A = λ i → A i × A i} (λ { i (a , b) → R i a b} ) {is} (zip a b)
from : ∀ {l₀ l₁ I} {is} {A : I → Set l₀} (R : (i : I) → Rel (A i) l₁) → (as as' : HVec A is) → (R *') as as' → (R *) as as'
from {is = []} R ⟨⟩ ⟨⟩ ⇨v⟨⟩ = ∼⟨⟩
from {is = x ∷ is} R (v ▹ as) (v₁ ▹ as') (⇨v▹ {v = .v , .v₁} pv rel) = ∼▹ pv (from R as as' rel)
to : ∀ {l₀ l₁ I} {is} {A : I → Set l₀} (R : (i : I) → Rel (A i) l₁) → (as as' : HVec A is) → (R *) as as' → (R *') as as'
to {is = []} R ⟨⟩ ⟨⟩ ∼⟨⟩ = ⇨v⟨⟩
to {is = x ∷ is} R (v ▹ as) (v₁ ▹ as') (∼▹ x₁ rel) = ⇨v▹ x₁ (to R as as' rel)
map∼v : ∀ {l₀ l₁ l₂ I} {A : I → Set l₀}
{R : (i : I) → Rel (A i) l₁} {R' : (i : I) → Rel (A i) l₂}
{is : List I} {vs vs' : HVec A is} →
(f : {i : I} {a a' : A i} → R i a a' → R' i a a') →
_∼v_ {R = R} vs vs' → _∼v_ {R = R'} vs vs'
map∼v f ∼⟨⟩ = ∼⟨⟩
map∼v f (∼▹ vRv' vs≈Rvs') = ∼▹ (f vRv') (map∼v f vs≈Rvs')
~v-pointwise : ∀ {l₀} {l₁} {I : Set} {is : List I}
{A : I → Set l₀} {R : (i : I) → Rel (A i) l₁} →
(vs₁ vs₂ : HVec A is) → _∼v_ {R = R} vs₁ vs₂ →
(n : Fin (length is)) → R (is ‼ n) (vs₁ ‼v n) (vs₂ ‼v n)
~v-pointwise ⟨⟩ .⟨⟩ ∼⟨⟩ ()
~v-pointwise (v₁ ▹ vs₁) (v₂ ▹ vs₂) (∼▹ v₁∼v₂ eq) zero = v₁∼v₂
~v-pointwise (v₁ ▹ vs₁) (v₂ ▹ vs₂) (∼▹ v₁∼v₂ eq) (suc n) =
~v-pointwise vs₁ vs₂ eq n
∼↑v : ∀ {l₀ l₁ I} {A : I -> Set l₀} {is : List I} {R : (i : I) → Rel (A i) l₁}
{f : (i : I) → A i → A i} →
(P : (i : I) → (a : A i) → R i a (f i a)) →
(vs : HVec A is) → _∼v_ {R = R} vs (map f vs)
∼↑v P ⟨⟩ = ∼⟨⟩
∼↑v {is = i ∷ is} P (v ▹ vs) = ∼▹ (P i v) (∼↑v P vs)
{- Reindexing -}
reindex : ∀ {l} {I I' : Set}
(fᵢ : I → I') → {A : I' → Set l} → {is : List I} →
HVec (A ∘ fᵢ) is → HVec A (lmap fᵢ is)
reindex fᵢ ⟨⟩ = ⟨⟩
reindex fᵢ (v ▹ vs) = v ▹ reindex fᵢ vs
{-
Reindex of extension of predicates
-}
⇨v-reindex : ∀ {l₀ l₁ I I'} {is : List I}
{A : I' → Set l₀} {P : (i : I') → A i → Set l₁} →
(fᵢ : I → I') → {vs : HVec (A ∘ fᵢ) is} →
(P ∘ fᵢ) ⇨v vs → P ⇨v (reindex fᵢ vs)
⇨v-reindex fᵢ ⇨v⟨⟩ = ⇨v⟨⟩
⇨v-reindex fᵢ (⇨v▹ pv p) = ⇨v▹ pv (⇨v-reindex fᵢ p)
{-
Reindex of extension of relations
-}
∼v-reindex : ∀ {l₀} {l₁} {I I' : Set} {is : List I}
{A : I' → Set l₀} {R : (i : I') → Rel (A i) l₁} →
(fᵢ : I → I') → {vs₁ vs₂ : HVec (A ∘ fᵢ) is} →
_∼v_ {R = R ∘ fᵢ} vs₁ vs₂ →
_∼v_ {I = I'} {R = R}
(reindex fᵢ vs₁)
(reindex fᵢ vs₂)
∼v-reindex fₛ ∼⟨⟩ = ∼⟨⟩
∼v-reindex fᵢ (∼▹ v₁∼v₂ eq) = ∼▹ v₁∼v₂ (∼v-reindex fᵢ eq)
{-
Mapping reindexed vectors
-}
mapReindex : ∀ {l₀ l₁ I I' is} {A₀ : I' → Set l₀} {A₁ : I' → Set l₁} →
(fᵢ : I → I') → (h : (i : I') → A₀ i → A₁ i) →
(vs : HVec (A₀ ∘ fᵢ) is) →
map h (reindex fᵢ vs) ≡ reindex fᵢ (map (h ∘ fᵢ) vs)
mapReindex {is = []} fᵢ h ⟨⟩ = refl
mapReindex {is = i₀ ∷ is} fᵢ h (v ▹ vs) = cong (λ vs' → h (fᵢ i₀) v ▹ vs')
(mapReindex fᵢ h vs)
-- Other properties
{-
Map and composition
-}
propMapV∘ : ∀ {l₀ l₁ l₂ I is} {A₀ : I → Set l₀} {A₁ : I → Set l₁}
{A₂ : I → Set l₂} → (vs : HVec A₀ is) →
(m : (i : I) → (A₀ i) → (A₁ i)) →
(m' : (i : I) → (A₁ i) → (A₂ i)) →
map m' (map m vs)
≡
map (λ s' → m' s' ∘ m s') vs
propMapV∘ {is = []} ⟨⟩ m m' = refl
propMapV∘ {is = i₀ ∷ is} (v₀ ▹ vs) m m' = cong₂ (λ x y → x ▹ y) refl
(propMapV∘ vs m m')
{- Setoid of heterogeneous vectors -}
open Setoid
HVecSet : ∀ {l₁ l₂} → (I : Set) → (A : I → Setoid l₁ l₂) →
List I → Setoid _ _
HVecSet I A is = record { Carrier = HVec (Carrier ∘ A) is
; _≈_ = _∼v_ {R = _≈_ ∘ A}
; isEquivalence = record { refl = refl~v is
; sym = sym~v is
; trans = trans~v is }
}
where refl~v : (is' : List I) → Reflexive (_∼v_ {R = λ i → _≈_ (A i)}
{is = is'})
refl~v .[] {⟨⟩} = ∼⟨⟩
refl~v (i ∷ is') {v ▹ vs} = ∼▹ (Setoid.refl (A i)) (refl~v is')
sym~v : (is' : List I) → Symmetric (_∼v_ {R = λ i → _≈_ (A i)}
{is = is'})
sym~v .[] {⟨⟩} ∼⟨⟩ = ∼⟨⟩
sym~v (i ∷ is) {v ▹ vs} (∼▹ v≈w vs≈ws) = ∼▹ (Setoid.sym (A i) v≈w)
(sym~v is vs≈ws)
trans~v : (is' : List I) → Transitive (_∼v_ {R = λ i → _≈_ (A i)}
{is = is'})
trans~v .[] {⟨⟩} ∼⟨⟩ ∼⟨⟩ = ∼⟨⟩
trans~v (i ∷ is₁) {v ▹ vs} (∼▹ v≈w vs≈ws)
(∼▹ w≈z ws≈zs) = ∼▹ (Setoid.trans (A i) v≈w w≈z)
(trans~v is₁ vs≈ws ws≈zs)
▹inj : ∀ {l₀ I} {A : I → Set l₀} {is} {i : I} {vs vs' : HVec A is} {v v' : A i} →
v ▹ vs ≡ v' ▹ vs' → v ≡ v' × vs ≡ vs'
▹inj _≡_.refl = _≡_.refl , _≡_.refl
≡to∼v : ∀ {l₀ l₁ I} {A : I → Set l₀} {R : (i : I) → Rel (A i) l₁} {is : List I}
{vs : HVec A is} {vs' : HVec A is} → ((i : I) → IsEquivalence (R i)) →
vs ≡ vs' →
_∼v_ {R = R} vs vs'
≡to∼v {vs = ⟨⟩} {⟨⟩} ise eq = ∼⟨⟩
≡to∼v {R = R} {vs = _▹_ {i} {is} v vs} {vs' = v' ▹ vs'} ise eq =
∼▹ (subst (λ v~ → R i v v~) v≡v' (irefl (ise i))) (≡to∼v ise vs≡vs')
where open IsEquivalence renaming (refl to irefl)
v≡v' : v ≡ v'
v≡v' = proj₁ (▹inj eq)
vs≡vs' : vs ≡ vs'
vs≡vs' = proj₂ (▹inj eq)
_✳_ : ∀ {l₁ l₂} → {I : Set} → (A : I → Setoid l₁ l₂) →
List I → Setoid _ _
_✳_ {I = I} = HVecSet I