forked from blurstudio/TwistSpline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwistSplineBuilder.py
638 lines (528 loc) · 26.7 KB
/
twistSplineBuilder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
'''
MIT License
Copyright (c) 2018 Blur Studio
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
from maya import cmds, OpenMaya
# Naming Convention
DFM_ORG_FMT = "Org_X_X_{0}Jnts" # Deformer Organizer
DFM_BFR_FMT = "Hbfr_X_{0}Rider_Part{1:02d}" # Rider Buffer
DFM_FMT = "Dfm_X_{0}Rider_Part{1:02d}" # Deformer
SPLINE_FMT = "Rig_X_{0}Spline_Drv" # Spline name
MASTER_FMT = "Ctrl_X_{}SplineGlobal_Part" # Global control
CTRL_ORG_FMT = "Org_X_{0}_Ctrls" # Control organizer
BFR_CV_FMT = "Hbfr_X_{0}Spline_Part{1:02d}" # CV Buffer
CTRL_CV_FMT = "Ctrl_X_{0}Spline_Part{1:02d}" # CV
CTRL_TWIST_FMT = "Ctrl_X_{0}Twist_Part{1:02d}" # Twist
CTRL_INTAN_FMT = "Ctrl_X_{0}InTangent_Part{1:02d}" # In-Tangent
CTRL_OUTTAN_FMT = "Ctrl_X_{0}OutTangent_Part{1:02d}" # Out-Tangent
BFR_AINTAN_FMT = "Hbfr_X_{0}AutoInTangent_Part{1:02d}" # Auto In-Tangent Buffer
BFR_AOUTTAN_FMT = "Hbfr_X_{0}AutoOutTangent_Part{1:02d}" # Auto Out-Tangent Buffer
def makeLinkLine(sourceNode, destNode, selectNode=None):
""" Draw a line between two nodes. Clicking the line selects the target object
Arguments:
sourceNode (str): The start of the line
destNode (str): The end of the line
selectNode (str): The object that gets selected. Defaults to sourceNode
Returns:
str: The line's shape node
"""
if selectNode is None:
selectNode = sourceNode
lineTfm = cmds.curve(d=1, p=([0, 0, 0], [0, 0, 1]), k=(0, 1))
lineShape = cmds.listRelatives(lineTfm, s=True, path=True)[0]
cmds.parent(lineShape, selectNode, r=True, s=True, nc=True)
cmds.delete(lineTfm)
for idx, node in enumerate([destNode, sourceNode]):
if node == selectNode:
# If so, we can skip all the connections and just set the control point
# to the local rotPivot, and leave it there
rotPivot = cmds.xform(sourceNode, q=True, objectSpace=True, rotatePivot=True)
cmds.setAttr(lineShape + ".controlPoints[{0}]".format(idx), *rotPivot)
else:
worldMatrix = cmds.createNode('pointMatrixMult', name=node + "_linkCurveWorldMat")
inverseMatrix = cmds.createNode('pointMatrixMult', name=selectNode + "_linkCurveWorldMat")
rotPivot = cmds.xform(node, q=True, objectSpace=True, rotatePivot=True)
cmds.connectAttr(node + ".worldMatrix", worldMatrix + ".inMatrix", f=True)
cmds.setAttr(worldMatrix + '.inPoint', *rotPivot)
cmds.connectAttr(selectNode + ".worldInverseMatrix", inverseMatrix + ".inMatrix", f=True)
cmds.connectAttr(worldMatrix + ".output", inverseMatrix + ".inPoint", f=True)
cmds.connectAttr(inverseMatrix + ".output", lineShape + ".controlPoints[{0}]".format(idx), f=True)
cmds.setAttr(lineShape + ".overrideEnabled", 1)
cmds.setAttr(lineShape + ".overrideColor", 3)
cmds.rename(lineShape, sourceNode + "Shape")
for node in [worldMatrix, inverseMatrix]:
cmds.setAttr(node + ".isHistoricallyInteresting", False)
return lineShape
def _mkMasterHarbieControllers(scale=1.0):
""" Make the master objects so we can duplicate them to be the controllers
This function uses the internal blur locators
Returns:
cvCtrl: The CV controller master
outTanCtrl: The out-tangent controller master
inTanCtrl: The in-tangent controller master
twistCtrl: The twist controller master
masterCtrl: The top controller master
"""
# Blur Specific locators
from dcc.maya.cast import toPath
from dcc.maya.icon import createHarbieLocator as cloc
cvCtrl = toPath(cloc("Cube", "TMP_SplineCV", None, None, size=1.0*scale, color=[1, 0.6, 0]))
oTanCtrl = toPath(cloc("Cross", "TMP_OTan", None, None, size=0.4*scale, ro=[0, 0, 0], color=[1, 0.6, 0.6]))
iTanCtrl = toPath(cloc("Square", "TMP_ITan", None, None, size=0.4*scale, ro=[90, 0, 0], color=[0, 1, 1]))
twistCtrl = toPath(cloc("Compass", "TMP_SplineTwist", None, None, size=1.5*scale, ro=[-90, 90, 0], color=[0.5, 0, 1]))
masterCtrl = toPath(cloc("CrossArrow", "TMP_SplineGlobal", None, None, size=3.0*scale, ro=[90, 0, 0], color=[0, 1, 0]))
return cvCtrl, oTanCtrl, iTanCtrl, twistCtrl, masterCtrl
def _mkMasterControllers(scale=1.0):
""" Make the master objects so we can duplicate them to be the controllers
Returns:
cvCtrl: The CV controller master
outTanCtrl: The out-tangent controller master
inTanCtrl: The in-tangent controller master
twistCtrl: The twist controller master
masterCtrl: The top controller master
"""
v = 0.5 * scale
cvCtrl = cmds.curve(
degree=1,
p=[
# top loop
(v, v, v), (v, -v, v), (-v, -v, v), (-v, v, v), (v, v, v),
# go to the bottom layer
(v, v, -v),
# One side of the bottom, and a vertical leg *3
(v, -v, -v), (v, -v, v), (v, -v, -v),
(-v, -v, -v), (-v, -v, v), (-v, -v, -v),
(-v, v, -v), (-v, v, v), (-v, v, -v),
# Close the bottom
(v, v, -v),
])
v = 0.25 * scale
outTanCtrl = cmds.outTanCtrl(radius=v, constructionHistory=False)[0]
v = 0.25 * scale
inTanCtrl = cmds.curve(degree=1, p=[(v, v, 0), (v, -v, 0), (-v, -v, 0), (-v, v, 0), (v, v, 0)])
v = 0.5 * scale
s = 0.5 * scale
twistCtrl = cmds.curve(degree=1, p=[(-v, s, 0), (v, s, 0), (0, 2 * v + s, 0), (-v, s, 0)])
v = 0.15 * scale
s = 1.108 * scale
o = 3 * scale
masterCtrl = cmds.curve(
degree=3,
periodic=True,
p=[
(v, -v + o, 0), (0, -s + o, 0), (-v, -v + o, 0), (-s, 0 + o, 0),
(-v, v + o, 0), (0, s + o, 0), (v, v + o, 0), (s, 0 + o, 0),
(v, -v + o, 0), (0, -s + o, 0), (-v, -v + o, 0)
],
k=[-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
return cvCtrl, outTanCtrl, inTanCtrl, twistCtrl, masterCtrl
def mkTwistSplineControllers(pfx, numCVs, spread, closed=False):
""" Make and position all the controller objects
Arguments:
pfx (str): The user name of the spline. Will be formatted into the given naming convention
numCVs (int): The number of CVs to create for a spline
spread (float): The distance between each controller (including tangents)
closed (bool): Whether the spline forms a closed loop
Returns:
[str, ...]: All the CV's
[str, ...]: All the CV Buffers
[str, ...]: All the Out-Tangents
[str, ...]: All the In-Tangents
[str, ...]: All the Auto-Out-Tangents
[str, ...]: All the Auto-In-Tangents
[str, ...]: All the Twisters
str: The base controller
"""
# Make bases for the controllers
cvCtrl, outTanCtrl, inTanCtrl, twistCtrl, masterCtrl = _mkMasterControllers()
master = cmds.duplicate(masterCtrl, name=MASTER_FMT.format(pfx))[0]
cmds.addAttr(master, longName="Offset", attributeType='double', defaultValue=0.0)
cmds.setAttr(master + '.Offset', edit=True, keyable=True)
cmds.addAttr(master, longName="Stretch", attributeType='double', defaultValue=1.0, minValue=0.0001)
cmds.setAttr(master + '.Stretch', edit=True, keyable=True)
# make the requested number of CV's
# don't hide the .rx attribute
cvs, tws, bfrs = [], [], []
controlsGrp = cmds.createNode("transform", name=CTRL_ORG_FMT.format(pfx))
cmds.parentConstraint(master, controlsGrp, mo=True)
cmds.scaleConstraint(master, controlsGrp, mo=True)
for i in range(numCVs):
bfr = cmds.createNode("transform", name=BFR_CV_FMT.format(pfx, i + 1), parent=controlsGrp)
cv = cmds.duplicate(cvCtrl, name=CTRL_CV_FMT.format(pfx, i + 1))[0]
tw = cmds.duplicate(twistCtrl, name=CTRL_TWIST_FMT.format(pfx, i + 1))[0]
cmds.addAttr(cv, longName="Pin", attributeType='double', defaultValue=0.0, minValue=0.0, maxValue=1.0)
cmds.setAttr(cv + '.Pin', edit=True, keyable=True)
cmds.addAttr(cv, longName="PinParam", attributeType='double', defaultValue=0.0, minValue=0.0)
cmds.setAttr(cv + '.PinParam', edit=True, keyable=True)
for h in ['.tx', '.ty', '.tz', '.ry', '.rz', '.sx', '.sy', '.sz', '.v']:
cmds.setAttr(tw + h, lock=True, keyable=False, channelBox=False)
cmds.addAttr(tw, longName="UseTwist", attributeType='double', defaultValue=0.0, minValue=0.0, maxValue=1.0)
cmds.setAttr(tw + '.UseTwist', edit=True, keyable=True)
cv, = cmds.parent(cv, bfr)
tw, = cmds.parent(tw, cv)
cmds.xform(bfr, translation=(spread * 3 * i, 0, 0))
cvs.append(cv)
tws.append(tw)
bfrs.append(bfr)
# make the tangents and auto-tangents
oTans, iTans, aoTans, aiTans = [], [], [], []
segments = numCVs if closed else numCVs - 1
for i in range(segments):
# make oTan, and iTan
otNum = i
itNum = (i + 1) % numCVs
oTan = cmds.duplicate(outTanCtrl, name=CTRL_OUTTAN_FMT.format(pfx, otNum + 1))[0]
iTan = cmds.duplicate(inTanCtrl, name=CTRL_INTAN_FMT.format(pfx, itNum + 1))[0]
for ndTan in [oTan, iTan]:
cmds.addAttr(ndTan, longName="Auto", attributeType='double', defaultValue=1.0, minValue=0.0, maxValue=1.0)
cmds.setAttr(ndTan + '.Auto', edit=True, keyable=True)
cmds.addAttr(ndTan, longName="Smooth", attributeType='double', defaultValue=1.0, minValue=0.0, maxValue=1.0)
cmds.setAttr(ndTan + '.Smooth', edit=True, keyable=True)
cmds.addAttr(ndTan, longName="Weight", attributeType='double', defaultValue=1.0, minValue=0.0001, maxValue=5.0)
cmds.setAttr(ndTan + '.Weight', edit=True, keyable=True)
cmds.xform(oTan, translation=(spread * (3 * otNum + 1), 0, 0))
cmds.xform(iTan, translation=(spread * (3 * itNum - 1), 0, 0))
aoTan = cmds.createNode("transform", name=BFR_AOUTTAN_FMT.format(pfx, otNum + 1), parent=cvs[otNum])
aiTan = cmds.createNode("transform", name=BFR_AINTAN_FMT.format(pfx, itNum + 1), parent=cvs[itNum])
cmds.xform(aoTan, translation=(spread * (3 * otNum + 1), 0, 0))
cmds.xform(aiTan, translation=(spread * (3 * itNum - 1), 0, 0))
oTan = cmds.parent(oTan, cvs[otNum])[0]
iTan = cmds.parent(iTan, cvs[itNum])[0]
oTans.append(oTan)
iTans.append(iTan)
aoTans.append(aoTan)
aiTans.append(aiTan)
for nd in [aiTan, aoTan]:
cmds.setAttr(nd + ".overrideEnabled", 1)
cmds.setAttr(nd + ".overrideDisplayType", 2)
cmds.setAttr(nd + ".visibility", 0)
makeLinkLine(aoTan, cvs[otNum], selectNode=oTan)
makeLinkLine(aiTan, cvs[itNum], selectNode=iTan)
cmds.delete((cvCtrl, outTanCtrl, inTanCtrl, twistCtrl, masterCtrl))
return cvs, bfrs, oTans, iTans, aoTans, aiTans, tws, master
def createTangentSegmentSetup(pre, start, end, nxt, oTan, iTan, aoTan, aiTan, isFirst=False, isLast=False):
""" Create a single twist spline tangent setup for a single segment
With 4 CV's given, there are 3 segments between them.
This creates a tangent setup for the middle segment.
Arguments:
pre (str): The previous CV for auto-tangent calculations
start (str): The CV that will have its out-tangent connected
end (str): The CV that will have its in-tangent connected
nxt (str): The last CV for auto-tangent calculations
oTan (str): The Out-Tangent object
iTan (str): The In-Tangent object
aoTan (str): The Auto-Out-Tangent object
aiTan (str): The Auto-In-Tangent object
isFirst (bool): Whether this segment is the first one in the spline
isLast (bool): Whether this segment is the last one in the spline
"""
# connect all the in/out tangents
ott = cmds.createNode("twistTangent", name="twistTangentOut") # TODO: make with name based on oTan
cmds.connectAttr("{}.worldMatrix[0]".format(oTan), "{}.inTangent".format(ott))
cmds.connectAttr("{}.Auto".format(oTan), "{}.auto".format(ott))
cmds.connectAttr("{}.Smooth".format(oTan), "{}.smooth".format(ott))
cmds.connectAttr("{}.Weight".format(oTan), "{}.weight".format(ott))
if not isFirst:
cmds.connectAttr("{}.worldMatrix[0]".format(pre), "{}.previousVertex".format(ott))
else:
cmds.setAttr("{}.Smooth".format(oTan), 0.0)
cmds.connectAttr("{}.worldMatrix[0]".format(start), "{}.currentVertex".format(ott))
cmds.connectAttr("{}.worldMatrix[0]".format(end), "{}.nextVertex".format(ott))
cmds.setAttr("{}.Auto".format(oTan), 1.0)
itt = cmds.createNode("twistTangent", name="twistTangentIn") # TODO: make with name based on iTan
cmds.connectAttr("{}.worldMatrix[0]".format(iTan), "{}.inTangent".format(itt))
cmds.connectAttr("{}.Auto".format(iTan), "{}.auto".format(itt))
cmds.connectAttr("{}.Smooth".format(iTan), "{}.smooth".format(itt))
cmds.connectAttr("{}.Weight".format(iTan), "{}.weight".format(itt))
if not isLast:
cmds.connectAttr("{}.worldMatrix[0]".format(nxt), "{}.previousVertex".format(itt))
else:
cmds.setAttr("{}.Smooth".format(iTan), 0.0)
cmds.connectAttr("{}.worldMatrix[0]".format(end), "{}.currentVertex".format(itt))
cmds.connectAttr("{}.worldMatrix[0]".format(start), "{}.nextVertex".format(itt))
cmds.setAttr("{}.Auto".format(iTan), 1.0)
cmds.connectAttr("{}.outLinearTarget".format(itt), "{}.inLinearTarget".format(ott))
cmds.connectAttr("{}.outLinearTarget".format(ott), "{}.inLinearTarget".format(itt))
cmds.connectAttr("{0}.out".format(ott), "{}.translate".format(aoTan))
cmds.connectAttr("{}.parentInverseMatrix[0]".format(aoTan), "{}.parentInverseMatrix".format(ott))
cmds.connectAttr("{0}.out".format(itt), "{}.translate".format(aiTan))
cmds.connectAttr("{}.parentInverseMatrix[0]".format(aiTan), "{}.parentInverseMatrix".format(itt))
def connectTwistSplineTangents(cvs, oTans, iTans, aoTans, aiTans, closed=False):
""" Connect all of the tangent setups for the spline controller objects
Arguments:
cvs ([str, ...]): A list of all the CV controllers
oTans ([str, ...]): A list of all the out-tangents
iTans ([str, ...]): A list of all the in-tangents
aoTans ([str, ...]): A list of all the auto-out-tangents
aiTans ([str, ...]): A list of all the auto-in-tangents
closed (bool): Whether the spline forms a closed loop
"""
segments = len(cvs) if closed else len(cvs) - 1
for i in range(segments):
isFirst = (i == 0) and not closed
isLast = (i == len(cvs) - 2) and not closed
pre = cvs[i - 1]
start = cvs[i]
end = cvs[(i + 1) % len(cvs)]
nxt = cvs[(i + 2) % len(cvs)]
createTangentSegmentSetup(pre, start, end, nxt, oTans[i], iTans[i], aoTans[i], aiTans[i], isFirst=isFirst, isLast=isLast)
def buildTwistSpline(pfx, cvs, aoTans, aiTans, tws, maxParam, closed=False):
""" Given all the controller objects, build a twist spline
Arguments:
pfx (str): The user name of the spline. Will be formatted into the given naming convention
cvs ([str, ...]): A list of the CV objects
aoTans ([str, ...]): A list of the auto-out-tangents
aiTans ([str, ...]): A list of the auto-in-tangents
tws ([str, ...]): A list of the twist controllers
maxParam (float): The U-Value of the last CV
closed (bool): Whether the spline forms a closed loop
Returns:
str: The spline transform node
str: The spline shape node
"""
numCVs = len(cvs) # Total number of CV nodes
shift = 0 if closed else 1 # convenience variable so I don't have if's everywhere
usedCVs = numCVs + 1 - shift # Total number of CV's connected to the spline node
# build the spline object and set the spline Params
splineTfm = cmds.createNode("transform", name=SPLINE_FMT.format(pfx))
spline = cmds.createNode("twistSpline", parent=splineTfm, name=SPLINE_FMT.format(pfx) + "Shape")
# Don't connect a first in tangent
for i, aiTan in enumerate(aiTans):
cmds.connectAttr("{}.worldMatrix[0]".format(aiTan), "{}.vertexData[{}].inTangent".format(spline, i+1))
# Don't connect a last out tangent
for i, aoTan in enumerate(aoTans):
cmds.connectAttr("{}.worldMatrix[0]".format(aoTan), "{}.vertexData[{}].outTangent".format(spline, i))
for u in range(usedCVs):
i = u % numCVs
cmds.connectAttr("{}.worldMatrix[0]".format(cvs[i]), "{}.vertexData[{}].controlVertex".format(spline, u))
cmds.connectAttr("{}.Pin".format(cvs[i]), "{}.vertexData[{}].paramWeight".format(spline, u))
if u != i:
# The paramValue needs an offset if we're at the last connection of a closed spline
adL = cmds.createNode("addDoubleLinear")
cmds.setAttr("{0}.input2".format(adL), maxParam)
cmds.connectAttr("{0}.PinParam".format(cvs[i]), "{0}.input1".format(adL), f=True)
cmds.connectAttr("{0}.output".format(adL), "{}.vertexData[{}].paramValue".format(spline, u), f=True)
else:
cmds.connectAttr("{}.PinParam".format(cvs[i]), "{}.vertexData[{}].paramValue".format(spline, u))
cmds.setAttr("{}.PinParam".format(cvs[i]), (u * maxParam) / (usedCVs - 1.0))
cmds.connectAttr("{}.UseTwist".format(tws[i]), "{}.vertexData[{}].twistWeight".format(spline, u))
cmds.connectAttr("{}.rotateX".format(tws[i]), "{}.vertexData[{}].twistValue".format(spline, u))
cmds.setAttr("{}.Pin".format(cvs[0]), 1.0)
cmds.setAttr("{}.UseTwist".format(tws[0]), 1.0)
return splineTfm, spline
def buildRiders(pfx, spline, master, numJoints, closed=False):
""" Build rider joints and constrain them to the spline
Arguments:
pfx (str): The user name of the spline. Will be formatted into the given naming convention
spline (str): The spline shape node
master (str): The master controller transform ndoe
numJoints (int): The number of joints to create
closed (bool): Whether or not the spline is a closed loop
Returns:
[str, ...]: The joint parent transforms
[str, ...]: The joints
str: The organizer parent
str: The constraint node
"""
# make the joints at origin. The constraint will put them in place
jointsGrp = cmds.createNode("transform", name=DFM_ORG_FMT.format(pfx))
jPars, joints = [], []
for i in range(numJoints):
jp = cmds.createNode("transform", name=DFM_BFR_FMT.format(pfx, i + 1), parent=jointsGrp)
j = cmds.createNode("joint", name=DFM_FMT.format(pfx, i + 1), parent=jp)
cmds.setAttr(j + ".radius", 1.2)
cmds.setAttr(jp + ".displayLocalAxis", 1)
jPars.append(jp)
joints.append(j)
# build the constraint object
cnst = cmds.createNode("riderConstraint")
cmds.connectAttr("{}.Offset".format(master), "{}.globalOffset".format(cnst))
cmds.connectAttr("{}.Stretch".format(master), "{}.globalSpread".format(cnst))
if closed:
cmds.setAttr("{}.useCycle".format(cnst), 1)
# connect the constraints
cmds.connectAttr("{}.outputSpline".format(spline), "{}.inputSplines[0].spline".format(cnst))
for i in range(len(jPars)):
if len(jPars) == 1:
cmds.setAttr("{0}.params[{1}].param".format(cnst, i), 0.5)
else:
cmds.setAttr("{0}.params[{1}].param".format(cnst, i), i / (numJoints - 1.0))
cmds.connectAttr("{}.parentInverseMatrix[0]".format(jPars[i]), "{0}.params[{1}].parentInverseMatrix".format(cnst, i))
cmds.connectAttr("{0}.outputs[{1}].translate".format(cnst, i), "{}.translate".format(jPars[i]))
cmds.connectAttr("{0}.outputs[{1}].rotate".format(cnst, i), "{}.rotate".format(jPars[i]))
cmds.connectAttr("{0}.outputs[{1}].scale".format(cnst, i), "{}.scale".format(jPars[i]))
return jPars, joints, jointsGrp, cnst
def makeTwistSpline(pfx, numCVs, numJoints=10, maxParam=None, spread=1.0, closed=False):
""" Make a twist spline
Arguments:
pfx (str): The user name of the spline. Will be formatted into the given naming convention
numCVs (int): The number of CV's to make that control the spline
numJoints (int): The number of joints to make that ride the spline. Defaults to 10
maxParam (int): The U-Value of the last CV. Defaults to 3*spread*(numCVs - 1)
spread (float): The distance between each controller (including tangents). Defaults to 1
closed (bool): Whether the spline forms a closed loop
Returns:
[str, ...]: All the CV's
[str, ...]: All the CV's parent transforms
[str, ...]: All the Out-Tangents
[str, ...]: All the In-Tangents
[str, ...]: All the joint parents
[str, ...]: All the joints
str: The joint organizer object (None if no joints requested)
str: The spline object transform
str: The base controller
str: The rider constraint (None if no joints requested)
"""
if numCVs < 2:
raise ValueError("Cannot create a TwistSpline with less than 2 CVs")
if not cmds.pluginInfo("TwistSpline", query=True, loaded=True):
cmds.loadPlugin("TwistSpline")
if maxParam is None:
maxParam = (numCVs - 1)
maxParam *= 3.0 * spread
cvs, bfrs, oTans, iTans, aoTans, aiTans, tws, master = mkTwistSplineControllers(pfx, numCVs, spread, closed=closed)
connectTwistSplineTangents(cvs, oTans, iTans, aoTans, aiTans, closed=closed)
splineTfm, splineShape = buildTwistSpline(pfx, cvs, aoTans, aiTans, tws, maxParam, closed=closed)
jPars, joints, group, cnst = None, None, None, None
if numJoints > 0:
jPars, joints, group, cnst = buildRiders(pfx, splineShape, master, numJoints, closed=closed)
# The scale of the overall spline should not affect the scale of the riders for now
# Eventually, the rider constraint will handle interpolated scales
#dnMultDivide = cmds.createNode("multiplyDivide")
#cmds.setAttr("{0}.operation".format(dnMultDivide), 2)
#cmds.setAttr("{0}.input1".format(dnMultDivide), 1, 1, 1)
#cmds.connectAttr("{0}.scale".format(master), "{0}.input2".format(dnMultDivide), f=True)
#cmds.connectAttr("{0}.outputX".format(dnMultDivide), "{0}.normValue".format(cnst), f=True)
return cvs, bfrs, oTans, iTans, jPars, joints, group, splineTfm, master, cnst
def _bezierConvert(crv):
""" Convert a curve to bezier non-destructively
Arguments:
crv (str): A curve shape or transform
Returns:
str: A Bezier curve shape
list: Any temporary objects that need to be deleted later
"""
# Get the bezier shapes
bezShapes = cmds.listRelatives(crv, path=True, type="bezierCurve")
if bezShapes is not None:
return bezShapes[0], []
nurbsShapes = cmds.listRelatives(crv, path=True, type="nurbsCurve")
if nurbsShapes is not None:
tfm = cmds.listRelatives(nurbsShapes, path=True, parent=True)
# nurbsCurveToBezier is *supposed* to take arguments, but always errors
# So I have to do this with selection. I hate that. A Lot.
dup = cmds.duplicate(tfm) # duplicates and selects the object
cmds.select(dup)
cmds.nurbsCurveToBezier() # Converts selection to bezier
bezShapes = cmds.listRelatives(dup[0], path=True, type="bezierCurve")
if bezShapes is not None:
return bezShapes[0], dup
return None, []
def convertToTwistSpline(pfx, crv, numJoints=10):
""" Convert a given NURBS or Bezier curve to a TwistSpline
Arguments:
pfx (str): The user name of the spline. Will be formatted into the given naming convention
crv (str): The transform or shape of a *bezier* spline
numJoints (int): The number of joints to create that ride this spline
"""
# get nurbs curve shape
crvShape, toDelete = _bezierConvert(crv)
# Get the curve function set
# There's no way to get the knots through pure MEL (nodes don't count)
# So as long as I'm doing it this way, I'll do it all like this
objects = OpenMaya.MSelectionList()
OpenMaya.MGlobal.getSelectionListByName(crvShape, objects)
meshDag = OpenMaya.MDagPath()
objects.getDagPath(0, meshDag)
curveFn = OpenMaya.MFnNurbsCurve(meshDag)
# Get the curve data
knots = OpenMaya.MDoubleArray()
curveFn.getKnots(knots)
params = list(knots)[1::3]
numCVs = len(params)
curveLen = curveFn.length()
# Maya reports the wrong form of the curve through the API
# So I've got to do it via mel
#curveForm = curveFn.form()
curveForm = cmds.getAttr("{0}.form".format(crvShape))
isClosed = curveForm > 0 # 1->closed 2->periodic
if isClosed:
numCVs -= 1
# Get the point data
# I could do it with cmds if I wanted, but I would have to un-flatten the list
# it's annoying either way
#allPos = cmds.xform("{0}.cv[*]".format(crvShape), q=True, worldSpace=True, translation=True)
allPos = OpenMaya.MPointArray()
curveFn.getCVs(allPos)
# Just testing a micro-optimization
# 2 steps means not creating 3 MPoints per loop
allPos = [allPos[i] for i in range(allPos.length())]
allPos = [(p.x, p.y, p.z) for p in allPos]
# Build the spline
tempRet = makeTwistSpline(pfx, numCVs, numJoints=numJoints, maxParam=curveLen / 3.0, spread=1.0, closed=isClosed)
cvs, bfrs, oTans, iTans, jPars, joints, group, spline, master, riderCnst = tempRet
# Set the positions
for pos, cv in zip(allPos[::3], bfrs):
cmds.xform(cv, ws=True, a=True, t=pos)
# Pin all the controllers so no length preservation happens
# That way we can get the rotations at each param
for cv in cvs:
cmds.setAttr("{0}.Pin".format(cv), 1)
for pos, cv in zip(allPos[1::3], oTans):
cmds.xform(cv, ws=True, a=True, t=pos)
cmds.setAttr("{0}.Auto".format(cv), 0)
for pos, cv in zip(allPos[2::3], iTans):
cmds.xform(cv, ws=True, a=True, t=pos)
cmds.setAttr("{0}.Auto".format(cv), 0)
# Make sure there is a rider constraint so I can follow the twist all along the spline
tmpCnst = cmds.createNode("riderConstraint")
cmds.connectAttr("{}.outputSpline".format(spline), "{}.inputSplines[0].spline".format(tmpCnst))
# Get the rotations at each CV point
newInd = 0
rotations = []
cmds.setAttr("{0}.normValue".format(tmpCnst), params[-1])
for param in params:
cmds.setAttr("{0}.params[{1}].param".format(tmpCnst, newInd), param)
cmds.dgeval(tmpCnst) # maybe a propagation bug somewhere in the constraint?
rot = cmds.getAttr("{0}.outputs[{1}].rotate".format(tmpCnst, newInd))
rotations.append(rot[0])
cmds.delete(tmpCnst)
# Update the rotations after I've got them all
for rot, ctrl in zip(rotations, bfrs):
cmds.setAttr("{0}.rotate".format(ctrl), *rot)
# Un-pin everything but the first, so back to length preservation
for cv in cvs[1:]:
cmds.setAttr("{0}.Pin".format(cv), 0)
# Re-set the tangent worldspace positions now that things have changed
for pos, cv in zip(allPos[1::3], oTans):
cmds.xform(cv, ws=True, a=True, t=pos)
cmds.setAttr("{0}.Auto".format(cv), 0)
for pos, cv in zip(allPos[2::3], iTans):
cmds.xform(cv, ws=True, a=True, t=pos)
cmds.setAttr("{0}.Auto".format(cv), 0)
# Delete the extra joint group and the constraint if I had to make 'em
if toDelete:
cmds.delete(toDelete)
# Lock the buffers
for bfr in bfrs:
for att in [x+y for x in 'trs' for y in 'xyz']:
cmds.setAttr("{0}.{1}".format(bfr, att), lock=True)
def convertSelectedToTwistSpline(pfx, numJoints=10):
sel = cmds.ls(sl=True)
for s in sel:
convertToTwistSpline(pfx, s, numJoints=numJoints)