-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
304 lines (262 loc) · 12.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import torch
import pickle
import csv
import json
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torchvision.utils as utils
import torch.nn.functional as F
from tensorboardX import SummaryWriter
from data import Radpath, Radpath_test
from CNN import RNet
#from CNN_glore import RNet
from loss import FocalLoss
from utilities import metrics_all
import argparse
parser = argparse.ArgumentParser(description="Rad")
# batch_size = 10
# num_epochs = 50
# learning_rate = 0.0001
# initialize = "kaimingNormal"
# # fold is not used
# use_weights_in_loss = True
loss_weights = [0.31, 0.32, 0.36]
# use_focal_loss = True
# show_images = True
parser.add_argument("--batch_size", type=int, default=10, help="batch size")
parser.add_argument("--num_epochs", type=int, default=50, help="number of epochs")
parser.add_argument("--lr", type=float, default=0.001, help="learning rate")
parser.add_argument("--initialize", type=str, default="kaimingNormal", help='kaimingNormal or kaimingUniform or xavierNormal or xavierUniform')
parser.add_argument("--use_weights_in_loss", action='store_true', help='turn on to use weighted loss or else use equal weighted loss')
parser.add_argument("--use_focal_loss", action='store_true', help='turn on focal loss or else use default cross entropy loss')
parser.add_argument("--use_oversampling", action='store_true', help='offline oversampling')
parser.add_argument("--show_images", action='store_true', help='log images of slices for debugging')
parser.add_argument('--log_folder_name', type=str, default='temp', help='name of log file')
opt = parser.parse_args()
exp_params = {'batch size': opt.batch_size, 'num_epochs': opt.num_epochs, 'lr': opt.lr, 'init': opt.initialize,
'weighted loss': opt.use_weights_in_loss, 'loss_weights': loss_weights, 'focal loss': opt.use_focal_loss,
'show_images': opt.show_images, 'use_oversampling': opt.use_oversampling, 'log_folder_name': opt.log_folder_name}
# just focusssing on the Radiology images
train_folder = '../../CPM-RadPath_2020_Training_Data/Radiology/'
val_folder = '../../CPM-RadPath_2020_Training_Data/Radiology/'
label_folder = '../../CPM-RadPath_2020_Training_Data/'
log_folder = os.path.join('./log/', opt.log_folder_name)
os.mkdir(log_folder)
# log_folder = os.path.join('./log/', opt.log_folder_name)
# print(log_folder)
current_folder = './'
test_folder = '../../CPM-RadPath_2020_Validation_Data/test/'
test_csv = '../../CPM-RadPath_2020_Validation_Data/test.csv'
label_dict = {'G': 0, 'O': 1, 'A': 2}
inv_label_dict = {0: 'G', 1: 'O', 2: 'A'}
def read_data_mean(trainset):
pickle_name = os.path.join(current_folder, 'mean')
try:
Mean, Std, Max = pickle.load(open(pickle_name, "rb"))
except OSError as e:
Mean = torch.zeros(4)
Std = torch.zeros(4)
Max = torch.zeros(4)
kkk = 0
for i in range(len(trainset)):
I, L = trainset[i]
C, D, W, H = I.size()
Mean += I.view(C, -1).mean(1)
Std += I.view(C, -1).std(1)
MM = torch.max(I.view(C, -1), dim=1)[0]
# verify the variable change
for j in range(4):
if MM[j] > Max[j]:
Max[j] = MM[j]
kkk += 1
print(kkk, end=" ")
Mean /= len(trainset)
Std /= len(trainset)
pickle.dump([Mean, Std, Max], open(pickle_name, "wb"))
print('\n mean: '), print(Mean.numpy())
print('std: '), print(Std.numpy())
print('max: '), print(Max.numpy())
return Mean, Std, Max
def train(log_file):
print('\n loading the data... \n')
if opt.use_oversampling:
print('\n Minority class oversampled offline \n')
train_file = label_folder+'train_oversample_shuffle.csv'
else:
print('\n No oversampling... \n')
train_file = label_folder+'train.csv'
val_file = label_folder+'val.csv'
# no augmentation yet
trainset = Radpath(csv_file=train_file, data_path=train_folder, shuffle=True)
valset = Radpath(csv_file=val_file, data_path=val_folder, shuffle=False)
testset = Radpath_test(csv_file=test_csv, data_path=test_folder)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=opt.batch_size, shuffle=True, num_workers=4)
valloader = torch.utils.data.DataLoader(valset, batch_size=1, shuffle=False, num_workers=4)
testloader = torch.utils.data.DataLoader(testset, batch_size=1, shuffle=False)
Mean, Std, Max = read_data_mean(trainset)
print('\ndone reading data mean std max\n')
# load network
print('\nloading the model ...\n')
net = RNet(in_features=4, num_class=3, init=opt.initialize)
print(net)
print('\n net done\n')
# move to GPU
print('/n moving models to GPU... \n')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device, 'chosen')
device_ids = [0]
model = nn.DataParallel(net, device_ids=device_ids).to(device)
# Loss
if opt.use_weights_in_loss:
weighted_loss = torch.tensor(loss_weights).to(device)
print('using weighted loss with weights- ', loss_weights)
else:
weighted_loss = None
print('using no loss weights')
if opt.use_focal_loss:
print('\n using focal loss... \n')
criterion = FocalLoss(gama=2., size_average=True, weight=weighted_loss)
else:
print('\n using normal crossentropy loss... \n')
criterion = nn.CrossEntropyLoss(weight=weighted_loss)
criterion.to(device)
print('\n loss code done')
# optimizer
# Try using ADAM optimizer?
lr_lambda = lambda epoch: np.power(0.5, epoch//10)
optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=0.9, weight_decay=5e-4, nesterov=False)
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda)
# training
print('\n starting the training... \n')
step = 0
running_avg_accuracy = 0
writer = SummaryWriter(os.path.join(log_folder, 'tensorboard_RNet'))
# epoch_loss = []
# epoch_acc = []
for epoch in range(opt.num_epochs):
print("\n epoch number %d learning rate %f" % (epoch, optimizer.param_groups[0]['lr']))
for i, data in enumerate(trainloader, 0):
model.train()
model.zero_grad()
optimizer.zero_grad()
inputs, labels = data
inputs = (inputs - Mean.view(1, 4, 1, 1, 1))/Std.view(1, 4, 1, 1, 1)
inputs, labels = inputs.to(device), labels.to(device)
# forward pass
pred = model.forward(inputs)
# backward pass
loss = criterion(pred, labels)
loss.backward()
optimizer.step()
model.eval()
pred = model.forward(inputs)
predict = torch.argmax(pred, 1)
total = labels.size(0)
correct = torch.eq(predict, labels).sum().double().item()
accuracy = correct/total
running_avg_accuracy = 0.9*running_avg_accuracy + 0.1*accuracy
# write to tensorboard
writer.add_scalar('train/loss', loss.item(), step)
writer.add_scalar('train/accuracy', accuracy, step)
writer.add_scalar('train/running_avg_accuracy', running_avg_accuracy, step)
print("[epoch %d/%d][%d/%d] loss %.4f accuracy %.2f%% running avg accuracy %.2f%%"
% (epoch, opt.num_epochs, i, len(trainloader)-1, loss.item(), (100 * accuracy),
(100 * running_avg_accuracy)))
step += 1
# save model checkpoints
print('\n one epoch done, saving checkpoints ...\n')
torch.save(model.state_dict(), os.path.join(log_folder, 'net.pth'))
# if epoch == opt.epochs / 2:
if (epoch+1) % 10 == 0:
torch.save(model.state_dict(), os.path.join(log_folder, 'net_{}.pth'.format(epoch)))
# validation phase
model.eval()
total = 0
correct = 0
with torch.no_grad():
val_pred_csv = os.path.join(log_folder, 'val_pred.csv')
with open(val_pred_csv, 'wt', newline='') as csv_file:
csv_writer = csv.writer(csv_file, delimiter=',')
for i, data in enumerate(valloader, 0):
images_val, labels_val = data
images_val = (images_val-Mean.view(1, 4, 1, 1, 1))/Std.view(1, 4, 1, 1, 1)
images_val, labels_val = images_val.to(device), labels_val.to(device)
pred_val = model.forward(images_val)
predict = torch.argmax(pred_val, 1)
total += labels_val.size(0)
correct += torch.eq(predict, labels_val).sum().double().item()
# record val prediction responses
responses = F.softmax(pred_val, dim=1).squeeze().cpu().numpy()
responses = [responses[j] for j in range(responses.shape[0])]
csv_writer.writerow(responses)
#precision, recall, f1, auroc, cm = metrics_all(val_file, val_pred_csv)
precision, recall, f1, cm = metrics_all(val_file, val_pred_csv)
writer.add_scalar('val/accuracy', correct / total, epoch)
writer.add_scalar('val/avg_precision', np.mean(precision), epoch)
writer.add_scalar('val/avg_recall', np.mean(recall), epoch)
print("\n[epoch %d] val result: accuracy %.2f%% \navg_precision %.2f%% avg_recall %.2f%%\n" %
(epoch, 100 * correct / total, 100 * np.mean(precision), 100 * np.mean(recall)))
print('precision:', precision)
print('recall:', recall)
print('confusion matrix:', cm)
print('f1:', f1)
if epoch+1 == opt.num_epochs:
val_results = dict()
val_results['precision'] = precision.tolist()
val_results['recall'] = recall.tolist()
val_results['cm'] = cm.tolist()
val_results['f1'] = f1
#val_results['auroc'] = auroc
val_results['acc'] = correct / total
with open(os.path.join(log_folder, 'val_metrics_output.json'), 'w') as js:
json.dump(val_results, js)
# log_file.write('Fold {} cross validation\n'.format(fold))
log_file.write(str(100 * correct / total)), log_file.write('\n\n') # accuracy
np.savetxt(log_file, precision), log_file.write('\n') # precision
np.savetxt(log_file, recall), log_file.write('\n') # recall
np.savetxt(log_file, cm), log_file.write('\n')
log_file.write(str(f1)), log_file.write('\n')
#log_file.write(str(auroc)), log_file.write('\n')
# sensitivity, specificity, confusion matrix
log_file.write('\n')
# display images
if opt.show_images:
I_T1 = utils.make_grid(inputs[:, 0, 64, :, :].unsqueeze(1), nrow=4, normalize=True, scale_each=True)
I_T1Gd = utils.make_grid(inputs[:, 1, 64, :, :].unsqueeze(1), nrow=4, normalize=True, scale_each=True)
I_T2 = utils.make_grid(inputs[:, 2, 64, :, :].unsqueeze(1), nrow=4, normalize=True, scale_each=True)
I_FLAIR = utils.make_grid(inputs[:, 3, 64, :, :].unsqueeze(1), nrow=4, normalize=True, scale_each=True)
writer.add_image('Image/T1', I_T1, epoch)
writer.add_image('Image/T1Gd', I_T1Gd, epoch)
writer.add_image('Image/T2', I_T2, epoch)
writer.add_image('Image/FLAIR', I_FLAIR, epoch)
# test
if epoch+1 == opt.num_epochs:
model.eval()
with torch.no_grad():
test_pred_csv = os.path.join(log_folder, 'test_pred.csv')
with open(test_pred_csv, 'wt', newline='') as csv_file2:
csv_writer2 = csv.writer(csv_file2, delimiter=',')
#for i, data in enumerate(testloader, 0):
for data in testloader:
test_image, dataID = data
test_image = (test_image-Mean.view(1, 4, 1, 1, 1))/Std.view(1, 4, 1, 1, 1)
test_image.to(device)
pred_test = model.forward(test_image)
predict_test = torch.argmax(pred_test, 1)
predict_label = inv_label_dict[predict_test.item()]
# record predictions for uploading
output = [dataID[0], predict_label]
csv_writer2.writerow(output)
# adjust learning rate
scheduler.step()
def main():
log_file = open(os.path.join(log_folder, "log_file.txt"), "w")
train(log_file)
log_file.close()
with open(os.path.join(log_folder, 'exp_parameters.json'), 'w') as js:
json.dump(exp_params, js, indent=2)
if __name__=="__main__":
main()