-
Notifications
You must be signed in to change notification settings - Fork 73
/
data_loader.py
273 lines (243 loc) · 11.6 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import cv2
import numpy as np
import torch
from torch.utils.data import Dataset
import os
cv2.setNumThreads(1)
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
class RandomResizedCropWithAutoCenteringAndZeroPadding (object):
def __init__(self, output_size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), center_jitter=(0.1, 0.1), size_from_alpha_mask=True):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
assert isinstance(scale, tuple)
assert isinstance(ratio, tuple)
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
raise ValueError("Scale and ratio should be of kind (min, max)")
self.size_from_alpha_mask = size_from_alpha_mask
self.scale = scale
self.ratio = ratio
assert isinstance(center_jitter, tuple)
self.center_jitter = center_jitter
def __call__(self, sample):
imidx, image = sample['imidx'], sample["image_np"]
if "labels" in sample:
label = sample["labels"]
else:
label = None
im_h, im_w = image.shape[:2]
if self.size_from_alpha_mask and image.shape[2] == 4:
# compute bbox from alpha mask
bbox_left, bbox_top, bbox_w, bbox_h = cv2.boundingRect(
(image[:, :, 3] > 0).astype(np.uint8))
else:
bbox_left, bbox_top = 0, 0
bbox_h, bbox_w = image.shape[:2]
if bbox_h <= 1 and bbox_w <= 1:
sample["bad"] = 0
else:
# detect too small image here
alpha_varea = np.sum((image[:, :, 3] > 0).astype(np.uint8))
image_area = image.shape[0]*image.shape[1]
if alpha_varea/image_area < 0.001:
sample["bad"] = alpha_varea
# detect bad image
if "bad" in sample:
# baddata_dir = os.path.join(os.getcwd(), 'test_data', "baddata" + os.sep)
# save_output(str(imidx)+".png",image,label,baddata_dir)
bbox_h, bbox_w = image.shape[:2]
sample["image_np"] = np.zeros(
[self.output_size[0], self.output_size[1], image.shape[2]], dtype=image.dtype)
if label is not None:
sample["labels"] = np.zeros(
[self.output_size[0], self.output_size[1], 4], dtype=label.dtype)
return sample
# compute default area by making sure output_size contains bbox_w * bbox_h
jitter_h = np.random.uniform(-bbox_h *
self.center_jitter[0], bbox_h*self.center_jitter[0])
jitter_w = np.random.uniform(-bbox_w *
self.center_jitter[1], bbox_w*self.center_jitter[1])
# h/w
target_aspect_ratio = np.exp(
np.log(self.output_size[0]/self.output_size[1]) +
np.random.uniform(np.log(self.ratio[0]), np.log(self.ratio[1]))
)
source_aspect_ratio = bbox_h/bbox_w
if target_aspect_ratio < source_aspect_ratio:
# same w, target has larger h, use h to align
target_height = bbox_h * \
np.random.uniform(self.scale[0], self.scale[1])
virtual_h = int(
round(target_height))
virtual_w = int(
round(target_height / target_aspect_ratio)) # h/w
else:
# same w, source has larger h, use w to align
target_width = bbox_w * \
np.random.uniform(self.scale[0], self.scale[1])
virtual_h = int(
round(target_width * target_aspect_ratio)) # h/w
virtual_w = int(
round(target_width))
# print("required aspect ratio:", target_aspect_ratio)
virtual_top = int(round(bbox_top + jitter_h - (virtual_h-bbox_h)/2))
virutal_left = int(round(bbox_left + jitter_w - (virtual_w-bbox_w)/2))
if virtual_top < 0:
top_padding = abs(virtual_top)
crop_top = 0
else:
top_padding = 0
crop_top = virtual_top
if virutal_left < 0:
left_padding = abs(virutal_left)
crop_left = 0
else:
left_padding = 0
crop_left = virutal_left
if virtual_top+virtual_h > im_h:
bottom_padding = abs(im_h-(virtual_top+virtual_h))
crop_bottom = im_h
else:
bottom_padding = 0
crop_bottom = virtual_top+virtual_h
if virutal_left+virtual_w > im_w:
right_padding = abs(im_w-(virutal_left+virtual_w))
crop_right = im_w
else:
right_padding = 0
crop_right = virutal_left+virtual_w
# crop
image = image[crop_top:crop_bottom, crop_left: crop_right]
if label is not None:
label = label[crop_top:crop_bottom, crop_left: crop_right]
# pad
if top_padding + bottom_padding + left_padding + right_padding > 0:
padding = ((top_padding, bottom_padding),
(left_padding, right_padding), (0, 0))
# print("padding", padding)
image = np.pad(image, padding, mode='constant')
if label is not None:
label = np.pad(label, padding, mode='constant')
if image.shape[0]/image.shape[1] - virtual_h/virtual_w > 0.001:
print("virtual aspect ratio:", virtual_h/virtual_w)
print("image aspect ratio:", image.shape[0]/image.shape[1])
assert (image.shape[0]/image.shape[1] - virtual_h/virtual_w < 0.001)
sample["crop"] = np.array(
[im_h, im_w, crop_top, crop_bottom, crop_left, crop_right, top_padding, bottom_padding, left_padding, right_padding, image.shape[0], image.shape[1]])
# resize
if self.output_size[1] != image.shape[1] or self.output_size[0] != image.shape[0]:
if self.output_size[1] > image.shape[1] and self.output_size[0] > image.shape[0]:
# enlarging
image = cv2.resize(
image, (self.output_size[1], self.output_size[0]), interpolation=cv2.INTER_LINEAR)
else:
# shrinking
image = cv2.resize(
image, (self.output_size[1], self.output_size[0]), interpolation=cv2.INTER_AREA)
if label is not None:
label = cv2.resize(label, (self.output_size[1], self.output_size[0]),
interpolation=cv2.INTER_NEAREST_EXACT)
assert image.shape[0] == self.output_size[0] and image.shape[1] == self.output_size[1]
sample['imidx'], sample["image_np"] = imidx, image
if label is not None:
assert label.shape[0] == self.output_size[0] and label.shape[1] == self.output_size[1]
sample["labels"] = label
return sample
class FileDataset(Dataset):
def __init__(self, image_names_list, fg_img_lbl_transform=None, shader_pose_use_gt_udp_test=True, shader_target_use_gt_rgb_debug=False):
self.image_name_list = image_names_list
self.fg_img_lbl_transform = fg_img_lbl_transform
self.shader_pose_use_gt_udp_test = shader_pose_use_gt_udp_test
self.shader_target_use_gt_rgb_debug = shader_target_use_gt_rgb_debug
def __len__(self):
return len(self.image_name_list)
def get_gt_from_disk(self, idx, imname, read_label):
if read_label:
# read label
with open(imname, mode="rb") as bio:
if imname.find(".npz") > 0:
label_np = np.load(bio, allow_pickle=True)[
'i'].astype(np.float32, copy=False)
else:
label_np = cv2.cvtColor(cv2.imdecode(np.frombuffer(bio.read(
), np.uint8), cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH | cv2.IMREAD_UNCHANGED), cv2.COLOR_BGRA2RGBA)
assert (4 == label_np.shape[2])
# fake image out of valid label
image_np = (label_np*255).clip(0, 255).astype(np.uint8, copy=False)
# assemble sample
sample = {'imidx': np.array(
[idx]), "image_np": image_np, "labels": label_np}
else:
# read image as unit8
with open(imname, mode="rb") as bio:
image_np = cv2.cvtColor(cv2.imdecode(np.frombuffer(
bio.read(), np.uint8), cv2.IMREAD_UNCHANGED), cv2.COLOR_BGRA2RGBA)
# image_np = Image.open(bio)
# image_np = np.array(image_np)
assert (3 == len(image_np.shape))
if (image_np.shape[2] == 4):
mask_np = image_np[:, :, 3:4]
image_np = (image_np[:, :, :3] *
(image_np[:, :, 3][:, :, np.newaxis]/255.0)).clip(0, 255).astype(np.uint8, copy=False)
elif (image_np.shape[2] == 3):
# generate a fake mask
# Fool-proofing
mask_np = np.ones(
(image_np.shape[0], image_np.shape[1], 1), dtype=np.uint8)*255
print("WARN: transparent background is preferred for image ", imname)
else:
raise ValueError("weird shape of image ", imname, image_np)
image_np = np.concatenate((image_np, mask_np), axis=2)
sample = {'imidx': np.array(
[idx]), "image_np": image_np}
# apply fg_img_lbl_transform
if self.fg_img_lbl_transform:
sample = self.fg_img_lbl_transform(sample)
if "labels" in sample:
# return UDP as 4chn XYZV float tensor
sample["labels"] = torch.from_numpy(
sample["labels"].transpose((2, 0, 1)))
assert (sample["labels"].dtype == torch.float32)
if "image_np" in sample:
# return image as 3chn RGB uint8 tensor and 1chn A uint8 tensor
sample["mask"] = torch.from_numpy(
sample["image_np"][:, :, 3:4].transpose((2, 0, 1)))
assert (sample["mask"].dtype == torch.uint8)
sample["image"] = torch.from_numpy(
sample["image_np"][:, :, :3].transpose((2, 0, 1)))
assert (sample["image"].dtype == torch.uint8)
del sample["image_np"]
return sample
def __getitem__(self, idx):
sample = {
'imidx': np.array([idx])}
target = self.get_gt_from_disk(
idx, imname=self.image_name_list[idx][0], read_label=self.shader_pose_use_gt_udp_test)
if self.shader_target_use_gt_rgb_debug:
sample["pose_images"] = torch.stack([target["image"]])
sample["pose_mask"] = target["mask"]
elif self.shader_pose_use_gt_udp_test:
sample["pose_label"] = target["labels"]
sample["pose_mask"] = target["mask"]
else:
sample["pose_images"] = torch.stack([target["image"]])
if "crop" in target:
sample["pose_crop"] = target["crop"]
character_images = []
character_masks = []
for i in range(1, len(self.image_name_list[idx])):
source = self.get_gt_from_disk(
idx, self.image_name_list[idx][i], read_label=False)
character_images.append(source["image"])
character_masks.append(source["mask"])
character_images = torch.stack(character_images)
character_masks = torch.stack(character_masks)
sample.update({
"character_images": character_images,
"character_masks": character_masks
})
# do not make fake labels in inference
return sample