forked from microsoft/QuantumKatas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTasks.qs
341 lines (285 loc) · 20 KB
/
Tasks.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// Copyright (c) Wenjun Hou.
// Licensed under the MIT license.
namespace Quantum.Kata.BoundedKnapsack
{
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Math;
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Arithmetic;
open Microsoft.Quantum.Arrays;
open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Measurement;
//////////////////////////////////////////////////////////////////
// Welcome!
//////////////////////////////////////////////////////////////////
// The Bounded Knapsack quantum kata is a series of exercises designed
// to teach you to use Grover search to solve the knapsack problem.
// The knapsack problem is a prominent computational problem;
// you can find its description at https://en.wikipedia.org/wiki/Knapsack_problem.
// The overall goal in this kata is to solve the knapsack optimization problem
// by running Grover's algorithm.
// The kata covers the following topics:
// - writing operations to perform arithmetic tasks.
// - writing oracles to implement constraints based on:
// - the 0-1 knapsack problem, a simple version of the knapsack problem;
// - the bounded knapsack problem.
// - using the oracle with Grover's algorithm to solve the knapsack decision problem.
// - using Grover's algorithm repeatedly to solve the knapsack optimization problem.
// You may find this kata to be more challenging than other Grover's search
// katas, so you might want to try SolveSATWithGrover or GraphColoring first.
// Hints for the more complicated tasks can be found in the Hints.qs file.
// Each task is wrapped in one operation preceded by the description of the task.
// Each task (except tasks in which you have to write a test) has a unit test associated with it,
// which initially fails. Your goal is to fill in the blank (marked with // ... comment)
// with some Q# code to make the failing test pass.
//////////////////////////////////////////////////////////////////
// Part I. 0-1 Knapsack Problem
//////////////////////////////////////////////////////////////////
// Introduction:
// You are given n items, indexed 0 to n-1.
// The item with index i has a weight of wᵢ and yields a profit of pᵢ.
// In the original 0-1 knapsack decision problem, we wish to determine
// whether we can put a subset of items in a knapsack to get a total profit
// of at least P, while not exceeding a maximum weight W.
// However, we will slightly modify the problem:
// the total profit must be strictly greater than P, rather than at least P.
// In the following tasks you will implement an oracle that evaluates whether
// a particular register of n qubits, representing an item combination,
// satisfies the described conditions.
// Task 1.1. Read combination from a register
// Input: An array of n qubits, which are guaranteed to be in one of the 2ⁿ basis states.
// Output: The item combination that this state represents, expressed as a boolean array of length n.
// The i-th element of the array should be true (indicating that i-th item is selected)
// if and only if the i-th qubit of the register is in the |1⟩ state.
// The operation should not change the state of the qubits.
// Example: For n = 3 and the qubits state |101⟩, return [true, false, true].
operation MeasureCombination01 (selectedItems : Qubit[]) : Bool[] {
// ...
return [];
}
// Task 1.2. Calculate the number of (qu)bits necessary to hold the maximum total value
// Input: An array of n positive integers, describing the value (the weight or the profit) of each item.
// Output: The minimum number of (qu)bits needed to store the maximum total value of the items.
// Example: For n = 4 and itemValues = [1, 2, 3, 4], the maximum total value is 10,
// which requires at least 4 qubits to store it, so 4 is returned.
function NumBitsTotalValue01 (itemValues : Int[]) : Int {
// ...
return 0;
}
// Task 1.3. Calculate the total value of selected items
// Inputs:
// 1) An array of n integers, describing the values (the weights or the profits) of the items.
// 2) An array of n qubits, describing whether each item is put into the knapsack.
// 3) An array of qubits "total" in the |0...0⟩ state to store the total value of the selected items.
// It is guaranteed that there are enough qubits to store the total value.
// Goal: Transform the "total" array to represent, in little-endian format, the sum of the values of the items that are put in the knapsack.
// The input qubits can be in a superposition state. Leave the qubits in selectedItems in the same state they started in.
// Example: For n = 4 and itemValues = [1, 2, 3, 4], the input state |1001⟩|0000⟩ should be transformed to |1001⟩|1010⟩,
// since items 0 and 3 are put in the knapsack, and itemValues[0] + itemValues[3] = 1 + 4 = 5 = 1010₂.
operation CalculateTotalValueOfSelectedItems01 (itemValues : Int[], selectedItems : Qubit[], total : Qubit[]) : Unit is Adj+Ctl {
// ...
}
// Task 1.4. Compare an integer stored in a qubit array with an integer (>)
// Inputs:
// 1) An array of D qubits representing an integer in little-endian format.
// 2) An integer b (0 ≤ b ≤ 2ᴰ - 1).
// 3) A qubit in an arbitrary state (target qubit).
// Goal: Flip the state of the target qubit if the integer represented by the qubit array is greater than b.
// The input qubits can be in superposition. Leave the qubits in the qubit array in the same state they started in.
// Example: For b = 11, the input state |1011⟩|0⟩ should be transformed to |1011⟩|1⟩, since 1101₂ = 13₁₀ > 11₁₀.
operation CompareQubitArrayGreaterThanInt (qs : Qubit[], b : Int, target : Qubit) : Unit is Adj+Ctl {
// ...
}
// Task 1.5. Compare an integer stored in a qubit array with an integer (≤)
// Inputs:
// 1) An array of D qubits representing an integer in little-endian format.
// 2) An integer b (0 ≤ b ≤ 2ᴰ - 1).
// 3) A qubit in an arbitrary state (target qubit).
// Goal: Flip the state of the target qubit if the integer represented by the qubit array is less than or equal to b.
// The input qubits can be in superposition. Leave the qubits in the qubit array in the same state they started in.
// Example: For b = 7, the input state |1010⟩|0⟩ should be transformed to |1010⟩|1⟩, since 0101₂ = 5₁₀ ≤ 7₁₀.
operation CompareQubitArrayLeqThanInt (qs : Qubit[], b : Int, target : Qubit) : Unit is Adj+Ctl {
// ...
}
// Task 1.6. Verify that the total weight doesn't exceed the limit W
// Inputs:
// 1) An integer W, the maximum weight the knapsack can hold.
// 2) An array of n integers, describing the weights of the items: itemWeights[i] = wᵢ.
// 3) An array of n qubits, describing whether each item is put into the knapsack.
// 4) A qubit in an arbitrary state (target qubit).
// Goal: Flip the state of the target qubit if the total weight is less than or equal to W.
// The input qubits can be in superposition. Leave the qubits in the qubit array in the same state they started in.
operation VerifyTotalWeight01 (W : Int, itemWeights : Int[], selectedItems : Qubit[], target : Qubit) : Unit is Adj+Ctl {
// ...
}
// Task 1.7. Verify that the total profit exceeds the threshold P
// Inputs:
// 1) An integer P, the threshold which the total profit must exceed.
// 2) An array of n integers, describing the profits of the items: itemProfits[i] = pᵢ.
// 3) An array of n qubits, describing whether each item is put into the knapsack.
// 4) A qubit in an arbitrary state (target qubit).
// Goal: Flip the state of the target qubit if the total profit is greater than P.
// The input qubits can be in superposition. Leave the qubits in the qubit array in the same state they started in.
operation VerifyTotalProfit01 (P : Int, itemProfits : Int[], selectedItems : Qubit[], target : Qubit) : Unit is Adj+Ctl {
// ...
}
// Task 1.8. Verify the solution to the 0-1 knapsack problem
// Inputs:
// 1) An integer W, the maximum weight the knapsack can hold.
// 2) An integer P, the threshold which the total profit must exceed.
// 3) An array of n integers, describing the weights of the items: itemWeights[i] = wᵢ.
// 4) An array of n integers, describing the profits of the items: itemProfits[i] = pᵢ.
// 5) An array of n qubits, describing whether each item is put into the knapsack.
// 6) A qubit in an arbitrary state (target qubit).
// Goal: Flip the state of the target qubit if the selection of the items in selectedItems satisfies both constraints:
// * the total weight of all items is less than or equal to W, and
// * the total profit of all items is greater than P.
// The input qubits can be in superposition. Leave the qubits in the qubit array in the same state they started in.
operation VerifyKnapsackProblemSolution01 (
W : Int, P : Int, itemWeights : Int[], itemProfits : Int[], selectedItems : Qubit[], target : Qubit
) : Unit is Adj+Ctl {
// ...
}
//////////////////////////////////////////////////////////////////
// Part II. Bounded Knapsack Problem
//////////////////////////////////////////////////////////////////
// Introduction:
// In this version of the problem we still consider n items, indexed 0 to n-1,
// the item with index i has a weight of wᵢ and yields a profit of pᵢ.
// But in the bounded knapsack version of the problem, unlike in the 0-1 knapsack problem,
// each type of item can have more than one copy, and can be selected multiple times.
// Specifically, there are bᵢ copies of item type i available,
// so this item type can be selected between 0 and bᵢ times, inclusive.
// Let xᵢ represent the number of copies of index i that are put into the knapsack; the constraint 0 ≤ xᵢ ≤ bᵢ must hold for all i.
// Thus, we seek a combination xs = [x₀, x₁, ..., xₙ₋₁] which
// has total weight at most W, and has total profit that is greater than P.
// Again, we slightly modify the problem, such that the total profit must
// be strictly greater than P, rather than at least P.
// The comparators from Part I (tasks 1.4-1.5) can be reused, but the operations for
// calculating total weight and profit will need to be rewritten.
// Task 2.1. Read combination from a jagged array of qubits
// Input: A jagged array of qubits of length n.
// Array selectedItemCounts[i] represents the binary notation of xᵢ in little-endian format.
// Each qubit is guaranteed to be in one of the basis states (|0⟩ or |1⟩).
// Output: An integer array of length n, containing the combination that this jagged array represents.
// The i-th element of the output array should have value xᵢ.
// The operation should not change the state of the qubits.
// Example: For state selectedItemCounts = [|101⟩, |1110⟩, |0100⟩], return [5, 7, 2].
operation MeasureCombination (selectedItemCounts : Qubit[][]) : Int[] {
// ...
return [];
}
// Task 2.2. Convert an array into a jagged array
// To simplify access to the register as an array of integers within the oracle,
// we reorganize the register into several qubit arrays that represent, in little-endian format,
// the number of copies of each item type.
// We can do the same transformation with arrays of other types, for example,
// arrays of classical bits (boolean or integer) that store binary notations of several integers.
// To make our code reusable, we can make it type-parameterized.
//
// Inputs:
// 1) An array of type T (T could be qubits or classical bits).
// 2) An array of n integers bᵢ.
// Output: A jagged array of n arrays of type T.
// i-th element of the return value should have enough bits to represent the integer bᵢ in binary notation.
// The length of the input array of T is defined to be able to store all integers bᵢ.
// Example: For b = [6, 15, 13] and a register of qubits in state |10111100100⟩,
// you need to use 3, 4, and 4 bits to represent the integers bᵢ,
// so you'll return an array of qubit arrays [|101⟩, |1110⟩, |0100⟩].
function RegisterAsJaggedArray<'T> (array : 'T[], b : Int[]) : 'T[][] {
// ...
return [];
}
// Task 2.3. Verification of limits satisfaction
// Inputs:
// 1) An array of n integers itemCountLimits[i] = bᵢ.
// 2) A jagged array of n qubits. Each array selectedItemCounts[i] represents the number of items xᵢ in little-endian format.
// 3) A qubit in an arbitrary state (target qubit).
// Goal: Flip the state of the target qubit if xᵢ ≤ bᵢ for all i.
// The input qubits can be in superposition. Leave the qubits in qubit array in the same state they started in.
operation VerifyLimits (itemCountLimits : Int[], selectedItemCounts : Qubit[][], target : Qubit) : Unit is Adj+Ctl {
// ...
}
// Task 2.4. Increment a quantum integer by a product of classical and quantum integers
// Inputs:
// 1) An integer x.
// 2) An array of n qubits, representing an arbitrary integer y.
// 3) An array of m qubits, representing an arbitrary integer z.
// Goal: Increment register z by the product of x and y.
// Perform the increment modulo 2ᵐ (you don't need to track the carry bit).
// The input qubits can be in superposition. Leave the qubits in register y in the same state they started in.
operation IncrementByProduct (x : Int, y : Qubit[], z : Qubit[]) : Unit is Adj+Ctl {
// ...
}
// Task 2.5. Calculate the number of (qu)bits necessary to hold the maximum total value
// Inputs:
// 1) An array of n positive integers, describing the value (the weight or the profit) of each item.
// 2) An array of n positive integers, describing the bᵢ - the limits on the maximum number of items of type i that can be selected.
// Output: The minimum number of (qu)bits needed to store the maximum total value of the items.
// Example: For n = 4, itemValues = [1, 2, 3, 4], and itemCountLimits = [2, 5, 4, 3],
// the maximum possible total value is 1*2 + 2*5 + 3*4 + 4*3 = 36, which requires at least 6 qubits, so 6 is returned.
function NumBitsTotalValue (itemValues : Int[], itemCountLimits : Int[]) : Int {
// ...
return 0;
}
// Task 2.6. Calculate total value of selected items
// Inputs:
// 1) An array of n integers, describing the values (the weights or the profits) of the items.
// 2) A jagged array of qubits of length n. Array selectedItems[i] represents the number of items of type i xᵢ in little-endian format.
// 3) An array of qubits "total" in the |0...0⟩ state to store the total value of the selected items.
// It is guaranteed that there are enough qubits to store the total value.
// Goal: Transform the "total" array to represent, in little-endian format, the sum of the values of the items that are put in the knapsack.
// The input qubits can be in a superposition state. Leave the qubits in selectedCounts in the same state they started in.
operation CalculateTotalValueOfSelectedItems (itemValues : Int[], selectedCounts : Qubit[][], total : Qubit[]) : Unit is Adj+Ctl {
// ...
}
// Task 2.7. Verify that the total weight doesn't exceed the limit W
// Inputs:
// 1) An integer W, the maximum weight the knapsack can hold.
// 2) An array of n integers, describing the weights of the items: itemWeights[i] = wᵢ.
// 3) An array of n positive integers, describing the bᵢ - the limits on the maximum number of items of type i that can be selected.
// 4) A jagged array of qubits, describing the number of each item type put into the knapsack.
// Array selectedCounts[i] represents xᵢ in little-endian format.
// 5) A qubit in an arbitrary state (target qubit).
// Goal: Flip the state of the target qubit if the total weight is less than or equal to W.
// The input qubits can be in superposition. Leave the qubits in the selectedCounts array in the same state they started in.
operation VerifyTotalWeight (W : Int, itemWeights : Int[], itemCountLimits : Int[], selectedCounts : Qubit[][], target : Qubit) : Unit is Adj+Ctl {
// ...
}
// Task 2.8. Verify that the total profit exceeds threshold P
// Inputs:
// 1) An integer P, the threshold which the total profit must exceed.
// 2) An array of n integers, describing the profits of the items: itemProfits[i] = pᵢ
// 3) An array of n positive integers, describing the bᵢ - the limits on the maximum number of items of type i that can be selected.
// 4) A jagged array of qubits, describing the number of each item type put into the knapsack.
// Array selectedCounts[i] represents xᵢ in little-endian format.
// 5) A qubit in an arbitrary state (target qubit).
// Goal: Flip the state of the target qubit if the total profit is greater than P.
// The input qubits can be in superposition. Leave the qubits in the selectedCounts array in the same state they started in.
operation VerifyTotalProfit (P : Int, itemProfits : Int[], itemCountLimits : Int[], selectedCounts : Qubit[][], target : Qubit) : Unit is Adj+Ctl {
// ...
}
// Task 2.9. Verify the solution to the bounded knapsack problem
// Inputs:
// 1) An integer W, the maximum weight the knapsack can hold.
// 2) An integer P, the threshold which the total profit must exceed.
// 3) An array of n integers, describing the weights of the items: itemWeights[i] = wᵢ.
// 4) An array of n integers, describing the profits of the items: itemProfits[i] = pᵢ.
// 5) An array of n integers, describing the maximum numbers of each type of item that can be selected: itemCountLimits[i] = bᵢ.
// 6) An array of Q qubits, describing the numbers of each type of item selected for the knapsack.
// (Q is the minimum number of qubits necessary to store a concatenation of the numbers up to bᵢ.)
// 7) A qubit in an arbitrary state (target qubit)
// Goal: Flip the state of the target qubit if the selection of the items in selectedCountsRegister satisfies both constraints:
// * the total weight of all items is less than or equal to W,
// * the total profit of all items is greater than P, and
// * the number of i-th type of item is less than or equal to bᵢ.
// The input qubits can be in superposition. Leave the qubits in register in the same state they started in.
operation VerifyKnapsackProblemSolution (W : Int, P : Int, itemWeights : Int[], itemProfits : Int[], itemCountLimits : Int[], selectedCountsRegister : Qubit[], target : Qubit) : Unit is Adj+Ctl {
// ...
}
//////////////////////////////////////////////////////////////////
// Part III. Using Grover's algorithm for knapsack optimization problems
//////////////////////////////////////////////////////////////////
// Coming soon...
}