-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlane_detector.py
637 lines (475 loc) · 27.4 KB
/
lane_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
import numpy as np
import cv2
from collections import deque
import pickle
import os
class ImageProcessor:
"""
Class used to process an image for the LaneDetector. Applies both color and gradient thresholding and produces a set of
images (undistored, thresholded and warped) that can be used for debugging.
"""
def __init__(self, calibration_data_file):
# Camera calibration data
calibration_data = self._load_calibration_data(file_path = calibration_data_file)
self.mtx = calibration_data['mtx']
self.dist = calibration_data['dist']
# Gradient and color thresholding parameters
self.sobel_kernel = 5
self.grad_x_thresh = (15, 255) # Sobel x threshold
self.grad_y_thresh = (25, 255) # Sobel y threshold
self.grad_mag_thresh = (40, 255) # Sobel mag threshold
self.grad_dir_thresh = (0.7, 1.3) # Sobel direction range
self.grad_v_thresh = (180, 255) # HSV, V channel threshold to filter gradient
self.r_thresh = (195, 255) # RGB, Red channel threshold
self.s_thresh = (100, 255) # HSL, S channel threshold
self.l_thresh = (195, 255) # HSL, L channel threshold
self.b_thresh = (150, 255) # LAB, B channel threshold
self.v_thresh = (140, 255) # HSV, V channel threshold
# Perspective transformation parameters
# slope = (y2 - y1) / (x2 - x1)
# intercept = y1 - slope * x1
# top left, top right = (570, 470), (722, 470)
# bottom left, bottom right = (220, 720), (1110, 720)
self.persp_src_left_line = (-0.7142857143, 877.142857146) # Slope and intercept for left line
self.persp_src_right_line = (0.6443298969, 4.793814441) # Slope and intercept for right line
self.persp_src_top_pct = 0.645 # Percentage from the top
self.persp_src_bottom_pct = 0.02 # Percentage from bottom
self.persp_dst_x_pct = 0.22 # Destination offset percent
self.persp_src = None
self.persp_dst = None
def _load_calibration_data(self, file_path = os.path.join('camera_cal', 'calibration.p')):
with open(file_path, 'rb') as f:
return pickle.load(f)
def _warp_coordinates(self, img):
if self.persp_src is None or self.persp_dst is None:
cols = img.shape[1]
rows = img.shape[0]
src_top_offset = rows * self.persp_src_top_pct
src_bottom_offset = rows * self.persp_src_bottom_pct
left_slope, left_intercept = self.persp_src_left_line
right_slope, right_intercept = self.persp_src_right_line
top_left = [(src_top_offset - left_intercept) / left_slope, src_top_offset]
top_right = [(src_top_offset - right_intercept) / right_slope, src_top_offset]
bottom_left = [(rows - src_bottom_offset - left_intercept) / left_slope, rows - src_bottom_offset]
bottom_right = [(rows - src_bottom_offset - right_intercept) / right_slope, rows - src_bottom_offset]
#Top left, Top right, Bottom right, Bottom left
src = np.float32([top_left, top_right, bottom_right, bottom_left])
dst_x_offset = cols * self.persp_dst_x_pct
top_left = [dst_x_offset, 0]
top_right = [cols - dst_x_offset, 0]
bottom_left = [dst_x_offset, rows]
bottom_right = [cols - dst_x_offset, rows]
dst = np.float32([top_left, top_right, bottom_right, bottom_left])
self.persp_src = src
self.persp_dst = dst
return self.persp_src, self.persp_dst
def _sobel(self, img, orient = 'x', sobel_kernel = 3):
# Take the derivative in x or y given orient = 'x' or 'y'
if orient == 'x':
sobel = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize = sobel_kernel)
else:
sobel = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize = sobel_kernel)
return sobel
def _apply_thresh(self, img, thresh = [0, 255]):
result = np.zeros_like(img)
result[(img >= thresh[0]) & (img <= thresh[1])] = 1
return result
def unwarp_image(self, img):
img_shape = img.shape[1::-1]
src, dst = self._warp_coordinates(img)
warp_m = cv2.getPerspectiveTransform(dst, src)
unwarped = cv2.warpPerspective(img, warp_m, img_shape)
return unwarped
def warp_image(self, img):
img_shape = img.shape[1::-1]
src, dst = self._warp_coordinates(img)
warp_m = cv2.getPerspectiveTransform(src, dst)
warped = cv2.warpPerspective(img, warp_m, img_shape)
return warped
def undistort_image(self, img):
return cv2.undistort(img, self.mtx, self.dist, None, self.mtx)
def sobel_abs_thresh(self, sobel, thresh=[0,255]):
# Take the absolute value of the derivative or gradient
abs_sobel = np.absolute(sobel)
# Scale to 8-bit (0 - 255) then convert to type = np.uint8
scaled_sobel = np.uint8(255 * abs_sobel / np.max(abs_sobel))
binary_output = self._apply_thresh(scaled_sobel, thresh)
return binary_output
def sobel_mag_thresh(self, sobel_x, sobel_y, thresh=(0, 255)):
# Calculate the gradient magnitude
gradmag = np.sqrt(sobel_x**2 + sobel_y**2)
# Rescale to 8 bit
scale_factor = np.max(gradmag)/255
gradmag = (gradmag/scale_factor).astype(np.uint8)
binary_output = self._apply_thresh(gradmag, thresh)
return binary_output
def sobel_dir_thresh(self, sobel_x, sobel_y, thresh=(0, np.pi/2)):
# Take the absolute value of the x and y gradients
abs_sobel_x = np.absolute(sobel_x)
abs_sobel_y = np.absolute(sobel_y)
# Calculate the direction of the gradient
abs_grad_dir = np.arctan2(abs_sobel_y, abs_sobel_x)
binary_output = self._apply_thresh(abs_grad_dir, thresh)
return binary_output
def gradient_thresh(self, img):
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
v_ch = hsv_img[:,:,2]
v_binary = self._apply_thresh(v_ch, self.grad_v_thresh)
sobel_x = self._sobel(gray_img, sobel_kernel = self.sobel_kernel, orient = 'x')
sobel_y = self._sobel(gray_img, sobel_kernel = self.sobel_kernel, orient = 'y')
sobel_x_binary = self.sobel_abs_thresh(sobel_x, thresh = self.grad_x_thresh)
sobel_y_binary = self.sobel_abs_thresh(sobel_y, thresh = self.grad_y_thresh)
sobel_mag_binary = self.sobel_mag_thresh(sobel_x, sobel_y, thresh = self.grad_mag_thresh)
sobel_dir_binary = self.sobel_dir_thresh(sobel_x, sobel_y, thresh = self.grad_dir_thresh)
sobel_binary = np.zeros_like(sobel_x_binary)
sobel_binary[(((sobel_x_binary == 1) & (sobel_y_binary == 1)) | (sobel_dir_binary == 1)) & (sobel_mag_binary == 1) & (v_binary == 1)] = 1
return sobel_binary
def color_thresh(self, img):
hls_img = cv2.cvtColor(img, cv2.COLOR_BGR2HLS)
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
lab_img = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
r_ch = img[:,:,2]
r_binary = self._apply_thresh(r_ch, self.r_thresh)
l_ch = hls_img[:,:,1]
l_binary = self._apply_thresh(l_ch, self.l_thresh)
s_ch = hls_img[:,:,2]
s_binary = self._apply_thresh(s_ch, self.s_thresh)
b_ch = lab_img[:,:,2]
b_binary = self._apply_thresh(b_ch, self.b_thresh)
v_ch = hsv_img[:,:,2]
v_binary = self._apply_thresh(v_ch, self.v_thresh)
result = np.zeros_like(s_binary)
# B and V for yellow, R and L for white, S and V for both
result[((b_binary == 1) & (v_binary == 1)) | ((r_binary == 1) & (l_binary == 1)) | ((s_binary == 1) & (v_binary == 1))] = 1
return result
def threshold_image(self, img):
gradient_binary = self.gradient_thresh(img)
color_binary = self.color_thresh(img)
result = np.zeros_like(gradient_binary)
result[(gradient_binary == 1) | (color_binary) == 1] = 255
return result
def process_image(self, img):
"""
Process the given image appling undistorsion from the camera calibration data, thresholds the result and then
warps the image for an bird-eye view of the road.
"""
undistorted_img = self.undistort_image(img)
thresholded_img = self.threshold_image(undistorted_img)
warped_img = self.warp_image(thresholded_img)
return undistorted_img, thresholded_img, warped_img
class LaneDetector:
"""
The class is used to detect road lanes in processed (from img_processor) frames, using a sliding window
through convolutions to detect hot pixels. For each slice extracts the centroids found in the windows and
fits a polynomial to compute the curvature and deviation from center. The same polynomial can be used to draw
the lines in the frame. The final centroids returned by the pipeline are averaged among last X frames to smooth
the result.
"""
FAIL_CODES = {
1: 'Lane distance out of range',
2: 'Lane distance deviates from mean',
3: 'Lane distance deviates from previous frame',
4: 'Low left lane confidence',
5: 'Low right lane confidence',
9: 'Low lanes confidence'
}
def __init__(self, window_width = 30, window_height = 80, margin = 35, smooth_frames = 15, xm = 3.7/700, ym = 3/110):
"""
Initializes the class with the given parameters for the windows. Note that if smooth_frames is zero no interpolation is
performed between frames.
Parameters
window_width: The width of the sliding window
window_height: The height of the sliding window
margin: Left/right margin that is used by the sliding window in subsequent layers
smooth_frames: The number of frames to use for smoothing the result of the detection
xm: The number of meters per pixel on the horizontal axis
ym: The number of meters per pixel on the vertical axis
"""
# [(left, right, y)]
self.centroids_buffer = deque(maxlen = smooth_frames)
self.last_lanes_distance = None
self.window_width = window_width
self.window_height = window_height
self.margin = margin
self.first_window_height = .75 # The height for the first window (for the start of the lane at the bottom)
self.min_points_fit = 4 # Number of point already found before trying to fit a line when no center is detected
self.min_confidence = 0.16 # Min confidence to keep a detected lane
self.dist_thresh = (510, 890) # Lanes distance threshold
self.max_dist_diff = 60 # Max lanes distance difference between frames
self.max_dist_mean_dev = 80 # Max lanes distance deviation from mean
self.xm = xm
self.ym = ym
self.min_conv_signal = 1000 # Min conv signal to avoid noise
self.max_window_signal = None # Cache for the max amount of signal in a window to compute confidence
def compute_window_max_signal(self, window, width, height, max_value = 255):
"""
Returns the maximum amount of signal in a window with the given dimension, given the value for each pixel
"""
window_sum = np.sum(np.ones((height, width)) * max_value, axis = 0)
conv_signal = np.convolve(window, window_sum)
return np.max(conv_signal)
def detect_lanes(self, img):
"""
Detection pipeline: Starts out with detecting the bottom lanes using a bigger window for the convolution. The
centroids found at this stage are used as base for the next layer (look around the margin). For each layer estimates
the correctness of the detected centroids and tries to detect failures based on the confidence (given by the amount of
signal in each window) and the distance between lanes (and the mean of the previous lanes if smoothing is enabled).
Parameters
img: The input image, must be a processed image from the ImageProcessor
Returns
lanes_centroids: The centroids for the detected lanes
(left_fit, right_fit): The left and right polynomial coefficients from the lanes_centroids
(left_curvature, right_curvature): The curvature in meters
deviation: The deviation from the center of the lane
fail_code: 0 if the lanes could be detected from this frame, otherwise a code that can be mapped in the FAIL_CODES dictionary
Note that if the detection was not successful the lanes_centroids and the fits are the one from the previous frame
"""
lanes_centroids = []
centroids_confidence = []
window = np.ones(self.window_width)
if self.max_window_signal is None:
self.max_window_signal = self.compute_window_max_signal(window, self.window_width, self.window_height)
left_center, left_confidence, right_center, right_confidence, center_y = self.estimate_start_centroids(img, window)
# Add what we found for the first layer
lanes_centroids.append((left_center, right_center, center_y))
centroids_confidence.append((left_confidence, right_confidence))
# Go through each layer looking for max pixel locations
for level in range(1, (int)(img.shape[0] / self.window_height)):
left_center, left_confidence, right_center, right_confidence, center_y = self.estimate_centroids(img, window, level, left_center, right_center, lanes_centroids)
lanes_centroids.append((left_center, right_center, center_y))
centroids_confidence.append((left_confidence, right_confidence))
lanes_centroids = np.array(lanes_centroids)
centroids_confidence = np.array(centroids_confidence)
fail_code = self.detect_failure(lanes_centroids, centroids_confidence)
# If the lane detection failed and we have frames uses the last one
if fail_code > 0 and len(self.centroids_buffer) > 0:
lanes_centroids = self.centroids_buffer[-1]
self.centroids_buffer.append(lanes_centroids)
if len(self.centroids_buffer) > 0:
self.last_lanes_distance = self.compute_mean_distance(lanes_centroids[:,0], lanes_centroids[:,1])
# Average frames for smoothing
lanes_centroids = np.average(self.centroids_buffer, axis = 0)
left_fit, right_fit = self.lanes_fit(lanes_centroids)
left_fit_scaled, right_fit_scaled = self.lanes_fit(lanes_centroids, ym = self.ym, xm = self.xm)
curvature = self.compute_curvature(left_fit_scaled, right_fit_scaled, np.max(lanes_centroids[:,:2]) * self.ym)
deviation = self.compute_deviation(left_fit_scaled, right_fit_scaled, img.shape[0] * self.ym, img.shape[1] * self.xm)
return lanes_centroids, (left_fit, right_fit), curvature, deviation, fail_code
def estimate_start_centroids(self, img, window):
"""
Estimates the centroids at the bottom of the image, if some frames are buffered uses the previous frames
to define a boundary.
Parameters
img: Input image, must be processed from the ImageProcessor
window: The base window used in the convolutions within a frame
"""
if len(self.centroids_buffer) > 0:
# If a "good" start was found already, limit the search within the previous
# frame start boundaries
prev_centroids = np.array(self.centroids_buffer)
prev_left_centroids = prev_centroids[:,:,0]
prev_right_centroids = prev_centroids[:,:,1]
left_min_index = int(max(np.min(prev_left_centroids) - self.margin, 0))
left_max_index = int(min(np.max(prev_left_centroids) + self.margin, img.shape[1]))
right_min_index = int(max(np.min(prev_right_centroids) - self.margin, 0))
right_max_index = int(min(np.max(prev_right_centroids) + self.margin, img.shape[1]))
else:
left_min_index = 0
left_max_index = int(img.shape[1] / 2)
right_min_index = int(img.shape[1] / 2)
right_max_index = img.shape[1]
window_top = int(img.shape[0] * self.first_window_height)
window_y = int(img.shape[0] - self.window_height / 2)
left_sum = np.sum(img[window_top:, left_min_index:left_max_index], axis=0)
left_signal = np.convolve(window, left_sum)
left_center, left_confidence = self.get_conv_center(left_signal, left_min_index, max_signal = None)
right_sum = np.sum(img[window_top:, right_min_index:right_max_index], axis=0)
right_signal = np.convolve(window, right_sum)
right_center, right_confidence = self.get_conv_center(right_signal, right_min_index, max_signal = None)
return left_center, left_confidence, right_center, right_confidence, window_y
def get_conv_center(self, conv_signal, offset, max_signal = None):
"""
Computes the center from the given convolution signal assuming the given offset
Parameters
conv_signal: The result of the convolution of a window
offset: The offset used for the convolution (so that the center is relative to the image and not the window)
max_signal: The maximum amount of singal in the convolution, used to compute the confidence, if supplied a threshold
is applied for the minimum amount of signal to consider valid
Returns
center: The center x, None if not enough signal
confidence: The ratio between the signal and the max amount of signal
"""
max_conv_signal = np.max(conv_signal)
if max_signal is None or max_conv_signal > self.min_conv_signal:
center = np.argmax(conv_signal) + offset - (self.window_width / 2)
confidence = 1.0 if max_signal is None else max_conv_signal / max_signal
else:
center = None
confidence = 0.0
return center, confidence
def find_window_centroid(self, img, conv_signal, prev_center):
"""
Finds the centroids in a window resulting in the given convolution assuming the given previous starting center
Parameters
img: The input image
conv_signal: The result of the convolution of a window
prev_center: The previous center to be used as reference
Returns
center: The center x, None if not enough signal
confidence: The ratio between the signal and the max amount of signal in a window
"""
offset = self.window_width / 2
# Find the best center by using past center as a reference
min_index = int(max(prev_center + offset - self.margin, 0))
max_index = int(min(prev_center + offset + self.margin, img.shape[1]))
conv_window = conv_signal[min_index:max_index]
center, confidence = self.get_conv_center(conv_window, min_index, self.max_window_signal)
return center, confidence
def estimate_centroids(self, img, window, level, prev_l_center, prev_r_center, lanes_centroids):
"""
Estimates the centroids for the window at the given level using the given previous centers as reference
Parameters
img: The input image
level: The level for the convolution (e.g. img height/window height)
lanes_centroids: The centroids found so far in the frame
Returns
left_center: x coordinate for the left center
left_confidence: Confidence for the left center
right_center: x coordinate for the right center
right_confidence: Confidence for the right center
center_y: y coordinate for both centers
"""
window_top = int(img.shape[0] - (level + 1) * self.window_height)
window_bottom = int(img.shape[0] - level * self.window_height)
center_y = int(window_bottom - self.window_height / 2)
# Convolve the window into the vertical slice of the image
window_sum = np.sum(img[window_top:window_bottom, :], axis=0)
conv_signal = np.convolve(window, window_sum)
left_center, left_confidence = self.find_window_centroid(img, conv_signal, prev_l_center)
right_center, right_confidence = self.find_window_centroid(img, conv_signal, prev_r_center)
if left_center is None and right_center is None:
# If no centers were detected but we have enough points
# we can try to fit the lane already to get an estimated point
if len(lanes_centroids) > self.min_points_fit:
left_fit, right_fit = self.lanes_fit(np.array(lanes_centroids))
left_center = self.fit_point(img, left_fit, center_y)
right_center = self.fit_point(img, right_fit, center_y)
else:
left_center = prev_l_center
right_center = prev_r_center
# If either one is detected we can use the previous distance as an estimation
elif left_center is None:
left_center = right_center - (prev_r_center - prev_l_center)
elif right_center is None:
right_center = left_center + (prev_r_center - prev_l_center)
return left_center, left_confidence, right_center, right_confidence, center_y
def fit_point(self, img, fit, y):
return np.clip(fit[0]*y**2 + fit[1]*y + fit[2], 0, img.shape[1])
def detect_failure(self, lanes_centroids, centroids_confidence):
"""
Tries to detect detection failure from the given centroids and confidence. Uses the mean lane distance from
the given centroids compared to the previous mean of the previous frames.
"""
left_confidence, right_confidence = np.mean(centroids_confidence, axis = 0)
# Checks detection confidence
confidence_fail = 0
if left_confidence < self.min_confidence:
confidence_fail += 4
if right_confidence < self.min_confidence:
confidence_fail += 5
if confidence_fail > 0:
return confidence_fail
lanes_distance = self.compute_mean_distance(lanes_centroids[:,0], lanes_centroids[:,1])
# Checks lane distance threshold
if lanes_distance < self.dist_thresh[0] or lanes_distance > self.dist_thresh[1]:
return 1
# Checks the difference with the previous frame
if self.last_lanes_distance is not None and abs(lanes_distance - self.last_lanes_distance) > self.max_dist_diff:
return 3
# Checks that the distance with the mean of the previous frames
if len(self.centroids_buffer) > 0:
mean_centroids = np.mean(self.centroids_buffer, axis = 0)
mean_lanes_distance = self.compute_mean_distance(mean_centroids[:,0], mean_centroids[:,1])
if np.absolute(lanes_distance - mean_lanes_distance) > self.max_dist_mean_dev:
return 2
return 0
def compute_mean_distance(self, x1, x2):
return np.sqrt(np.sum((x1 - x2)**2) / len(x1))
def lane_fit(self, lanes_centroids, idx = 0, ym = 1, xm = 1):
fit_y_vals = lanes_centroids[:,2] * ym
fit_x_vals = lanes_centroids[:,idx] * xm
fit = np.polyfit(fit_y_vals, fit_x_vals , 2)
return fit
def lanes_fit(self, lanes_centroids, ym = 1, xm = 1):
left_fit = self.lane_fit(lanes_centroids, 0, ym, xm)
right_fit = self.lane_fit(lanes_centroids, 1, ym, xm)
return left_fit, right_fit
def compute_curvature(self, left_fit, right_fit, y_eval):
"""
Curvature computation, assumes a scaled left and right fit
"""
left_curverad = ((1 + (2 * left_fit[0] * y_eval + left_fit[1])**2)**1.5) / np.absolute(2 * left_fit[0])
right_curverad = ((1 + (2 * right_fit[0] * y_eval + right_fit[1])**2)**1.5) / np.absolute(2 * right_fit[0])
return (left_curverad, right_curverad)
def compute_deviation(self, left_fit, right_fit, y_eval, x_eval):
"""
Deviation computation, assumes a scaled left and right fit
"""
l_x = left_fit[0] * y_eval ** 2 + left_fit[1] * y_eval + left_fit[2]
r_x = right_fit[0] * y_eval ** 2 + right_fit[1] * y_eval + right_fit[2]
center = (l_x + r_x) / 2.0
return center - x_eval / 2.0
def draw_lanes(self, img, polyfit, blend = False, marker_width = 20, fill_color = None):
"""
Draws the given polynomials (left, right) using the image as reference, if blend is True draws on top of the input image
"""
left_fit, right_fit = polyfit
y_vals = range(0, img.shape[0])
left_x_vals = left_fit[0] * y_vals * y_vals + left_fit[1] * y_vals + left_fit[2]
right_x_vals = right_fit[0] * y_vals * y_vals + right_fit[1] * y_vals + right_fit[2]
if blend:
out_img = img
else:
out_img = np.zeros_like(img)
cv2.polylines(out_img, np.int_([list(zip(left_x_vals, y_vals))]), False, (255, 0, 0), marker_width)
cv2.polylines(out_img, np.int_([list(zip(right_x_vals, y_vals))]), False, (0, 0, 255), marker_width)
if fill_color is not None:
offset = marker_width / 2
inner_x = np.concatenate((left_x_vals + offset, right_x_vals[::-1] - offset), axis = 0)
inner_y = np.concatenate((y_vals, y_vals[::-1]), axis = 0)
cv2.fillPoly(out_img, np.int_([list(zip(inner_x, inner_y))]), color = fill_color)
return out_img
def window_mask(self, width, height, img_ref, x, y):
output = np.zeros_like(img_ref)
output[int(y - height/2):int(y + height/2),max(0,int(x-width/2)):min(int(x+width/2),img_ref.shape[1])] = 1
return output
def draw_windows(self, img, lanes_centroids, polyfit = None, blend = False):
"""
Draws the windows around the given centroids using the image as reference, if blend is True draws on top of the input image
"""
# Points used to draw all the left and right windows
l_points = np.zeros_like(img)
r_points = np.zeros_like(img)
# Go through each level and draw the windows
for level in range(0, len(lanes_centroids)):
# Window_mask is a function to draw window areas
center_y = lanes_centroids[level][2]
l_mask = self.window_mask(self.window_width, self.window_height, img, lanes_centroids[level][0], center_y)
r_mask = self.window_mask(self.window_width, self.window_height, img, lanes_centroids[level][1], center_y)
# Add graphic points from window mask here to total pixels found
l_points[(l_points == 255) | (l_mask == 1) ] = 255
r_points[(r_points == 255) | (r_mask == 1) ] = 255
# Draw the results
template = np.array(r_points + l_points, np.uint8) # add both left and right window pixels together
zero_channel = np.zeros_like(template) # create a zero color channel
template = np.array(cv2.merge((zero_channel, template, zero_channel)), np.uint8) # make window pixels green
if blend:
out_img = np.array(cv2.merge((img, img, img)), np.uint8)
out_img = cv2.addWeighted(out_img, 1.0, template, 0.5, 0)
else:
out_img = template
if polyfit is None:
left_fit, right_fit = self.lanes_fit(lanes_centroids)
polyfit = (left_fit, right_fit)
out_img = self.draw_lanes(out_img, polyfit, blend = True, marker_width = 3)
return out_img