-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenAlg.py
316 lines (258 loc) · 7.93 KB
/
GenAlg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
from gen import *
class GenAlg:
def __init__(self, krit_fit=0.5, krit_lifetime=100):
self.gens = []
self.bank = []
self.krit_fit = krit_fit
self.krit_lifetime = krit_lifetime
def add_gen(self, gen):
self.gens += [gen]
def new_random_generation(self, n_gens=1, n_gene=1):
for i in range(n_gens):
gen = Gen()
gen.gene(n_gene)
gen.init_params()
self.gens += [gen]
def increase_lifetime(self):
for i in self.gens:
i.increase_lifetime()
def sorting(self, l1, for_bank=False):
idx = np.argsort(l1)
if for_bank:
self.bank = [self.bank[i] for i in idx]
else:
self.gens = [self.gens[i] for i in idx]
def fitsort(self, y, norm_y=1, norm_len=7, norm_worth= 0.9):
fits = []
for i in self.gens:
if i.fit == None:
i.fitness(y=y, norm_y=norm_y, norm_len=norm_len, norm_worth=norm_worth)
fits += [i.fit]
self.sorting(fits)
def bank_fitsort(self):
fits = []
for i in self.bank:
fits += [i.fit]
self.sorting(l1=fits, for_bank=True)
def crossover(self, n_cross=1, best=False):
new_gens = []
lc = len(self.gens[0].crosss)
lp = len(self.gens)
if best:
for i in range(n_cross):
r1 = r(1, lp)
new_gens += [ self.gens[0].crosss[r(0, lc)](self.gens[r1], self.gens[0]) ]
else:
for i in range(n_cross):
r1 = r(0, lp)
r2 = r(0, lp, r1)
new_gens += [ self.gens[0].crosss[r(0, lc)](self.gens[r1], self.gens[r2]) ]
self.gens = np.append(self.gens, new_gens)
def mutate(self, n_mut=1, best=False):
new_gens = []
lm = len(self.gens[0].mutations)
lp = len(self.gens)
if best:
for i in range(n_mut):
new_gens += [ self.gens[0].mutations[r(0, lm)](self.gens[0]) ]
else:
for i in range(n_mut):
new_gens += [ self.gens[0].mutations[r(0, lm)](self.gens[r(0, lp)]) ]
self.gens = np.append(self.gens, new_gens)
def kill_best_area_fit(self, krit=0.01):
best_gen = self.gens[0]
for i in self.gens[1:]:
if abs(i.fit - best_gen.fit) <= krit:
if i.lifetime > best_gen.lifetime:
best_gen.lifetime = i.lifetime
self.gens.remove(i)
def kill_long_gens(self, maxx=7):
a = []
for i in self.gens:
if len(i.chrom) <= maxx:
a += [i]
self.gens = a
def kill_all_with_weak_best_fit(self, a=2):
best_gen = self.gens[0]
flag1 = (best_gen.fit > self.krit_fit) and (best_gen.lifetime > self.krit_lifetime)
flag2 = best_gen.lifetime > a*self.krit_lifetime
if flag1 or flag2:
if flag1:
print()
print('flag1')
best_gen.print_formula()
print(best_gen.fit, best_gen.lifetime)
print('Популяция была убита')
if len(self.bank) == 0:
self.krit_fit = best_gen.fit
self.bank += [best_gen]
self.leave_strong(0)
print('new krit_lifetime', self.krit_lifetime)
print('new krit_fit', self.krit_fit)
print()
return
relative_fit = self.krit_fit/best_gen.fit
if best_gen.lifetime > a*relative_fit*self.krit_lifetime:
print()
print('----> flag2 <----')
best_gen.print_formula()
print(best_gen.fit, best_gen.lifetime)
print('Популяция была убита')
self.bank += [best_gen]
self.krit_lifetime *= relative_fit
self.krit_fit = best_gen.fit
self.leave_strong(0)
print('new krit_lifetime', self.krit_lifetime)
print('new krit_fit', self.krit_fit)
print()
return
def leave_strong(self, n_gens=1):
self.gens = self.gens[:n_gens]
def leave_unique(self):
n = []
uniq_gens = []
flag = True
for i in range(len(self.gens)):
for j in n:
if j == self.gens[i].fit:
flag = False
break
if flag:
n += [self.gens[i].fit]
uniq_gens += [self.gens[i]]
flag = True
self.gens = uniq_gens
def stop_GA(self, stop=5, eps_stop=0.05):
if len(self.bank) >= stop:
self.bank_fitsort()
count = 0
for i in self.bank:
if abs(i.fit - self.bank[0].fit) <= eps_stop:
count += 1
else:
break
if count >= stop:
return True
else:
return False
else:
return False
"""----------------------------------------------------------"""
def GA(self, y, norm_y=1, n_generation=100, n_gens=100, n_cross=20, n_mut=20, n_strong = 50, maxlen=10):
self.leave_strong(0)
for k in range(n_generation):
self.new_random_generation(n_gens=n_gens - len(self.gens), n_gene=3)
self.crossover(n_cross)
self.mutate(n_mut)
self.kill_long_gens(maxlen)
self.fitsort(y=y, norm_y=norm_y, norm_len=maxlen, norm_worth=0.9)
self.leave_unique()
self.leave_strong(n_strong)
self.increase_lifetime()
flag = False
if self.gens[0].fit < 0.02:
flag = True
if flag:
break
print('количество итераций', k)
for i in self.gens[:2]:
i.print_formula()
print(i.fit, i.lifetime)
if self.gens[0].fit < 0.1:
print('yes', self.gens[0].fit)
else:
print('no', self.gens[0].fit)
print('\n')
return self.gens[0]
def GA_best(self, y, norm_y=1, n_generation=100, n_gens=100, n_cross=20, n_mut=20, n_strong = 50, \
best_area_fit=0.01, stop=5, stop_eps=0.005, stop_fit=0.05, maxlen=7):
self.new_random_generation(n_gens=n_gens - len(self.gens))
self.fitsort(y=y, norm_y=norm_y)
flag = False
for k in range(n_generation):
self.crossover(n_cross, True)
self.mutate(n_mut, True)
self.kill_long_gens(maxlen)
self.fitsort(y=y, norm_y=norm_y, norm_len=maxlen, norm_worth=0.9)
self.kill_best_area_fit(best_area_fit)
self.leave_strong(n_strong)
self.increase_lifetime()
if len(self.bank) != 0 and len(self.bank)%20 == 0:
self.krit_lifetime *= 1.2
flag = self.stop_GA(stop, stop_eps)
if self.gens[0].fit < stop_fit or flag:
if not flag:
self.bank += [self.gens[0]]
break
self.kill_all_with_weak_best_fit()
self.new_random_generation(n_gens=n_gens - len(self.gens))
self.bank += [self.gens[0]]
print('количество итераций', k)
print('В банке : ', len(self.bank), 'особей')
self.bank_fitsort()
for i in self.bank:
i.print_formula()
print(i.fit, i.lifetime)
print('\n')
return self.bank[0]
class GenAlgPop(GenAlg):
"""-----------------------"""
def __init__(self, pop_pattern=Gen(), krit_fit=0.5, krit_lifetime=100):
super().__init__(krit_fit, krit_lifetime)
self.pop_pattern = pop_pattern
def new_random_generation(self, n_gens=1, n_gene=1):
for i in range(n_gens):
gen = self.pop_pattern.copy()
gen.init_params()
self.gens += [gen]
def kill_best_area_norm(self, krit=1):
best_pop = self.pops[0]
for i in self.pops[1:]:
if np.linalg.norm(i.chrom - best_pop.chrom) < krit:
self.pops.remove(i)
def kill_bank_area_norm(self, krit=1):
if len(self.bank) == 0:
return
else:
for i in self.pops:
for j in self.bank:
if np.linalg.norm(i.chrom - j.chrom) < krit:
self.pops.remove(i)
def kill_long_gens(self):
pass
def GA_best(self, y, norm_y=1, n_generation=100, n_gens=15, n_cross=3, n_mut=3, n_strong = 7, best_area_fit=0.01,\
stop=5, stop_eps=0.001, stop_fit=0.05):
n_params = self.pop_pattern.obj.count_params()
n_gens *= n_params
n_cross *= n_params
n_mut *= n_params
n_strong *= n_params
self.new_random_generation(n_gens=n_gens - len(self.gens))
self.fitsort(y=y, norm_y=norm_y)
flag = False
for k in range(n_generation):
self.crossover(n_cross, True)
self.mutate(n_mut, True)
self.kill_long_gens()
self.fitsort(y=y, norm_y=norm_y)
self.kill_best_area_fit(best_area_fit)
self.leave_strong(n_strong)
self.increase_lifetime()
if len(self.bank) != 0 and len(self.bank)%20 == 0:
self.krit_lifetime *= 1.2
flag = self.stop_GA(stop, stop_eps)
if self.gens[0].fit < stop_fit or flag:
if not flag:
self.bank += [self.gens[0]]
break
self.kill_all_with_weak_best_fit()
self.new_random_generation(n_gens=n_gens - len(self.gens))
self.bank += [self.gens[0]]
print('количество итераций', k)
print('В банке : ', len(self.bank), 'особей')
self.bank_fitsort()
for i in self.bank:
i.obj.print_formula()
print(i.fit, i.lifetime)
print('\n')
return self.bank[0]