-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
69 lines (60 loc) · 2.75 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import streamlit as st
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
from scipy.io.wavfile import write
import util_functions as ufs
import time
st.set_option('deprecation.showPyplotGlobalUse', False)
st.title('Noise-Suppressor')
st.subheader('Removes background-noise from audio samples')
nav_choice = st.sidebar.radio('Navigation', ['Home'], index=0)
_param_dict = {}
_path_to_model = 'utils/models/auto_encoders_for_noise_removal_production.h5'
_targe_file = 'utils/outputs/preds.wav'
if nav_choice == 'Home':
st.image('utils/images/header.jpg', width=450)
st.info('Upload your audio sample below')
audio_sample = st.file_uploader('Audio Sample', ['wav'])
if audio_sample:
try:
prog = st.progress(0)
model = ufs.load_model(_path_to_model)
audio = tf.audio.decode_wav(audio_sample.read(), desired_channels=1)
_param_dict.update({'audio_sample': audio.audio})
print(_param_dict)
flag = 1
for i in range(100):
time.sleep(0.001)
prog.progress(i + 1)
st.info('Uploaded audio sample')
st.audio(audio_sample)
with st.spinner('Wait for it...'):
time.sleep(1)
preds = model.predict(tf.expand_dims(audio.audio, 0))
preds = tf.reshape(preds, (-1, 1))
_param_dict.update({'predicted_outcomes': preds})
preds = np.array(preds)
write(_targe_file, 44100, preds)
st.success('Audio after noise removal')
st.audio(_targe_file)
prediction_stats = st.checkbox('Prediction Plots')
noise_rem = st.checkbox('Noise Removal Plots')
if noise_rem:
fig, axes = plt.subplots(2, 1, figsize=(10, 6))
axes[0].plot(np.arange(len(_param_dict['audio_sample'])), _param_dict['audio_sample'], c='r')
axes[0].set_title('Original audio sample')
axes[1].plot(np.arange(len(_param_dict['predicted_outcomes'])), _param_dict['predicted_outcomes'],
c='b')
axes[1].set_title('Noise suppressed audio output')
st.pyplot()
if prediction_stats:
plt.figure(figsize=(10, 6))
plt.plot(np.arange(len(_param_dict['audio_sample'])), _param_dict['audio_sample'], c='r',
label='Original audio sample')
plt.plot(np.arange(len(_param_dict['predicted_outcomes'])), _param_dict['predicted_outcomes'], c='b',
label='Noise suppressed audio output')
plt.legend()
st.pyplot()
except Exception as e:
print(e, type(e))