-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathudacity_parser.py
194 lines (146 loc) · 6.31 KB
/
udacity_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import csv
import numpy as np
import cv2
import argparse
from tqdm import tqdm
"""
The script used to parse the udacity dataset (https://github.com/udacity/self-driving-car/tree/master/annotations)
into usable images to train the vehicle vs non-vehicle classifier. Extracts from the tagged images the bounding boxes of
the cars, resizes to the correct dimensions and extract patches where vehicles are not present.
"""
def process_udacity_dataset(map_file = os.path.join('data', 'udacity', 'labels_crowdai.csv'),
img_folder = os.path.join('data', 'udacity', 'object-detection-crowdai'),
dest_folder = os.path.join('data', 'udacity'),
dest_size = 64,
format = 'png',
limit = None,
skip = 5):
print('Loading Udacity CSV file from: {}'.format(map_file))
vehicles_folder = os.path.join(dest_folder, 'vehicles')
if not os.path.isdir(vehicles_folder):
os.makedirs(vehicles_folder)
notvehicles_folder = os.path.join(dest_folder, 'non-vehicles')
if not os.path.isdir(notvehicles_folder):
os.makedirs(notvehicles_folder)
file_bboxes = {}
with open(map_file, 'r') as csv_file:
lines = [line for line in csv_file]
if limit is not None:
lines = lines[:limit]
reader = csv.reader(lines)
# Skip header
_ = next(reader, None)
for x_min, y_min, x_max, y_max, img_file, label, _ in filter(lambda row:row[5] in ['Car', 'Truck'], tqdm(reader, total = len(lines), unit = ' images', desc = 'Parsing Vehicles')):
img = cv2.imread(os.path.join(img_folder, img_file))
x_min = int(x_min)
x_max = int(x_max)
y_min = int(y_min)
y_max = int(y_max)
if y_max <= y_min or x_max <= x_min:
print('Wrong bounding box for {}: ({}, {}), ({}, {})'.format(img_file, x_min, y_min, x_max, y_max))
continue
bboxes = file_bboxes.get(img_file)
if bboxes is None:
bboxes = []
file_bboxes[img_file] = bboxes
bboxes.append(((x_min, y_min), (x_max, y_max)))
print('Processed images: {}'.format(len(file_bboxes)))
for i, (img_file, bboxes) in enumerate(tqdm(file_bboxes.items(), unit=' images', desc='Saving images')):
if i % skip == 0:
img = cv2.imread(os.path.join(img_folder, img_file))
_save_windows(img, bboxes, vehicles_folder, img_file, dest_size, format)
notvehicle_boxes = _get_notvehicles_bboxes(bboxes, img.shape)
_save_windows(img, notvehicle_boxes, notvehicles_folder, img_file, dest_size, format)
def _save_windows(img, bboxes, folder, img_file, dest_size, format):
for i, bbox in enumerate(bboxes):
img_window = img[bbox[0][1]:bbox[1][1], bbox[0][0]:bbox[1][0]]
interpolation = cv2.INTER_CUBIC
if img_window.shape[0] < dest_size or img_window.shape[1] < dest_size:
interpolation = cv2.INTER_AREA
img_window = cv2.resize(img_window, (dest_size, dest_size), interpolation = interpolation)
dest_file = os.path.join(folder, '{}_{}.{}'.format(img_file.split('.')[0], i, format))
cv2.imwrite(dest_file, img_window)
def _get_notvehicles_bboxes(taken_bboxes, img_shape):
window_size = np.random.choice([128, 256])
stride = int(window_size * 0.8)
y_gap = 120 # Skip the hood
bboxes = []
max_notvehicles = len(taken_bboxes)
for x in range(0, img_shape[1], stride):
# Skip x with 1/3 probability
if np.random.choice([True, False], replace = False, p = [1/3, 2/3]):
continue
for y in range(img_shape[0] - y_gap, window_size, -stride):
# Skip y with 1/3 probability
if np.random.choice([True, False], replace = False, p = [1/3, 2/3]):
continue
bbox = ((x, y - window_size), (x + window_size, y))
if _is_free_box(bbox, taken_bboxes):
bboxes.append(bbox)
if len(bboxes) >= max_notvehicles:
return bboxes
return bboxes
def _is_free_box(bbox, bboxes):
for taken_bbox in bboxes:
if _overlap(bbox, taken_bbox):
return False
return True
def _overlap(bbox1, bbox2):
if bbox1[1][0] <= bbox2[0][0]: return False # bbox1 is left of bbox2
if bbox1[0][0] >= bbox2[1][0]: return False # bbox1 is right of bbox2
if bbox1[1][1] <= bbox2[0][1]: return False # bbox1 is above bbox2
if bbox1[0][1] >= bbox2[1][1]: return False # bbox1 is below bbox2
return True
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SVC Training')
parser.add_argument(
'--map_file',
type=str,
default=os.path.join('data', 'udacity', 'labels_crowdai.csv'),
help='Mapping CSV file'
)
parser.add_argument(
'--img_folder',
type=str,
default=os.path.join('data', 'udacity', 'object-detection-crowdai'),
help='Folder where the original images are stored'
)
parser.add_argument(
'--dest_folder',
type=str,
default=os.path.join('data', 'udacity'),
help='Folder where to save the cropped images'
)
parser.add_argument(
'--dest_size',
type=int,
default=64,
help='What size are the destination images'
)
parser.add_argument(
'--format',
type=str,
default='png',
help='Which format to save the cropped images'
)
parser.add_argument(
'--limit',
type=int,
default=None,
help='Limit to the given amount of images'
)
parser.add_argument(
'--skip',
type=int,
default=7,
help='Only process every x images (e.g. to avoid time series data)'
)
args = parser.parse_args()
process_udacity_dataset(map_file=args.map_file,
img_folder=args.img_folder,
dest_folder=args.dest_folder,
dest_size=args.dest_size,
format=args.format,
limit=args.limit,
skip=args.skip)