forked from microsoft/COCO-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_glue.sh
53 lines (40 loc) · 1.79 KB
/
run_glue.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
# Set pretrained model name, from ['cocolm-base', 'cocolm-large']
MODEL_NAME=$1
# GLUE task name, from ['MNLI', 'QQP', 'QNLI', 'SST-2', 'CoLA', 'RTE', 'MRPC', 'STS-B']
TASK=$2
# Path to GLUE dataset 'path/to/glue_data'
GLUE_PATH=$3
# Output path for results and fine-tuned model
OUT_PATH=$4
export DATASET_PATH=$GLUE_PATH/$TASK
export TASK_NAME=$(echo "$TASK" | tr '[:upper:]' '[:lower:]')
# Set max sequence length
export MAX_LEN=512
# Set path to cache train & dev features (tokenized, only use for this tokenizer!)
export TRAIN_CACHE=${DATASET_PATH}/$TASK_NAME.cocolm_cased.$MAX_LEN.cache
export DEV_CACHE=${DATASET_PATH}/$TASK_NAME.cocolm_cased.$MAX_LEN.cache
# Setting the hyperparameters for the run.
export BSZ=$5
export LR=$6
export EPOCH=$7
export WM=$8
export SEED=$9
# Set path to save the finetuned model and result score
export OUTPUT_PATH=$OUT_PATH/$TASK-$BSZ-$LR-$EPOCH-$WM-$SEED
mkdir -p $OUTPUT_PATH
touch $OUTPUT_PATH/train.log
python run_glue.py \
--model_type cocolm --model_name_or_path $MODEL_NAME --task_name $TASK_NAME \
--data_dir $DATASET_PATH --cached_train_file $TRAIN_CACHE --cached_dev_file $DEV_CACHE \
--config_name $MODEL_NAME \
--do_train --evaluate_during_training --logging_steps 1000 --output_dir $OUTPUT_PATH --max_grad_norm 0 --gradient_accumulation_steps 1 \
--max_seq_length $MAX_LEN --per_gpu_train_batch_size $BSZ --learning_rate $LR \
--num_train_epochs $EPOCH --weight_decay 0.01 --warmup_ratio $WM \
--adam_epsilon 1e-6 --adam_betas "0.9,0.98" \
--dropout_prob 0.1 --cls_dropout_prob 0.1 \
--seed $SEED \
--overwrite_output_dir |& tee $OUTPUT_PATH/train.log
# Add the following for fp16 training
# --fp16_init_loss_scale 128.0 --fp16 --fp16_opt_level O2