forked from chatchat-space/Langchain-Chatchat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknowledge_based_chatglm.py
86 lines (71 loc) · 2.84 KB
/
knowledge_based_chatglm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from langchain.chains import RetrievalQA
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.document_loaders import UnstructuredFileLoader
from chatglm_llm import ChatGLM
# Global Parameters
EMBEDDING_MODEL = "text2vec"
VECTOR_SEARCH_TOP_K = 6
LLM_MODEL = "chatglm-6b"
LLM_HISTORY_LEN = 3
# Show reply with source text from input document
REPLY_WITH_SOURCE = True
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec": "GanymedeNil/text2vec-large-chinese",
}
llm_model_dict = {
"chatglm-6b": "THUDM/chatglm-6b",
"chatglm-6b-int4": "THUDM/chatglm-6b-int4",
"chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
}
chatglm = ChatGLM()
chatglm.load_model(model_name_or_path=llm_model_dict[LLM_MODEL])
chatglm.history_len = LLM_HISTORY_LEN
def init_knowledge_vector_store(filepath):
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[EMBEDDING_MODEL], )
loader = UnstructuredFileLoader(filepath, mode="elements")
docs = loader.load()
vector_store = FAISS.from_documents(docs, embeddings)
return vector_store
def get_knowledge_based_answer(query, vector_store, chat_history=[]):
system_template = """基于以下内容,简洁和专业的来回答用户的问题。
如果无法从中得到答案,请说 "不知道" 或 "没有足够的相关信息",不要试图编造答案。答案请使用中文。
----------------
{context}
----------------
"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
prompt = ChatPromptTemplate.from_messages(messages)
chatglm.history = chat_history
knowledge_chain = RetrievalQA.from_llm(
llm=chatglm,
retriever=vector_store.as_retriever(search_kwargs={"k": VECTOR_SEARCH_TOP_K}),
prompt=prompt
)
knowledge_chain.return_source_documents = True
result = knowledge_chain({"query": query})
chatglm.history[-1][0] = query
return result, chatglm.history
if __name__ == "__main__":
filepath = input("Input your local knowledge file path 请输入本地知识文件路径:")
vector_store = init_knowledge_vector_store(filepath)
history = []
while True:
query = input("Input your question 请输入问题:")
resp, history = get_knowledge_based_answer(query=query,
vector_store=vector_store,
chat_history=history)
if REPLY_WITH_SOURCE:
print(resp)
else:
print(resp["result"])