This repository has been archived by the owner on Aug 21, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathTasks.qs
398 lines (342 loc) · 20.2 KB
/
Tasks.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
namespace Quantum.Kata.GraphColoring {
open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Arrays;
open Microsoft.Quantum.Measurement;
//////////////////////////////////////////////////////////////////
// Welcome!
//////////////////////////////////////////////////////////////////
// The "Graph coloring" quantum kata is a series of exercises designed
// to teach you the basics of using Grover search to solve constraint
// satisfaction problems, using graph coloring problem as an example.
// It covers the following topics:
// - writing oracles implementing constraints on graph coloring,
// - using Grover's algorithm to solve graph coloring problems with unknown number of solutions.
// Each task is wrapped in one operation preceded by the description of the task.
// Each task (except tasks in which you have to write a test) has a unit test associated with it,
// which initially fails. Your goal is to fill in the blank (marked with // ... comment)
// with some Q# code to make the failing test pass.
// Within each section, tasks are given in approximate order of increasing difficulty;
// harder ones are marked with asterisks.
//////////////////////////////////////////////////////////////////
// Part I. Colors representation and manipulation
//////////////////////////////////////////////////////////////////
// Task 1.1. Initialize register to a color
// Inputs:
// 1) An integer C (0 ≤ C ≤ 2ᴺ - 1).
// 2) An array of N qubits in the |0...0⟩ state.
// Goal: Prepare the array in the basis state which represents the binary notation of C.
// Use little-endian encoding (i.e., the least significant bit should be stored in the first qubit).
// Example: for N = 2 and C = 2 the state should be |01⟩.
operation InitializeColor (C : Int, register : Qubit[]) : Unit is Adj {
// ...
}
// Task 1.2. Read color from a register
// Input: An array of N qubits which are guaranteed to be in one of the 2ᴺ basis states.
// Output: An N-bit integer that represents this basis state, in little-endian encoding.
// The operation should not change the state of the qubits.
// Example: for N = 2 and the qubits in the state |01⟩ return 2 (and keep the qubits in |01⟩).
operation MeasureColor (register : Qubit[]) : Int {
// ...
return -1;
}
// Task 1.3. Read coloring from a register
// Inputs:
// 1) The number of elements in the coloring K.
// 2) An array of K * N qubits which are guaranteed to be in one of the 2ᴷᴺ basis states.
// Output: An array of K N-bit integers that represent this basis state.
// Integer i of the array is stored in qubits i * N, i * N + 1, ..., i * N + N - 1 in little-endian format.
// The operation should not change the state of the qubits.
// Example: for N = 2, K = 2 and the qubits in the state |0110⟩ return [2, 1].
operation MeasureColoring (K : Int, register : Qubit[]) : Int[] {
// ...
return [];
}
// Task 1.4. 2-bit color equality oracle
// Inputs:
// 1) an array of 2 qubits in an arbitrary state |c₀⟩ representing the first color,
// 1) an array of 2 qubits in an arbitrary state |c₁⟩ representing the second color,
// 3) a qubit in an arbitrary state |y⟩ (target qubit).
// Goal: Transform state |c₀⟩|c₁⟩|y⟩ into state |c₀⟩|c₁⟩|y ⊕ f(c₀, c₁)⟩ (⊕ is addition modulo 2),
// where f(x) = 1 if c₀ and c₁ are in the same state, and 0 otherwise.
// Leave the query register in the same state it started in.
// In this task you are allowed to allocate extra qubits.
operation ColorEqualityOracle_2bit (c0 : Qubit[], c1 : Qubit[], target : Qubit) : Unit is Adj+Ctl {
// ...
}
// Task 1.5. N-bit color equality oracle (no extra qubits)
// This task is the same as task 1.4, but in this task you are NOT allowed to allocate extra qubits.
operation ColorEqualityOracle_Nbit (c0 : Qubit[], c1 : Qubit[], target : Qubit) : Unit is Adj+Ctl {
// ...
}
//////////////////////////////////////////////////////////////////
// Part II. Vertex coloring problem
//////////////////////////////////////////////////////////////////
// The vertex graph coloring is a coloring of graph vertices which
// labels each vertex with one of the given colors so that
// no two vertices of the same color are connected by an edge.
// Task 2.1. Classical verification of vertex coloring
// Inputs:
// 1) The number of vertices in the graph V (V ≤ 6).
// 2) An array of E tuples of integers, representing the edges of the graph (E ≤ 12).
// Each tuple gives the indices of the start and the end vertices of the edge.
// The vertices are indexed 0 through V - 1.
// 3) An array of V integers, representing the vertex coloring of the graph.
// i-th element of the array is the color of the vertex number i.
// Output: true if the given vertex coloring is valid
// (i.e., no pair of vertices connected by an edge have the same color),
// and false otherwise.
// Example: Graph 0 -- 1 -- 2 would have V = 3 and edges = [(0, 1), (1, 2)].
// Some of the valid colorings for it would be [0, 1, 0] and [-1, 5, 18].
function IsVertexColoringValid (V : Int, edges: (Int, Int)[], colors: Int[]) : Bool {
// The following lines enforce the constraints on the input that you are given.
// You don't need to modify them. Feel free to remove them, this won't cause your code to fail.
Fact(Length(colors) == V, $"The vertex coloring must contain exactly {V} elements, and it contained {Length(colors)}.");
// ...
return true;
}
// Task 2.2. Oracle for verifying vertex coloring
// Inputs:
// 1) The number of vertices in the graph V (V ≤ 6).
// 2) An array of E tuples of integers, representing the edges of the graph (E ≤ 12).
// Each tuple gives the indices of the start and the end vertices of the edge.
// The vertices are indexed 0 through V - 1.
// 3) An array of 2V qubits colorsRegister that encodes the color assignments.
// 4) A qubit in an arbitrary state |y⟩ (target qubit).
//
// Goal: Transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2),
// where f(x) = 1 if the given vertex coloring is valid and 0 otherwise.
// Leave the query register in the same state it started in.
//
// Each color in colorsRegister is represented as a 2-bit integer in little-endian format.
// See task 1.3 for a more detailed description of color assignments.
operation VertexColoringOracle (V : Int, edges : (Int, Int)[], colorsRegister : Qubit[], target : Qubit) : Unit is Adj+Ctl {
// ...
}
// Task 2.3. Using Grover's search to find vertex coloring
// Inputs:
// 1) The number of vertices in the graph V (V ≤ 6).
// 2) A marking oracle which implements vertex coloring verification, as implemented in task 2.2.
//
// Output: A valid vertex coloring for the graph, in a format used in task 2.1.
operation GroversAlgorithm (V : Int, oracle : ((Qubit[], Qubit) => Unit is Adj)) : Int[] {
// ...
return [0, size = V];
}
//////////////////////////////////////////////////////////////////
// Part III. Weak coloring problem
//////////////////////////////////////////////////////////////////
// Weak graph coloring is a coloring of graph vertices which
// labels each vertex with one of the given colors so that
// each vertex is either isolated or is connected by an edge
// to at least one neighbor of a different color.
// Task 3.1. Determine if an edge contains the vertex
// Inputs:
// 1) An edge denoted by a tuple of integers.
// Each tuple gives the indices of the start and the end vertices of the edge.
// 2) An integer denoting the vertex of the graph.
// Output: true if the edge starts or ends with the vertex provided,
// and false otherwise.
// Examples: edge (0, 1) contains vertex 0, so return true;
// edge (0, 1) contains vertex 1, so return true;
// edge (2, 3) does not contain vertex 1, so return false.
function DoesEdgeContainVertex (edge : (Int, Int), vertex : Int) : Bool {
// ...
return false;
}
// Task 3.2. Determine if a vertex is weakly colored (classical)
// Inputs:
// 1) The number of vertices in the graph V (V ≤ 6).
// 2) An array of E tuples of integers, representing the edges of the graph (E ≤ 12).
// Each tuple gives the indices of the start and the end vertices of the edge.
// The vertices are indexed 0 through V - 1.
// 3) An array of V integers, representing the vertex coloring of the graph.
// i-th element of the array is the color of the vertex number i.
// 4) A vertex in the graph, indexed 0 through V - 1.
// Output: true if the vertex is weakly colored
// (i.e., it is connected to at least one neighboring vertex of different color),
// and false otherwise.
// Note: An isolated vertex (a vertex without neighbors) is considered to be weakly colored.
// Example: For vertex 0, in a graph containing edges = [(0, 1), (0, 2), (1, 2)],
// and colors = [0, 1, 0], vertex 0 is weakly colored,
// since it has color 0 and is connected to vertex 1 which has color 1.
function IsVertexWeaklyColored (V : Int, edges : (Int, Int)[], colors : Int[], vertex : Int) : Bool {
// ...
return false;
}
// Task 3.3. Classical verification of weak coloring
// Inputs:
// 1) The number of vertices in the graph V (V ≤ 6).
// 2) An array of E tuples of integers, representing the edges of the graph (E ≤ 12).
// Each tuple gives the indices of the start and the end vertices of the edge.
// The vertices are indexed 0 through V - 1.
// 3) An array of V integers, representing the vertex coloring of the graph.
// i-th element of the array is the color of the vertex number i.
// Output: true if the given weak coloring is valid
// (i.e., every vertex is isolated or is connected to at least one neighboring vertex of different color),
// and false otherwise.
// Example: Consider a graph with V = 3 and edges = [(0, 1), (0, 2), (1, 2)].
// Some of the valid colorings for it would be [0, 1, 0] and [-1, 5, 18].
function IsWeakColoringValid (V : Int, edges: (Int, Int)[], colors: Int[]) : Bool {
// ...
return false;
}
// Task 3.4. Oracle for verifying if a vertex is weakly colored
// Inputs:
// 1) The number of vertices in the graph V (V ≤ 6).
// 2) An array of E tuples of integers, representing the edges of the graph (E ≤ 12).
// Each tuple gives the indices of the start and the end vertices of the edge.
// The vertices are indexed 0 through V - 1.
// 3) An array of 2V qubits colorsRegister that encodes the color assignments.
// 4) A qubit in an arbitrary state |y⟩ (target qubit).
// 5) A vertex in the graph, indexed 0 through V - 1.
//
// Goal: Transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2),
// where f(x) = 1 if the given weak coloring is valid and 0 otherwise.
// Leave the query register in the same state it started in.
//
// Each color in colorsRegister is represented as a 2-bit integer in little-endian format.
// See task 1.3 for a more detailed description of color assignments.
operation WeaklyColoredVertexOracle (V : Int, edges: (Int, Int)[], colorsRegister : Qubit[], target : Qubit, vertex : Int) : Unit is Adj+Ctl {
// ...
}
// Task 3.5. Oracle for verifying weak coloring
// Inputs:
// 1) The number of vertices in the graph V (V ≤ 6).
// 2) An array of E tuples of integers, representing the edges of the graph (E ≤ 12).
// Each tuple gives the indices of the start and the end vertices of the edge.
// The vertices are indexed 0 through V - 1.
// 3) An array of 2V qubits colorsRegister that encodes the color assignments.
// 4) A qubit in an arbitrary state |y⟩ (target qubit).
//
// Goal: Transform state |x, y⟩ into state |x, y ⊕ f(x)⟩ (⊕ is addition modulo 2),
// where f(x) = 1 if the given weak coloring is valid and 0 otherwise.
// Leave the query register in the same state it started in.
//
// Each color in colorsRegister is represented as a 2-bit integer in little-endian format.
// See task 1.3 for a more detailed description of color assignments.
operation WeakColoringOracle (V : Int, edges : (Int, Int)[], colorsRegister : Qubit[], target : Qubit) : Unit is Adj+Ctl {
// ...
}
// Task 3.6. Using Grover's search to find weak coloring
// Inputs:
// 1) The number of vertices in the graph V (V ≤ 6).
// 2) A marking oracle which implements weak coloring verification, as implemented in task 3.5.
//
// Output: A valid weak coloring for the graph, in a format used in task 3.3.
operation GroversAlgorithmForWeakColoring (V : Int, oracle : ((Qubit[], Qubit) => Unit is Adj)) : Int[] {
// ...
return [0, size = V];
}
//////////////////////////////////////////////////////////////////
// Part IV. Triangle-free coloring problem
//////////////////////////////////////////////////////////////////
// Triangle-free graph coloring is a coloring of graph edges which
// labels each edge with one of two colors so that no three edges
// of the same color form a triangle.
// Task 4.1. Convert the list of graph edges into an adjacency matrix
// Inputs:
// 1) The number of vertices in the graph V (V ≤ 6).
// 2) An array of E tuples of integers, representing the edges of the graph (E ≤ 12).
// Each tuple gives the indices of the start and the end vertices of the edge.
// The vertices are indexed 0 through V - 1.
// Output: A 2D array of integers representing this graph as an adjacency matrix:
// the element [i][j] should be -1 if the vertices i and j are not connected with an edge,
// or store the index of the edge if the vertices i and j are connected with an edge.
// Elements [i][i] should be -1 unless there is an edge connecting vertex i to itself.
// Example: Consider a graph with V = 3 and edges = [(0, 1), (0, 2), (1, 2)].
// The adjacency matrix for it would be
// [-1, 0, 1],
// [ 0, -1, 2],
// [ 1, 2, -1].
function EdgesListAsAdjacencyMatrix (V : Int, edges : (Int, Int)[]) : Int[][] {
// ...
return [];
}
// Task 4.2. Extract a list of triangles from an adjacency matrix
// Inputs:
// 1) The number of vertices in the graph V (V ≤ 6).
// 2) An adjacency matrix describing the graph in the format from task 4.1.
// Output: An array of 3-tuples listing all triangles in the graph,
// that is, all triplets of vertices connected by edges.
// Each of the 3-tuples should list the triangle vertices in ascending order,
// and the 3-tuples in the array should be sorted in ascending order as well.
// Example: Consider the adjacency matrix
// [-1, 0, 1],
// [ 0, -1, 2],
// [ 1, 2, -1].
// The list of triangles for it would be [(0, 1, 2)].
function AdjacencyMatrixAsTrianglesList (V : Int, adjacencyMatrix : Int[][]) : (Int, Int, Int)[] {
// ...
return [];
}
// Task 4.3. Classical verification of triangle-free coloring
// Inputs:
// 1) The number of vertices in the graph V (V ≤ 6).
// 2) An array of E tuples of integers, representing the edges of the graph (E ≤ 12).
// Each tuple gives the indices of the start and the end vertices of the edge.
// The vertices are indexed 0 through V - 1.
// 3) An array of E integers, representing the edge coloring of the graph.
// i-th element of the array is the color of the edge number i, and it is 0 or 1.
// The colors of edges in this array are given in the same order as the edges in the "edges" array.
// Output: true if the given coloring is triangle-free
// (i.e., no triangle of edges connecting 3 vertices has all three edges in the same color),
// and false otherwise.
// Example: Consider a graph with V = 3 and edges = [(0, 1), (0, 2), (1, 2)].
// Some of the valid colorings for it would be [0, 1, 0] and [-1, 5, 18].
function IsVertexColoringTriangleFree (V : Int, edges: (Int, Int)[], colors: Int[]) : Bool {
// ...
return true;
}
// Task 4.4. Oracle to check that three colors don't form a triangle
// (f(x) = 1 if at least two of three input bits are different)
// Inputs:
// 1) a 3-qubit array `inputs`,
// 2) a qubit `output`.
// Goal: Flip the output qubit if and only if at least two of the input qubits are different.
// For example, for the result of applying the operation to state (|001⟩ + |110⟩ + |111⟩) ⊗ |0⟩
// will be |001⟩ ⊗ |1⟩ + |110⟩ ⊗ |1⟩ + |111⟩ ⊗ |0⟩.
operation ValidTriangleOracle (inputs : Qubit[], output : Qubit) : Unit is Adj+Ctl {
// ...
}
// Task 4.5. Oracle for verifying triangle-free edge coloring
// (f(x) = 1 if the graph edge coloring is triangle-free)
// Inputs:
// 1) The number of vertices in the graph V (V ≤ 6).
// 2) An array of E tuples of integers "edges", representing the edges of the graph (0 ≤ E ≤ V(V-1)/2).
// Each tuple gives the indices of the start and the end vertices of the edge.
// The vertices are indexed 0 through V - 1.
// The graph is undirected, so the order of the start and the end vertices in the edge doesn't matter.
// 3) An array of E qubits "colorsRegister" that encodes the color assignments of the edges.
// Each color will be 0 or 1 (stored in 1 qubit).
// The colors of edges in this array are given in the same order as the edges in the "edges" array.
// 4) A qubit "target" in an arbitrary state.
//
// Goal: Implement a marking oracle for function f(x) = 1 if
// the coloring of the edges of the given graph described by this colors assignment is triangle-free,
// i.e., no triangle of edges connecting 3 vertices has all three edges in the same color.
//
// In this task you are not allowed to use quantum gates that use more qubits than the number of edges in the graph,
// unless there are 3 or less edges in the graph. For example, if the graph has 4 edges, you can only use 4-qubit gates or less.
// You are guaranteed that in tests that have 4 or more edges in the graph the number of triangles in the graph
// will be strictly less than the number of edges.
//
// Example: a graph with 3 vertices and 3 edges [(0, 1), (1, 2), (2, 0)] has one triangle.
// The result of applying the operation to state (|001⟩ + |110⟩ + |111⟩)/√3 ⊗ |0⟩
// will be 1/√3|001⟩ ⊗ |1⟩ + 1/√3|110⟩ ⊗ |1⟩ + 1/√3|111⟩ ⊗ |0⟩.
// The first two terms describe triangle-free colorings,
// and the last term describes a coloring where all edges of the triangle have the same color.
//
// Hint: Make use of functions and operations you've defined in previous tasks.
operation TriangleFreeColoringOracle (
V : Int,
edges : (Int, Int)[],
colorsRegister : Qubit[],
target : Qubit
) : Unit is Adj+Ctl {
// ...
}
}