-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWeb_App_Scratch_Streamlit.py
249 lines (175 loc) · 7.7 KB
/
Web_App_Scratch_Streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""
Created on Wed Dec 09 11:01:09 2020
@author: Rosario Moscato
Required Packages: streamlit textblob spacy gensim neattext matplotlib wordcloud
Spacy Model: python -m spacy download en_core_web_sm
"""
# Core Pkgs
import streamlit as st
st.set_page_config(page_title="NLP Simple Examples", page_icon="RML_Logo.png", layout='centered', initial_sidebar_state='auto')
# NLP Pkgs
from textblob import TextBlob
import spacy
from gensim.summarization import summarize
import neattext as nt
# Viz Pkgs
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use("Agg")
from wordcloud import WordCloud
# Function For Tokens and Lemma Analysis
@st.cache
def text_analyzer(my_text):
nlp = spacy.load("en_core_web_sm")
docx = nlp(my_text)
allData = [('"Token":{},\n"Lemma":{}'.format(token.text,token.lemma_))for token in docx ]
return allData
# Function For Wordcloud Plotting
def plot_wordcloud(my_text):
mywordcloud = WordCloud().generate(my_text)
fig = plt.figure(figsize=(20,10))
plt.imshow(mywordcloud,interpolation='bilinear')
plt.axis('off')
st.pyplot(fig)
def main():
"""NLP App with Streamlit and TextBlob"""
#st.title("NLP Simple Examples")
title_templ = """
<div style="background-color:blue;padding:8px;">
<h1 style="color:cyan">NLP Simple Examples</h1>
</div>
"""
st.markdown(title_templ,unsafe_allow_html=True)
subheader_templ = """
<div style="background-color:cyan;padding:8px;">
<h3 style="color:blue">Natural Language Processing On the Go...</h3>
</div>
"""
st.markdown(subheader_templ,unsafe_allow_html=True)
st.sidebar.image("https://www.centreofexcellence.com/app/uploads/2016/09/nlp-diploma-course.jpg", use_column_width=True)
activity = ["Text Analysis", "Translation", "Sentiment Analysis", "About"]
choice = st.sidebar.selectbox("Menu",activity)
# Text Analysis CHOICE
if choice == 'Text Analysis':
st.subheader("Text Analysis")
st.write("")
st.write("")
raw_text = st.text_area("Write something","Enter a Text in English...",height=250)
if st.button("Analyze"):
if len(raw_text) == 0:
st.warning("Enter a Text...")
else:
blob = TextBlob(raw_text)
st.write("")
if blob.detect_language() != 'en':
st.warning("Enter a Text in English...")
else:
st.info("Basic Functions")
col1, col2 = st.beta_columns(2)
with col1:
with st.beta_expander("Basic Info"):
st.success("Text Stats")
word_desc = nt.TextFrame(raw_text).word_stats()
result_desc = {"Length of Text":word_desc['Length of Text'],
"Num of Vowels":word_desc['Num of Vowels'],
"Num of Consonants":word_desc['Num of Consonants'],
"Num of Stopwords":word_desc['Num of Stopwords']}
st.write(result_desc)
with st.beta_expander("Stopwords"):
st.success("Stop Words List")
stop_w = nt.TextExtractor(raw_text).extract_stopwords()
st.error(stop_w)
with col2:
with st.beta_expander("Processed Text"):
st.success("Stopwords Excluded Text")
processed_text = str(nt.TextFrame(raw_text).remove_stopwords())
st.write(processed_text)
with st.beta_expander("Plot Wordcloud"):
st.success("Wordcloud")
plot_wordcloud(raw_text)
st.write("")
st.write("")
st.info("Advanced Features")
col3, col4 = st.beta_columns(2)
with col3:
with st.beta_expander("Tokens&Lemmas"):
st.write("T&L")
processed_text_mid = str(nt.TextFrame(raw_text).remove_stopwords())
processed_text_mid = str(nt.TextFrame(processed_text_mid).remove_puncts())
processed_text_fin = str(nt.TextFrame(processed_text_mid).remove_special_characters())
tandl = text_analyzer(processed_text_fin)
st.json(tandl)
with col4:
with st.beta_expander("Summarize"):
st.success("Summarize")
summary_text = summarize(raw_text,ratio=0.4)
if summary_text != "":
st.success(summary_text)
else:
st.warning("Please insert a Longer Text")
# Translation CHOICE
elif choice == 'Translation':
st.subheader("Text Translation")
st.write("")
st.write("")
raw_text = st.text_area("","Write something to be translated...")
if len(raw_text) < 3:
st.warning("Please provide a string with at least 3 characters...")
else:
blob = TextBlob(raw_text)
lang = blob.detect_language()
#st.write(lang)
tran_options = st.selectbox("Select translation language",['Chinese', 'English', 'German', 'Italian', 'Russian', 'Spanish'])
if st.button("Translate"):
if tran_options == 'Italian' and lang != 'it':
st.text("Translating to Italian...")
tran_result = blob.translate(from_lang=lang, to='it')
elif tran_options == 'Spanish' and lang != 'es':
st.text("Translating to Spanish...")
tran_result = blob.translate(from_lang=lang, to='es')
elif tran_options == 'Chinese' and lang != 'zh-CN':
st.text("Translating to Chinese...")
tran_result = blob.translate(from_lang=lang, to='zh-CN')
elif tran_options == 'Russian' and lang != 'ru':
st.text("Translating to Russian...")
tran_result = blob.translate(from_lang=lang, to='ru')
elif tran_options == 'German' and lang != 'de':
st.text("Translating to German...")
tran_result = blob.translate(from_lang=lang, to='de')
elif tran_options == 'English' and lang != 'en':
st.text("Translating to English...")
tran_result = blob.translate(from_lang=lang, to='en')
else:
tran_result = "Text is already in " + "'" + lang + "'"
st.success(tran_result)
# Sentiment Analysis CHOICE
elif choice == 'Sentiment Analysis':
st.subheader("Sentiment Analysis")
st.write("")
st.write("")
raw_text = st.text_area("", "Enter a Text...")
if st.button("Evaluate"):
if len(raw_text) == 0:
st.warning("Enter a Text...")
else:
blob = TextBlob(raw_text)
lang = blob.detect_language()
if lang != 'en':
tran_result = blob.translate(from_lang=lang, to='en')
blob = TextBlob(str(tran_result))
result_sentiment = blob.sentiment
st.info("Sentiment Polarity: {}".format(result_sentiment.polarity))
st.info("Sentiment Subjectivity: {}".format(result_sentiment.subjectivity))
# About CHOICE
else:# choice == 'About':
st.subheader("About")
st.write("")
st.write("")
st.markdown("""
### NLP Simple Examples (App with Streamlit and TextBlob)
##### By
+ **[Rosario Moscato LAB](https://www.youtube.com/channel/UCDn-FahQNJQOekLrOcR7-7Q)**
+ [[email protected]](mailto:[email protected])
""")
if __name__ == '__main__':
main()