-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
742 lines (584 loc) · 34.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
# Setup
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import TensorDataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms
import torch.nn.init as init
from torchvision import models
from resnet3d import *
import math
import numpy as np
import copy
import random
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm3d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm3d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
def binary_classification_loss(concat_true, concat_pred):
t_true = concat_true[:, 1]
t_pred = concat_pred[:, 2]
t_pred = (t_pred + 0.001) / 1.002
#loss = F.binary_cross_entropy(t_pred,t_true)
loss_cri = nn.BCELoss()
loss = loss_cri(t_pred, t_true)
# print(f"T_true: {t_true}")
# print(f"T_pred: {t_pred}")
# print(F.binary_cross_entropy(t_true, t_pred))
return loss
def multi_classification_loss(concat_true, concat_pred, traumatic):
t_true = concat_true[:, 1]
t_pred = concat_pred[:, 3:6]
# traumatic_index = torch.where(traumatic==1)
# t_true = t_true[traumatic_index]
# t_pred = t_pred[traumatic_index]
#t_pred = (t_pred + 0.001) / 1.002
#loss = F.binary_cross_entropy(t_pred,t_true)
loss_cri = nn.CrossEntropyLoss(weight=torch.from_numpy(np.array([1.0,2.0,5.0])).float().cuda())
#loss_cri = nn.CrossEntropyLoss()
loss = loss_cri(t_pred, t_true.long())
# print(f"T_true: {t_true}")
# print(f"T_pred: {t_pred}")
# print(F.binary_cross_entropy(t_true, t_pred))
return loss
def multi_classification_loss_ours(concat_true, concat_pred, traumatic):
t_true = concat_true[:, 1]
t_pred_1 = concat_pred[:, 3:6]
t_pred_2 = concat_pred[:, 6:9]
# traumatic_index = torch.where(traumatic==1)
# t_true = t_true[traumatic_index]
# t_pred = t_pred[traumatic_index]
#t_pred = (t_pred + 0.001) / 1.002
#loss = F.binary_cross_entropy(t_pred,t_true)
loss_cri = nn.CrossEntropyLoss(weight=torch.from_numpy(np.array([1.0,2.0,5.0])).float().cuda())
#loss_cri = nn.CrossEntropyLoss()
loss1 = loss_cri(t_pred_1, t_true.long())
loss2 = loss_cri(t_pred_2, t_true.long())
# print(f"T_true: {t_true}")
# print(f"T_pred: {t_pred}")
# print(F.binary_cross_entropy(t_true, t_pred))
return loss1 + loss2
def binary_classification_loss_outcome(concat_true, concat_pred):
y_true = concat_true[:, 0]
t_true = concat_true[:, 1]
y0_pred = concat_pred[:, 0]
y1_pred = concat_pred[:, 1]
loss0 = torch.sum((1. - t_true) * F.binary_cross_entropy(y0_pred,y_true,reduction = 'none'))
loss1 = torch.sum(t_true * F.binary_cross_entropy(y1_pred,y_true,reduction = 'none'))
return loss0 / (torch.sum((1. - t_true))+1e-8) + loss1 / (torch.sum(t_true)+1e-8)
def multi_classification_loss_outcome(concat_true, concat_pred, traumatic, class_ratio):
traumatic_index = torch.where(traumatic==1)
concat_true = concat_true[traumatic_index]
concat_pred = concat_pred[traumatic_index]
y_true = concat_true[:, 0]
t_true = concat_true[:, 1]
y0_pred = concat_pred[:, 0]
y1_pred = concat_pred[:, 1]
y2_pred = concat_pred[:, 2]
map_0 = torch.zeros(t_true.shape)
map_0[t_true==0] = 1
map_1 = torch.zeros(t_true.shape)
map_1[t_true==1] = 1
map_2 = torch.zeros(t_true.shape)
map_2[t_true==2] = 1
weight_0 = torch.ones(y_true.shape)
weight_0[y_true==1] = 2*(1/class_ratio[0])/(1/class_ratio[0]+1/(1 - class_ratio[0]))
weight_0[y_true==0] = 2*(1/(1 - class_ratio[0]))/(1/class_ratio[0]+1/(1 - class_ratio[0]))
weight_1 = torch.ones(y_true.shape)
weight_1[y_true==1] = 2*(1/class_ratio[1])/(1/class_ratio[1]+1/(1 - class_ratio[1]))
weight_1[y_true==0] = 2*(1/(1 - class_ratio[1]))/(1/class_ratio[1]+1/(1 - class_ratio[1]))
weight_2 = torch.ones(y_true.shape)
weight_2[y_true==1] = 2*(1/class_ratio[2])/(1/class_ratio[2]+1/(1 - class_ratio[2]))
weight_2[y_true==0] = 2*(1/(1 - class_ratio[2]))/(1/class_ratio[2]+1/(1 - class_ratio[2]))
loss0 = torch.sum(map_0.cuda() * F.binary_cross_entropy(y0_pred,y_true,reduction = 'none'))
loss1 = torch.sum(map_1.cuda() * F.binary_cross_entropy(y1_pred,y_true,reduction = 'none'))
loss2 = torch.sum(map_2.cuda() * F.binary_cross_entropy(y2_pred,y_true,reduction = 'none'))
return loss0 / (torch.sum(map_0)+1e-8) + loss1 / (torch.sum(map_1)+1e-8) + loss2 / (torch.sum(map_2)+1e-8)
def multi_classification_loss_outcome_woweight(concat_true, concat_pred, traumatic, class_ratio):
traumatic_index = torch.where(traumatic==1)
concat_true = concat_true[traumatic_index]
concat_pred = concat_pred[traumatic_index]
y_true = concat_true[:, 0]
t_true = concat_true[:, 1]
y0_pred = concat_pred[:, 0]
y1_pred = concat_pred[:, 1]
y2_pred = concat_pred[:, 2]
map_0 = torch.zeros(t_true.shape)
map_0[t_true==0] = 1
map_1 = torch.zeros(t_true.shape)
map_1[t_true==1] = 1
map_2 = torch.zeros(t_true.shape)
map_2[t_true==2] = 1
weight_0 = torch.ones(y_true.shape)
weight_0[y_true==1] = 2*(1/class_ratio[0])/(1/class_ratio[0]+1/(1 - class_ratio[0]))
weight_0[y_true==0] = 2*(1/(1 - class_ratio[0]))/(1/class_ratio[0]+1/(1 - class_ratio[0]))
weight_1 = torch.ones(y_true.shape)
weight_1[y_true==1] = 2*(1/class_ratio[1])/(1/class_ratio[1]+1/(1 - class_ratio[1]))
weight_1[y_true==0] = 2*(1/(1 - class_ratio[1]))/(1/class_ratio[1]+1/(1 - class_ratio[1]))
weight_2 = torch.ones(y_true.shape)
weight_2[y_true==1] = 2*(1/class_ratio[2])/(1/class_ratio[2]+1/(1 - class_ratio[2]))
weight_2[y_true==0] = 2*(1/(1 - class_ratio[2]))/(1/class_ratio[2]+1/(1 - class_ratio[2]))
loss0 = torch.sum(map_0.cuda() * F.binary_cross_entropy(y0_pred,y_true,reduction = 'none'))
loss1 = torch.sum(map_1.cuda() * F.binary_cross_entropy(y1_pred,y_true,reduction = 'none'))
loss2 = torch.sum(map_2.cuda() * F.binary_cross_entropy(y2_pred,y_true,reduction = 'none'))
return loss0 / (torch.sum(map_0)+1e-8) + loss1 / (torch.sum(map_1)+1e-8) + loss2 / (torch.sum(map_2)+1e-8)
def regression_loss(concat_true, concat_pred):
y_true = concat_true[:, 0]
t_true = concat_true[:, 1]
y0_pred = concat_pred[:, 0]
y1_pred = concat_pred[:, 1]
loss0 = torch.sum((1. - t_true) * torch.square(y_true - y0_pred))
loss1 = torch.sum(t_true * torch.square(y_true - y1_pred))
return loss0 + loss1
def ned_loss(concat_true, concat_pred):
t_true = concat_true[:, 1]
t_pred = concat_pred[:, 1]
return torch.sum(F.binary_cross_entropy_with_logits(t_true, t_pred))
def dead_loss(concat_true, concat_pred):
return regression_loss(concat_true, concat_pred)
def dragonnet_loss_binarycross(concat_pred, concat_true):
#return regression_loss(concat_true, concat_pred) + binary_classification_loss(concat_true, concat_pred)
#return binary_classification_loss(concat_true, concat_pred) + binary_classification_loss_outcome(concat_true, concat_pred)
return binary_classification_loss(concat_true, concat_pred) + binary_classification_loss_outcome(concat_true, concat_pred)
def dragonnet_loss_binarycross_3cls(concat_pred, concat_true, traumatic, class_ratio):
#return regression_loss(concat_true, concat_pred) + binary_classification_loss(concat_true, concat_pred)
#return binary_classification_loss(concat_true, concat_pred) + binary_classification_loss_outcome(concat_true, concat_pred)
return multi_classification_loss_outcome(concat_true, concat_pred, traumatic, class_ratio) + multi_classification_loss(concat_true, concat_pred, traumatic)
def dragonnet_loss_binarycross_3cls_ours(concat_pred, concat_true, traumatic, class_ratio):
#return regression_loss(concat_true, concat_pred) + binary_classification_loss(concat_true, concat_pred)
#return binary_classification_loss(concat_true, concat_pred) + binary_classification_loss_outcome(concat_true, concat_pred)
return multi_classification_loss_ours(concat_true, concat_pred, traumatic) + multi_classification_loss_outcome(concat_true, concat_pred, traumatic, class_ratio)
def dragonnet_loss_binarycross_3cls_ours_woCD(concat_pred, concat_true, traumatic, class_ratio):
#return regression_loss(concat_true, concat_pred) + binary_classification_loss(concat_true, concat_pred)
#return binary_classification_loss(concat_true, concat_pred) + binary_classification_loss_outcome(concat_true, concat_pred)
return multi_classification_loss_outcome(concat_true, concat_pred, traumatic, class_ratio)
class EpsilonLayer(nn.Module):
def __init__(self):
super(EpsilonLayer, self).__init__()
# building epsilon trainable weight
self.weights = nn.Parameter(torch.Tensor(1, 1))
# initializing weight parameter with RandomNormal
nn.init.normal_(self.weights, mean=0, std=0.05)
def forward(self, inputs):
return torch.mm(torch.ones_like(inputs)[:, 0:1], self.weights.T)
def make_tarreg_loss(ratio=1., dragonnet_loss=dragonnet_loss_binarycross):
"""
Create the targeted regularization loss criterion
Args:
ratio: Ratio of targeted regularization to use
dragonnet_loss: Simple loss
"""
def tarreg_ATE_unbounded_domain_loss(concat_pred, concat_true):
vanilla_loss = dragonnet_loss(concat_pred, concat_true)
y_true = concat_true[:, 0]
t_true = concat_true[:, 1]
y0_pred = concat_pred[:, 0]
y1_pred = concat_pred[:, 1]
t_pred = concat_pred[:, 2]
epsilons = concat_pred[:, 3]
print(f"Epsilon: {epsilons}")
t_pred = (t_pred + 0.01) / 1.02
# t_pred = tf.clip_by_value(t_pred,0.01, 0.99,name='t_pred')
y_pred = t_true * y1_pred + (1 - t_true) * y0_pred
h = t_true / t_pred - (1 - t_true) / (1 - t_pred)
y_pert = y_pred + epsilons * h
targeted_regularization = torch.sum(torch.square(y_true - y_pert))
# final
loss = vanilla_loss + ratio * targeted_regularization
print(f"Vanilla Loss: {vanilla_loss}")
print(f"Tarreg: {targeted_regularization}")
print(f"Tarreg loss: {loss}")
return loss
return tarreg_ATE_unbounded_domain_loss
def make_tarreg_loss_Ours(ratio=1., dragonnet_loss=dragonnet_loss_binarycross):
"""
Create the targeted regularization loss criterion
Args:
ratio: Ratio of targeted regularization to use
dragonnet_loss: Simple loss
"""
def tarreg_ATE_unbounded_domain_loss(concat_pred, concat_true):
vanilla_loss = dragonnet_loss(concat_pred, concat_true)
y_true = concat_true[:, 0]
t_true = concat_true[:, 1]
y0_pred = concat_pred[:, 0]
y1_pred = concat_pred[:, 1]
t_pred = concat_pred[:, 2]
epsilons = concat_pred[:, 3]
print(f"Epsilon: {epsilons}")
t_pred = (t_pred + 0.01) / 1.02
# t_pred = tf.clip_by_value(t_pred,0.01, 0.99,name='t_pred')
y_pred = t_true * y1_pred + (1 - t_true) * y0_pred
h = t_true / t_pred - (1 - t_true) / (1 - t_pred)
y_pert = y_pred + epsilons * h
targeted_regularization = torch.sum(torch.square(y_true - y_pert))
# final
loss = vanilla_loss + ratio * targeted_regularization
print(f"Vanilla Loss: {vanilla_loss}")
print(f"Tarreg: {targeted_regularization}")
print(f"Tarreg loss: {loss}")
return loss
return tarreg_ATE_unbounded_domain_loss
# weight initialization function
def weights_init_normal(params):
if isinstance(params, nn.Linear):
torch.nn.init.normal_(params.weight, mean=0.0, std=1.0)
torch.nn.init.zeros_(params.bias)
# weight initialization function
def weights_init_uniform(params):
if isinstance(params, nn.Linear):
limit = math.sqrt(6 / (params.weight[1] + params.weight[0]))
torch.nn.init.uniform_(params.weight, a=-limit, b=limit)
torch.nn.init.zeros_(params.bias)
def weights_xainit_uniform(params):
if isinstance(params, nn.Linear):
torch.nn.init.xavier_uniform_(params.weight)
params.bias.data.fill_(0.01)
def weights_kminit_uniform(params):
if isinstance(params, nn.Linear):
torch.nn.init.kaiming_uniform_(params.weight)
#params.bias.data.fill_(0.01)
torch.nn.init.zeros_(params.bias)
def cal_similarity(v1,v2):
return torch.sum(v1*v2)
def cal_similarity_detach(v1,v2):
return torch.sum(v1*v2).detach()
def treatment_index(t,traumatic):
index_0 = torch.where((t==0)&(traumatic==1))
index_1 = torch.where(t==1)
index_2 = torch.where(t==2)
return index_0, index_1, index_2
def del_tensor_ele(arr,index):
arr1 = arr[0:index]
arr2 = arr[index+1:]
return torch.cat((arr1,arr2),dim=0)
def similarity_matrix(phi_im,phi_cli,t, traumatic):
phi_im_norm = F.normalize(phi_im,p=2,dim=1)
phi_cli_norm = F.normalize(phi_cli,p=2,dim=1)
index_0, index_1, index_2 = treatment_index(t[:,1], traumatic)
index_0_im = copy.copy(index_0)
index_1_im = copy.copy(index_1)
index_2_im = copy.copy(index_2)
index_0_cli = copy.copy(index_0)
index_1_cli = copy.copy(index_1)
index_2_cli = copy.copy(index_2)
similarity_matrix_01_im = torch.zeros((phi_im.shape[0]),(phi_im.shape[0])).cuda()
similarity_matrix_02_im = torch.zeros(similarity_matrix_01_im.shape).cuda()
similarity_matrix_12_im = torch.zeros(similarity_matrix_01_im.shape).cuda()
similarity_matrix_01_cli = torch.zeros((similarity_matrix_01_im.shape[0]),(phi_im.shape[0])).cuda()
similarity_matrix_02_cli = torch.zeros(similarity_matrix_01_im.shape).cuda()
similarity_matrix_12_cli = torch.zeros(similarity_matrix_01_im.shape).cuda()
im_distance_01 = 1000
im_distance_01_index = [0,0]
im_distance_02 = 1000
im_distance_02_index = [0,0]
im_distance_12 = 1000
im_distance_12_index = [0,0]
cli_distance_01 = 1000
cli_distance_01_index = [0,0]
cli_distance_02 = 1000
cli_distance_02_index = [0,0]
cli_distance_12 = 1000
cli_distance_12_index = [0,0]
for index in index_0[0]:
for index_ in index_1[0]:
similarity_matrix_01_im[index,index_] = cal_similarity_detach(phi_im_norm[index],phi_im_norm[index_])
similarity_matrix_01_cli[index,index_] = cal_similarity_detach(phi_cli_norm[index],phi_cli_norm[index_])
if similarity_matrix_01_im[index,index_]<im_distance_01:
im_distance_01 = similarity_matrix_01_im[index,index_]
im_distance_01_index = [index,index_]
if similarity_matrix_01_cli[index,index_]<cli_distance_01:
cli_distance_01 = similarity_matrix_01_cli[index,index_]
cli_distance_01_index = [index,index_]
for index in index_0[0]:
for index_ in index_2[0]:
similarity_matrix_02_im[index,index_] = cal_similarity_detach(phi_im_norm[index],phi_im_norm[index_])
similarity_matrix_02_cli[index,index_] = cal_similarity_detach(phi_cli_norm[index],phi_cli_norm[index_])
if similarity_matrix_02_im[index,index_]<im_distance_02:
im_distance_02 = similarity_matrix_02_im[index,index_]
im_distance_02_index = [index,index_]
if similarity_matrix_02_cli[index,index_]<cli_distance_02:
cli_distance_02 = similarity_matrix_02_cli[index,index_]
cli_distance_02_index = [index,index_]
for index in index_1[0]:
for index_ in index_2[0]:
similarity_matrix_12_im[index,index_] = cal_similarity_detach(phi_im_norm[index],phi_im_norm[index_])
similarity_matrix_12_cli[index,index_] = cal_similarity_detach(phi_cli_norm[index],phi_cli_norm[index_])
if similarity_matrix_12_im[index,index_]<im_distance_12:
im_distance_12 = similarity_matrix_12_im[index,index_]
im_distance_12_index = [index,index_]
if similarity_matrix_12_cli[index,index_]<cli_distance_12:
cli_distance_12 = similarity_matrix_12_cli[index,index_]
cli_distance_12_index = [index,index_]
index_0_im = del_tensor_ele(index_0_im[0],int((index_0_im[0]==im_distance_01_index[0]).nonzero()))
if im_distance_01_index[0] != im_distance_02_index[0]:
index_0_im = del_tensor_ele(index_0_im,int((index_0_im==im_distance_02_index[0]).nonzero()))
index_0_cli = del_tensor_ele(index_0_cli[0],int((index_0_cli[0]==cli_distance_01_index[0]).nonzero()))
if cli_distance_01_index[0] != cli_distance_02_index[0]:
index_0_cli = del_tensor_ele(index_0_cli,int((index_0_cli==cli_distance_02_index[0]).nonzero()))
index_1_im = del_tensor_ele(index_1_im[0],int((index_1_im[0]==im_distance_01_index[1]).nonzero()))
if im_distance_01_index[1] != im_distance_12_index[0]:
index_1_im = del_tensor_ele(index_1_im,int((index_1_im==im_distance_12_index[0]).nonzero()))
index_1_cli = del_tensor_ele(index_1_cli[0],int((index_1_cli[0]==cli_distance_01_index[1]).nonzero()))
if cli_distance_01_index[1] != cli_distance_12_index[0]:
index_1_cli = del_tensor_ele(index_1_cli,int((index_1_cli==cli_distance_12_index[0]).nonzero()))
index_2_im = del_tensor_ele(index_2_im[0],int((index_2_im[0]==im_distance_12_index[1]).nonzero()))
if im_distance_12_index[1] != im_distance_02_index[1]:
index_2_im = del_tensor_ele(index_2_im,int((index_2_im==im_distance_02_index[1]).nonzero()))
index_2_cli = del_tensor_ele(index_2_cli[0],int((index_2_cli[0]==cli_distance_12_index[1]).nonzero()))
if cli_distance_12_index[1] != cli_distance_02_index[1]:
index_2_cli = del_tensor_ele(index_2_cli,int((index_2_cli==cli_distance_02_index[1]).nonzero()))
random_im_b = random.randint(0,index_0_im.shape[0]-1)
random_cli_b = random.randint(0,index_0_cli.shape[0]-1)
random_im_e = random.randint(0,index_1_im.shape[0]-1)
random_cli_e = random.randint(0,index_1_cli.shape[0]-1)
random_im_h = random.randint(0,index_2_im.shape[0]-1)
random_cli_h = random.randint(0,index_2_cli.shape[0]-1)
pairs_im = [im_distance_01_index[0],index_0_im[random_im_b],im_distance_02_index[0],im_distance_01_index[1],index_1_im[random_im_e],im_distance_12_index[0],im_distance_12_index[1],index_2_im[random_im_h],im_distance_01_index[1]]
pairs_cli = [cli_distance_01_index[0],index_0_cli[random_cli_b],cli_distance_02_index[0],cli_distance_01_index[1],index_1_cli[random_cli_e],cli_distance_12_index[0],cli_distance_12_index[1],index_2_cli[random_cli_h],cli_distance_01_index[1]]
phi_sim_im_ab = cal_similarity_detach(phi_im_norm[pairs_im[0]],phi_im_norm[pairs_im[1]])
phi_sim_im_ac = cal_similarity_detach(phi_im_norm[pairs_im[0]],phi_im_norm[pairs_im[2]])
phi_sim_im_bc = cal_similarity_detach(phi_im_norm[pairs_im[1]],phi_im_norm[pairs_im[2]])
phi_sim_im_de = cal_similarity_detach(phi_im_norm[pairs_im[3]],phi_im_norm[pairs_im[4]])
phi_sim_im_df = cal_similarity_detach(phi_im_norm[pairs_im[3]],phi_im_norm[pairs_im[5]])
phi_sim_im_ef = cal_similarity_detach(phi_im_norm[pairs_im[4]],phi_im_norm[pairs_im[5]])
phi_sim_im_gh = cal_similarity_detach(phi_im_norm[pairs_im[6]],phi_im_norm[pairs_im[7]])
phi_sim_im_gi = cal_similarity_detach(phi_im_norm[pairs_im[6]],phi_im_norm[pairs_im[8]])
phi_sim_im_hi = cal_similarity_detach(phi_im_norm[pairs_im[7]],phi_im_norm[pairs_im[8]])
phi_sim_cli_ab = cal_similarity_detach(phi_cli_norm[pairs_cli[0]],phi_cli_norm[pairs_cli[1]])
phi_sim_cli_ac = cal_similarity_detach(phi_cli_norm[pairs_cli[0]],phi_cli_norm[pairs_cli[2]])
phi_sim_cli_bc = cal_similarity_detach(phi_cli_norm[pairs_cli[1]],phi_cli_norm[pairs_cli[2]])
phi_sim_cli_de = cal_similarity_detach(phi_cli_norm[pairs_cli[3]],phi_cli_norm[pairs_cli[4]])
phi_sim_cli_df = cal_similarity_detach(phi_cli_norm[pairs_cli[3]],phi_cli_norm[pairs_cli[5]])
phi_sim_cli_ef = cal_similarity_detach(phi_cli_norm[pairs_cli[4]],phi_cli_norm[pairs_cli[5]])
phi_sim_cli_gh = cal_similarity_detach(phi_cli_norm[pairs_cli[6]],phi_cli_norm[pairs_cli[7]])
phi_sim_cli_gi = cal_similarity_detach(phi_cli_norm[pairs_cli[6]],phi_cli_norm[pairs_cli[8]])
phi_sim_cli_hi = cal_similarity_detach(phi_cli_norm[pairs_cli[7]],phi_cli_norm[pairs_cli[8]])
sim_im_hub = [phi_sim_im_ab, phi_sim_im_ac, phi_sim_im_bc, phi_sim_im_de, phi_sim_im_df, phi_sim_im_ef, phi_sim_im_gh, phi_sim_im_gi, phi_sim_im_hi]
sim_cli_hub = [phi_sim_cli_ab, phi_sim_cli_ac, phi_sim_cli_bc, phi_sim_cli_de, phi_sim_cli_df, phi_sim_cli_ef, phi_sim_cli_gh, phi_sim_cli_gi, phi_sim_cli_hi]
return pairs_im, pairs_cli, sim_im_hub, sim_cli_hub
class MultiRL(nn.Module):
"""
3-headed dragonnet architecture
"""
def __init__(self, in_features, out_features=[200, 100, 1]):
super(MultiRL, self).__init__()
dropout = False
# representation layers 3 : block1
# units in kera = out_features
self.representation_block = nn.Sequential(
nn.Linear(in_features=in_features, out_features=out_features[0]),
nn.BatchNorm1d(out_features[0]),
nn.ReLU(),
nn.Linear(in_features=out_features[0], out_features=out_features[0]),
nn.BatchNorm1d(out_features[0]),
nn.ReLU(),
nn.Linear(in_features=out_features[0], out_features=out_features[0]),
nn.BatchNorm1d(out_features[0]),
nn.ReLU()
)
# -----------Propensity Head
self.t_predictions_im = nn.Sequential(nn.Linear(in_features=out_features[0], out_features=3),
nn.Softmax()
)
self.t_predictions_cli = nn.Sequential(nn.Linear(in_features=out_features[0], out_features=3),
nn.Softmax()
)
# -----------t0 Head
self.t0_head = nn.Sequential(nn.Linear(in_features=out_features[0], out_features=out_features[1]),
nn.BatchNorm1d(out_features[1]),
nn.ReLU(),
nn.Linear(in_features=out_features[1], out_features=out_features[2]),
nn.Sigmoid()
)
# ----------t1 Head
self.t1_head = nn.Sequential(nn.Linear(in_features=out_features[0], out_features=out_features[1]),
nn.BatchNorm1d(out_features[1]),
nn.ReLU(),
nn.Linear(in_features=out_features[1], out_features=out_features[2]),
nn.Sigmoid()
)
self.t2_head = nn.Sequential(nn.Linear(in_features=out_features[0], out_features=out_features[1]),
nn.BatchNorm1d(out_features[1]),
nn.ReLU(),
nn.Linear(in_features=out_features[1], out_features=out_features[2]),
nn.Sigmoid()
)
self.epsilon = EpsilonLayer()
c=[64,64,128,256,512]
layers = [3, 4, 6, 3]
self.inplanes = c[0]
self.share = torch.nn.Sequential()
self.share.add_module('conv1', nn.Conv3d(1, c[0],kernel_size=7, stride=2, padding=0, bias=False))
self.share.add_module('bn1', nn.BatchNorm3d(c[0]))
self.share.add_module('relu', nn.ReLU(inplace=True))
self.share.add_module('maxpool',nn.MaxPool3d(kernel_size=3, stride=2, padding=1))
self.share.add_module('layer1', self._make_layer(BasicBlock, c[1], layers[0]))
self.share.add_module('layer2', self._make_layer(BasicBlock, c[2], layers[1], stride=2))
self.share.add_module('layer3', self._make_layer(BasicBlock, c[3], layers[2], stride=2))
self.share.add_module('layer4', self._make_layer(BasicBlock, c[4], layers[3], stride=2))
self.share.add_module('avgpool', nn.AvgPool3d([1,7,7]))
if dropout is True:
self.share.add_module('dropout', nn.Dropout(0.5))
self.H_bar_im = nn.Sequential(nn.Linear(200, 200),nn.BatchNorm1d(200),nn.ReLU())
self.H_bar_cli = nn.Sequential(nn.Linear(200, 200),nn.BatchNorm1d(200),nn.ReLU())
self.pro_cli = nn.Sequential(nn.Linear(200, 200),nn.BatchNorm1d(200),nn.ReLU(),
nn.Linear(200, 200),nn.BatchNorm1d(200),nn.ReLU())
self.pro_im = nn.Sequential(nn.Linear(200, 200),nn.BatchNorm1d(200),nn.ReLU(),
nn.Linear(200, 200),nn.BatchNorm1d(200),nn.ReLU())
self.global_average= nn.AdaptiveAvgPool1d(15)
self.resenet_head = nn.Sequential(nn.Linear(512, 200),nn.BatchNorm1d(200),nn.ReLU())
self.dropout = nn.Dropout(p=0.2)
#self.fc_cat = nn.Sequential(nn.Linear(400, 200),nn.BatchNorm1d(200),nn.ReLU())
self.fc_im_0 = nn.Sequential(nn.Linear(200, 100),nn.BatchNorm1d(100),nn.ReLU())
self.fc_im_1 = nn.Sequential(nn.Linear(200, 100),nn.BatchNorm1d(100),nn.ReLU())
self.fc_im_2 = nn.Sequential(nn.Linear(200, 100),nn.BatchNorm1d(100),nn.ReLU())
self.fc_cli_0 = nn.Sequential(nn.Linear(200, 100),nn.BatchNorm1d(100),nn.ReLU())
self.fc_cli_1 = nn.Sequential(nn.Linear(200, 100),nn.BatchNorm1d(100),nn.ReLU())
self.fc_cli_2 = nn.Sequential(nn.Linear(200, 100),nn.BatchNorm1d(100),nn.ReLU())
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(nn.Conv3d(self.inplanes, planes*block.expansion,kernel_size=1, stride=stride, bias=False),
nn.BatchNorm3d(planes*block.expansion))
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def init_params(self, std=1):
"""
Initialize layer parameters. Sample weight from Gaussian distribution
and bias uniform distribution.
Args:
std: Standard deviation of Random normal distribution (default: 1)
"""
# self.representation_block.apply(weights_kminit_uniform)
# self.t_predictions.apply(weights_kminit_uniform)
# self.t0_head.apply(weights_kminit_uniform)
# self.t1_head.apply(weights_kminit_uniform)
# self.t2_head.apply(weights_kminit_uniform)
# self.share.apply(weights_kminit_uniform)
# self.resenet_head.apply(weights_kminit_uniform)
# self.fc_cat.apply(weights_kminit_uniform)
# self.H_bar_im.apply(weights_kminit_uniform)
# self.H_bar_cli.apply(weights_kminit_uniform)
# self.mutli_concat.apply(weights_kminit_uniform)
# self.pro_cli.apply(weights_kminit_uniform)
# self.pro_im.apply(weights_kminit_uniform)
torch.nn.init.xavier_uniform_(self.representation_block)
torch.nn.init.xavier_uniform_(self.t_predictions_cli)
torch.nn.init.xavier_uniform_(self.t_predictions_im)
torch.nn.init.xavier_uniform_(self.t0_head)
torch.nn.init.xavier_uniform_(self.t1_head)
torch.nn.init.xavier_uniform_(self.t2_head)
torch.nn.init.xavier_uniform_(self.resenet_head)
#torch.nn.init.xavier_uniform_(self.fc_cat)
torch.nn.init.xavier_uniform_(self.H_bar_im)
torch.nn.init.xavier_uniform_(self.H_bar_cli)
#torch.nn.init.xavier_uniform_(self.mutli_concat)
torch.nn.init.xavier_uniform_(self.pro_cli)
torch.nn.init.xavier_uniform_(self.pro_im)
torch.nn.init.xavier_uniform_(self.fc_im_0)
torch.nn.init.xavier_uniform_(self.fc_im_1)
torch.nn.init.xavier_uniform_(self.fc_im_2)
torch.nn.init.xavier_uniform_(self.fc_cli_0)
torch.nn.init.xavier_uniform_(self.fc_cli_1)
torch.nn.init.xavier_uniform_(self.fc_cli_2)
torch.nn.init.xavier_normal_(self.share)
def forward(self, cli, t_true, image, traumatic, is_test = False, is_tsne = False):
image = self.share.forward(image)
image = self.dropout(image)
image = image[:,:,0,0,0]
phi_im = self.resenet_head(image)
phi_cli = self.representation_block(cli)
psi_im = self.H_bar_im(phi_im)
psi_cli = self.H_bar_cli(phi_cli)
if not is_test:
psi_im_pro = self.pro_im(psi_im)
psi_cli_pro = self.pro_cli(psi_cli)
pairs_im, pairs_cli, sim_im_hub, sim_cli_hub = similarity_matrix(psi_im_pro, psi_cli_pro, t_true, traumatic)
sim_0_1_im = (psi_im_pro[pairs_cli[0]] - psi_im_pro[pairs_cli[3]])**2
sim_0_2_im = (psi_im_pro[pairs_cli[0]] - psi_im_pro[pairs_cli[8]])**2
sim_1_2_im = (psi_im_pro[pairs_cli[5]] - psi_im_pro[pairs_cli[6]])**2
sim_0_1_cli = (psi_cli_pro[pairs_im[0]] - psi_cli_pro[pairs_im[3]])**2
sim_0_2_cli = (psi_cli_pro[pairs_im[0]] - psi_cli_pro[pairs_im[8]])**2
sim_1_2_cli = (psi_cli_pro[pairs_im[5]] - psi_cli_pro[pairs_im[6]])**2
close_loss = torch.sum(sim_0_1_im + sim_0_2_im + sim_1_2_im + sim_0_1_cli + sim_0_2_cli + sim_1_2_cli)
psi_im_pro_norm = F.normalize(psi_im_pro,p=2,dim=1)
psi_cli_pro_norm = F.normalize(psi_cli_pro,p=2,dim=1)
psi_im_ab = cal_similarity(psi_im_pro_norm[pairs_cli[0]],psi_im_pro_norm[pairs_cli[1]])
psi_im_ac = cal_similarity(psi_im_pro_norm[pairs_cli[0]],psi_im_pro_norm[pairs_cli[2]])
psi_im_bc = cal_similarity(psi_im_pro_norm[pairs_cli[1]],psi_im_pro_norm[pairs_cli[2]])
psi_im_de = cal_similarity(psi_im_pro_norm[pairs_cli[3]],psi_im_pro_norm[pairs_cli[4]])
psi_im_df = cal_similarity(psi_im_pro_norm[pairs_cli[3]],psi_im_pro_norm[pairs_cli[5]])
psi_im_ef = cal_similarity(psi_im_pro_norm[pairs_cli[4]],psi_im_pro_norm[pairs_cli[5]])
psi_im_gh = cal_similarity(psi_im_pro_norm[pairs_cli[6]],psi_im_pro_norm[pairs_cli[7]])
psi_im_gi = cal_similarity(psi_im_pro_norm[pairs_cli[6]],psi_im_pro_norm[pairs_cli[8]])
psi_im_hi = cal_similarity(psi_im_pro_norm[pairs_cli[7]],psi_im_pro_norm[pairs_cli[8]])
psi_cli_ab = cal_similarity(psi_cli_pro_norm[pairs_im[0]],psi_cli_pro_norm[pairs_im[1]])
psi_cli_ac = cal_similarity(psi_cli_pro_norm[pairs_im[0]],psi_cli_pro_norm[pairs_im[2]])
psi_cli_bc = cal_similarity(psi_cli_pro_norm[pairs_im[1]],psi_cli_pro_norm[pairs_im[2]])
psi_cli_de = cal_similarity(psi_cli_pro_norm[pairs_im[3]],psi_cli_pro_norm[pairs_im[4]])
psi_cli_df = cal_similarity(psi_cli_pro_norm[pairs_im[3]],psi_cli_pro_norm[pairs_im[5]])
psi_cli_ef = cal_similarity(psi_cli_pro_norm[pairs_im[4]],psi_cli_pro_norm[pairs_im[5]])
psi_cli_gh = cal_similarity(psi_cli_pro_norm[pairs_im[6]],psi_cli_pro_norm[pairs_im[7]])
psi_cli_gi = cal_similarity(psi_cli_pro_norm[pairs_im[6]],psi_cli_pro_norm[pairs_im[8]])
psi_cli_hi = cal_similarity(psi_cli_pro_norm[pairs_im[7]],psi_cli_pro_norm[pairs_im[8]])
sim_loss = (sim_im_hub[0] - psi_cli_ab)**2 + (sim_im_hub[1] - psi_cli_ac)**2 + (sim_im_hub[2] - psi_cli_bc)**2 + \
(sim_im_hub[3] - psi_cli_de)**2 + (sim_im_hub[4] - psi_cli_df)**2 + (sim_im_hub[5] - psi_cli_ef)**2 + \
(sim_im_hub[6] - psi_cli_gh)**2 + (sim_im_hub[7] - psi_cli_gi)**2 + (sim_im_hub[8] - psi_cli_hi)**2 + \
(sim_cli_hub[0] - psi_im_ab)**2 + (sim_cli_hub[1] - psi_im_ac)**2 + (sim_cli_hub[2] - psi_im_bc)**2 + \
(sim_cli_hub[3] - psi_im_de)**2 + (sim_cli_hub[4] - psi_im_df)**2 + (sim_cli_hub[5] - psi_im_ef)**2 + \
(sim_cli_hub[6] - psi_im_gh)**2 + (sim_cli_hub[7] - psi_im_gi)**2 + (sim_cli_hub[8] - psi_im_hi)**2
psi_im_0 = self.fc_im_0(psi_im)
psi_im_1 = self.fc_im_1(psi_im)
psi_im_2 = self.fc_im_2(psi_im)
psi_cli_0 = self.fc_cli_0(psi_cli)
psi_cli_1 = self.fc_cli_1(psi_cli)
psi_cli_2 = self.fc_cli_2(psi_cli)
#im_cli_combined = torch.cat((psi_im, psi_cli), 1)
#im_cli_combined = self.mutli_concat(im_cli_combined)
#x = torch.cat((phi_cli, phi_im), 1)
#x = self.fc_cat(x)
# ------propensity scores
propensity_head_im = self.t_predictions_im(phi_im)
propensity_head_cli = self.t_predictions_cli(phi_cli)
# ------t0
t0_out = torch.cat((psi_im_0, psi_cli_0), 1)
t0_out = self.t0_head(t0_out)
# ------t1
t1_out = torch.cat((psi_im_1, psi_cli_1), 1)
t1_out = self.t1_head(t1_out)
# ------t2
t2_out = torch.cat((psi_im_2, psi_cli_2), 1)
t2_out = self.t2_head(t2_out)
if is_tsne:
return torch.cat((t0_out, t1_out, t2_out, propensity_head_im, propensity_head_cli), 1), psi_im, psi_cli
else:
if not is_test:
return torch.cat((t0_out, t1_out, t2_out, propensity_head_im, propensity_head_cli), 1), sim_loss, close_loss
else:
return torch.cat((t0_out, t1_out, t2_out, propensity_head_im, propensity_head_cli), 1)