-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLinkage.m2
752 lines (653 loc) · 19.5 KB
/
Linkage.m2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
-*
Basic questions:
in codim 3:
do licci monomial ideals decrease sum bettis monotonically
do licci general ideals have plateaus of at most 2 with respect to general links
is homogeneous licci == licci? -- is there a homogeneous algorithm to determine licci?
DE: write test for "homogeneous improvement", or, better homogeneous licci.(homogenization technique in H-U?)
know that if a general link decreases sum bettis, then there is
a homogeneous link that does the same.
*-
needsPackage "StableResidual"
needsPackage "MonomialOrbits"
needsPackage "DGAlgebras"
needsPackage "LocalRings"
needsPackage "AInfinity"
needsPackage "CompleteIntersectionResolutions"
--help MonomialOrbits
--example from Huneke-Migliore-Nagel-Ulrich of an ideal that is homogeneous licci
--but not minimally homog licci
hmnu = method()
hmnu Ring := kk -> (
R := kk[x,y,z];
ideal"x2y+y3-yz2- z3,xy2- xz2,x3z-xyz2,y2z2-z4,x6,z6,xz5")
///
restart
load "Linkage.m2"
I = hmnu(ZZ/32003)
R = ring I
cvwh I
cvw I
///
clkw = method()
clkw Ring := kk -> (
R := kk[x_12,x_13,x_14,x_23,x_24,x_34,y_12,y_13,y_14,y_23,y_24,y_34,z_123,z_124,z_134,z_234];
M := matrix{{x_12,x_13,x_14,x_23,x_24,x_34},{y_12,y_13,y_14,y_23,y_24,y_34}};
l1 := det(M^{0,1}_{4,1})-det(M^{0,1}_{2,3})-det(M^{0,1}_{5,0});
l2 := det(M^{0,1}_{1,4})-det(M^{0,1}_{3,2})-det(M^{0,1}_{5,0});
l3 := -det(M^{0,1}_{1,4})-det(M^{0,1}_{3,2})+det(M^{0,1}_{5,0});
l4 := det(M^{0,1}_{1,4})-det(M^{0,1}_{2,3})-det(M^{0,1}_{0,5});
q1 := z_123*l1+2*z_124*(det(M^{0,1}_{1,3}))-2*z_134*det(M^{0,1}_{0,3})+2*z_234*det(M^{0,1}_{0,1});
q2 := -2*z_123*(det(M^{0,1}_{2,4}))+z_124*l2-2*z_134*det(M^{0,1}_{0,4})+2*z_234*det(M^{0,1}_{0,2});
q3 := -2*z_123*det(M^{0,1}_{2,5})+2*z_124*det(M^{0,1}_{1,5})+z_134*l3+2*z_234*det(M^{0,1}_{1,2});
q4 := -2*z_123*det(M^{0,1}_{4,5})+2*z_124*det(M^{0,1}_{3,5})-2*z_134*det(M^{0,1}_{3,4})+z_234*l4;
a := x_12*x_34-x_13*x_24+x_14*x_23;
b := x_12*y_34-x_13*y_24+x_14*y_23+x_34*y_12-x_24*y_13+x_23*y_14;
c := y_12*y_34-y_13*y_24+y_14*y_23;
u := b^2-4*a*c;
ideal(q1,q2,q3,q4,u))
------------------------------------------------------------------------------------------------- Deformed ideal J(t)
clkw' = method()
clkw' Ring := kk -> (
R := kk[x_12,x_13,x_14,x_23,x_24,x_34,y_12,y_13,y_14,y_23,y_24,y_34,z_123,z_124,z_134,z_234,t];
M := matrix{{x_12,x_13,x_14,x_23,x_24,x_34},{y_12,y_13,y_14,y_23,y_24,y_34}};
l1 := det(M^{0,1}_{4,1})-det(M^{0,1}_{2,3})-det(M^{0,1}_{5,0});
l2 := det(M^{0,1}_{1,4})-det(M^{0,1}_{3,2})-det(M^{0,1}_{5,0});
l3 := -det(M^{0,1}_{1,4})-det(M^{0,1}_{3,2})+det(M^{0,1}_{5,0});
l4 := det(M^{0,1}_{1,4})-det(M^{0,1}_{2,3})-det(M^{0,1}_{0,5});
q1 := z_123*l1+2*z_124*(det(M^{0,1}_{1,3}))-2*z_134*det(M^{0,1}_{0,3})+2*z_234*det(M^{0,1}_{0,1});
q2 := -2*z_123*(det(M^{0,1}_{2,4}))+z_124*l2-2*z_134*det(M^{0,1}_{0,4})+2*z_234*det(M^{0,1}_{0,2});
q3 := -2*z_123*det(M^{0,1}_{2,5})+2*z_124*det(M^{0,1}_{1,5})+z_134*l3+2*z_234*det(M^{0,1}_{1,2});
q4 := -2*z_123*det(M^{0,1}_{4,5})+2*z_124*det(M^{0,1}_{3,5})-2*z_134*det(M^{0,1}_{3,4})+z_234*l4;
a := x_12*x_34-x_13*x_24+x_14*x_23;
b := x_12*y_34-x_13*y_24+x_14*y_23+x_34*y_12-x_24*y_13+x_23*y_14;
c := y_12*y_34-y_13*y_24+y_14*y_23;
u := b^2-4*a*c;
ideal(q1-z_123*t,q2-z_124*t,q3-z_134*t,q4-z_234*t,u-t^2)
) -------deformed ideal J(t)
-----
-- Christensen, Veliche, and Weyman (Linkage classes of grade 3 perfect ideals, Thm 3.7) prove:
-- cvw: If a CM ring R of codim 3 is not Golod
-- then either p := rank tor_1(R,k)^2 or q := rank tor_1*tor_2 is nonzero.
-- If p>0 then a general link has small betti sum. If p = 0 but q>0 then
-- the general link has the same betti sum, but also has p>0, so
-- the second general link has smaller betti sum.
-- This process leads either to a complete intersection or a Golod ring.
generalLink = J -> (
J = if class J === Ideal then J else ideal J;
if J == ideal(1_(ring J)) then return J;
S:= ring J;
J0 := ideal (gens(J)*random(S^(rank source gens J), S^(codim J)));
elapsedTime K := J0:J;
elapsedTime J' := if isHomogeneous K then K else localTrim K
)
pregeneralLink = J -> (
J = if class J === Ideal then J else ideal J;
if J == ideal(1_(ring J)) then return J;
S:= ring J;
J0 := ideal (gens(J)*random(S^(rank source gens J), S^(codim J)));
(J0,J)
)
doubleLink = J -> generalLink generalLink J
minHomogLink = J -> (
S := ring J;
if J == ideal(1_S) then return J;
genlist := J_*;
deglist := sort unique (genlist/(g -> (degree g)_0));
D := #deglist;
II := apply(deglist, d -> ideal select(genlist, g -> (degree g)_0 <= d));
codims = apply(II, I -> codim I);
levels = apply(D, i -> gens II_i * matrix basis(deglist_i, II_i));
regseq = levels_0 * random(source levels_0, S^{codims_0:-deglist_0});
for i from 1 to D-1 do(
regseq = regseq |
levels_i * random(source levels_i, S^{codims_i-codims_(i-1):-deglist_i}));
regs = ideal regseq;
assert (isHomogeneous regs);
assert (codim regs == codims_(D-1));
(ideal regseq):J
)
///
restart
load "Linkage.m2"
S = ZZ/101[x,y,z]
J = ideal"x2,xy,y3,z4"
minHomogLink J
///
minBetti = I -> (
--this seems to be the fastest way to compute the (total) minimal betti numbers
--for the local resolution, at the maximal ideal of variables, of an ideal,
--in the inhomogeneous case.
F = res I; -- nonminimal res
S := ring I;
kk := coefficientRing S;
redd = map(kk, S, {numgens S:0});
Fbar = redd F;
H := prune HH Fbar;
apply(#H, i-> rank H_i)
)
sumBettis = J ->(
if isHomogeneous J then (G := res trim J;
sum(1+length G, i-> rank G_i))
else
sum minBetti J
)
cvw = method()
cvw Ideal := Ideal => I ->(
if I == ideal(1_(ring I)) then return I;
I1 := I;
s := sumBettis I1;
J2 := generalLink (J1 := generalLink I);
t1 := sumBettis J1;
t2 := sumBettis J2;
<<(s,t1,t2)<<flush<<endl;
while s > t2 do(
I1 = J2;
J2 = generalLink (J1 = generalLink I1);
s = t2;
t1 = sumBettis J1;
t2 = sumBettis J2;
<<(s,t1,t2)<<flush<<endl);
if t2 == 0 or J2 == ideal(1_(ring I)) then <<"Licci"<<endl<<endl else
if isGolod (ring J2/J2) then(<<"Golod"<<endl<<J2<< endl<<endl) else J2
)
cvwh = method()
cvwh Ideal := Ideal => I ->(
--assumes I is homogeneous, does minimal homogeneous links
if I == ideal(1_(ring I)) then return I;
I1 := I;
s := sumBettis I1;
J2 := minHomogLink (J1 := minHomogLink I);
t1 := sumBettis J1;
t2 := sumBettis J2;
<<(s,t1,t2)<<flush<<endl;
while s > t2 do(
I1 = J2;
J2 = minHomogLink (J1 = minHomogLink I1);
s = t2;
t1 = sumBettis J1;
t2 = sumBettis J2;
<<(s,t1,t2)<<flush<<endl);
if t2 == 0 or J2 == ideal(1_(ring I)) then <<"Licci"<<endl<<endl else
if isGolod (ring J2/J2) then(<<"Golod"<<endl<<trim J2<< endl<<endl) else trim J2
)
-- /Applications/Macaulay2-1.16.99/share/Macaulay2/CompleteIntersectionResolutions.m2:1405:44-1426:6: --source code:
exteriorTorModule(Matrix, ChainComplex) := (f,F) -> (
--Here F is a possibly nonminimal resolution of a possibly inhomogeneous module M
--f is a matrix with entries that are homotopic to zero on F
--The script returns T = Tor_S(M,k) as a module over E = \wedge k**(source f):
--In the inhomogeneous case F may not be minimal,
--so we cannot assume that T = k**F.
S := ring M;
n := numgens S;
k := coefficientRing S;
redd := map(k,S,{n:0},DegreeMap=>d->{});
--ring over which the Tor module will be defined
e := symbol e;
E := k[e_0..e_(numcols f -1), SkewCommutative => true];
toE := map(E, k);
kF := redd F; -- this is not yet tor; we must construct the homology HH_(kF)
skF := apply(3+length kF, i-> syz kF.dd_(i));
dbar := apply(3+length kF, i -> kF.dd_i//skF_(i-1));
--Now HH_i(kF) == coker dbar_(i+1) == source skF_i/image(dbar_(i+1))
--create the homotopies representing the action of E, first on F, then on kF
H := makeHomotopies1(f,F);
goodkeys := select(keys H, k->k_1>=0);
Hk0 := hashTable apply(goodkeys, h-> (h, redd H#h));
--we now transfer the action of the homotopies H to the pruned homology modules:
--Hk#{j,i} is to be the homotopy for the j-th generator from HH_i to HH_(i+1)
Hk := hashTable apply(goodkeys, ke-> ke =>
inducedMap (coker dbar_(ke_1+2), coker dbar_(ke_1+1),
map(coker dbar_(ke_1+2), source skF_(ke_1),(Hk0#ke*skF_(ke_1))//skF_(ke_1+1))
)
);
--replace with the pruned version pHk
T := hashTable apply(toList(0..1+length F), i ->
i => if i<= length F then prune source Hk#{0,i} else prune k^0);
p := apply(toList(0..1+length F), i-> (T#i.cache.pruningMap));
pHk := hashTable(apply(keys Hk, ke ->
ke => ((p_(ke_1+1))^(-1))*Hk#ke *p_(ke_1)
));
--now move Hk and T to E
HkE := hashTable apply(keys pHk, ke-> ke => toE pHk#ke);
TE = hashTable apply(keys T, ke -> ke => E^{-ke}**toE T#ke);
makeModule(TE, vars E, HkE)
)
basicKoszulSyzygies = method()
basicKoszulSyzygies Ideal := Module => I -> (
--summodule of exteriorTorModule generated by 1; image of the Koszul complex
--of the generators of I in the homology of the resolution of I tensored with
--the residue field.
S := ring I;
if I == ideal(1_S) then return"input is the unit ideal";
T := exteriorTorModule(gens I, res I);
E := ring T;
BK := prune image map(T, E^1,T_{0});
s := hf(0..numgens S, BK);
t := hf(0..numgens S, T);
<<s<<" "<<t<<" "<<sum t<<flush<<endl;
BK
)
--Long's test for Golod in monomial ideals in 3 vars; conjecture for all ideals
--(1) [I : x1] · [I : (x2, x3)] ⊆ I for all permutations {x1, x2, x3} of {x, y, z}.
--(2) [I : x1] · [I : x2] ⊆ x3[I : (x1, x2)] + I for all permutations {x1, x2, x3} of {x, y, z}.
--this shows: no 5 generator Golod monomial ideals (any fin length golod in 3 vars that contains
--x^a,y^b also contains x^(a-1)y^(b-1), and permutations -- two more gens aren't enough.
testGolod = I -> (
P := {{0,1,2},{1,2,0},{2,0,1}};
G := gens ring I;
t1 := all(3, i-> (
g = G_(P_i);
gens((I:ideal g_0)*(I:ideal(g_1,g_2)))%I == 0
and
gens((I:ideal g_0)*(I:ideal g_1))%(g_2*(I:ideal(g_0,g_1))+I) == 0
))
)
///
S = ZZ/101[x,y,z]
I = (ideal vars S)^2
testGolod I
testGolod1 I
///
regularProducts = I -> (mm := ((S^1/M)**extend(res I, koszul gens I0, matrix{{1_S}}));
mm_2 == 0)
localTrim = I -> (
S := ring I;
if not S.?maxIdeal then setMaxIdeal ideal vars S;
ideal localMingens gens I)
hu = I -> (
--separate the generators of a monomial ideal
--into those that are pure powers and those that
--are not, as in the paper of Huneke and Ulrich
--on licci monomial ideals.
S := ring I;
P := (i,j) -> matrix{{S_i*S_j}};
Ilist := flatten for i from 0 to #gens S -2 list
for j from i+1 to #gens S -1 list
ideal (entries(S_i*S_j* contract(P(i,j), gens I)))_0;
mix := trim sum Ilist;
powers := ideal compress (gens I % mix);
(powers, mix)
)
isLicci = I -> (
--Huneke-Ulrich test for licci m-primary monomial ideals.
S := ring I;
if I == ideal(1_S) then return true;
<<sumBettis I<<", ";
(pure,mix) := hu I;
if codim mix > 1 then (<<toString I<<endl; return false);
I' := trim (pure:mix);
-- <<sumBettis I'<<", ";
while codim mix <= 1 do(
--<<I'<<endl<<flush;
--if I' == ideal(1_S) then return true; --do we need this?
I' = trim (pure:mix);
<<sumBettis I'<<", ";
if I' == ideal(1_S) then return true;
(pure,mix) = hu I';
<<endl<<endl;
if I' == pure then return true;
if codim mix > 1 then (<<toString I'<<endl;
return false)
)
)
-- evolution = I -> (
-- --I should be an m-primary monomial ideal. Track the evolution of the mixed part.
-- (pure, mix) := hu I;
-- I' := pure:mix;
-- I'':=
///
restart
load "Linkage.m2"
S = ZZ/101[x,y,z]
I = ideal"x3,y4,z5,xy,xz"
isLicci I
betti res I
(pure, mix) = hu I
I' = pure:mix
betti res I'
isLicci I
betti res I
(pure, mix) = hu I'
I'' = pure:mix
betti res I''
///
end--
restart
load "Linkage.m2"
J = clkw (ZZ/32003);
R = ring J
S = ZZ/32003[x,y,z]
Jbar = (map(S,R,random(S^1,S^{16:-1}))) J;
testGolod1 Jbar
cvw Jbar
codim Jbar
betti res Jbar
I = generalLink Jbar
minBetti I
I = generalLink I
minBetti I
I = minHomogLink Jbar
betti res I
I = minHomogLink I
betti res I
codim I
cvwh Jbar
betti res Jbar
isGolod(S/Jbar)
cvwh Jbar
J' = generalLink Jbar
minimalBetti J'
J'' = generalLink J'
minimalBetti J''
J''' = generalLink J''
minBetti J'''
I = monomialIdeal(x^3,x^2*y,x*y^2,y^3,x*z^2,z^3)
cvw I
CLKW
I1 = generalLink I
I' = generalLink generalLink I
isHomogeneous I'
kk = ZZ/32003
S' = kk{x,y,z}
describe S'
J = sub(I', S')
d1 = mingens J
d2 = syz d1
d3 = syz d2
syz d3
C = complex{d1,d2,d3}
C.dd^2
prune HH C
f = d1_0_0
Jf = ideal diff(vars S', f)
f % Jf
f0 = ((gens Jf)*(f//gens Jf))_0_0
matrix{{f}} % ideal(((gens Jf)*(f//gens Jf)))
factor f0
factor f
quotientRemainder (matrix{{f}}, ((gens Jf)*(f//gens Jf)))
quotientRemainder (((gens Jf)*(f//gens Jf)), matrix{{f}})
(-15350*2629^2)_kk
T = exteriorTorModule(gens I', S^1/I');
leadTerm ann T
BK = basicKoszulSyzygies I'
G = localResolution I'
F = res I'
--------------
restart
load "Linkage.m2"
S = ZZ/32003[x,y,z]
M = ideal vars S
setMaxIdeal M
I0 = monomialIdeal"x3,y4,z5"
II = orbitRepresentatives(S,I0,{4,4,4,4})
#II
L = II/isLicci
T = positions(L, ell -> not ell)
M = II_T
M/isLicci
#M
M0 = monomialIdeal(x^3,x^2*y^2,x*y^3,y^4,x^2*y*z,x*y^2*z,z^5)
I = generalLink M0;
elapsedTime I = generalLink I;
elapsedTime (J0,J) = pregeneralLink ideal(I_*);
numgens J
numgens J0
S' = localRing(S, ideal vars S)
elapsedTime quotient(J0,J,Strategy => Quotient); -- 15 sec
elapsedTime quotient(J0,J,Strategy => Iterate); -- 7 -- the winner! and the default.
T = ZZ/32003[t,x,y,z]
J0h = ideal apply(J0_*, f-> homogenize(sub(f,T),t));
Jh = ideal apply(J_*, f-> homogenize(sub(f,T),t));
elapsedTime J0h: Jh;
mingens oo
elapsedTime gb J0;
elapsedTime gb ideal(J_*);
for f in J_* list elapsedTime J0:f;
elapsedTime intersect oo;
for i from 0 to numgens J -1 list
elapsedTime syz (matrix{J_*}|matrix{J0_*});
elapsedTime groebnerBasis (ideal(J_*), Strategy => "F4");
elapsedTime G = groebnerBasis (ideal(J0_*), Strategy => "F4");
m = transpose gens J | (target transpose gens J)**G;
elapsedTime syz(gb (m, Syzygies => true, SyzygyRows => 1, Strategy => LongPolynomial));
T = ZZ/32003[t, x,y,z]--, MonomialOrder => Eliminate 1]
elapsedTime groebnerBasis (t*sub(J0, T)+(1-t)*ideal(sub(J_0,T)) , Strategy => "F4")
--elapsedTime quotient(sub(J0,S'),sub(J,S'),Strategy => Local); --Looooong
sumBettis J
sumBettis I
J = I
evol = I -> (
while I != ideal (1_S) do(
<<sumBettis I<<", ";
(pure,mix) := hu I;
I = pure:mix);
<<endl<<endl;
)
M/evol
pure = ideal "x8, y8, z8"
mix = (ideal"xyz")^5--*ideal"xy,xz,yz"
betti res (pure+mix)
(pure, mix) = hu(pure:mix)
betti res (pure+mix)
count = -1
II/(I -> (count = count+1; << count<<endl; isLicci I;<<endl<<endl))
I = monomialIdeal(x^4,x^2*y,x*y^2,y^4,x^2*z,x*y*z,z^4)
I == monomialIdeal(x^4,x^2*y,x*y^2,y^4,x^2*z,x*y*z,z^4)
betti res I
isLicci I
I = II_33
betti res I
isLicci I
I = monomialIdeal(x^3,x*y^2,y^4,x*y*z,y^2*z,z^4)
L'/(I-> testGolod I)
--II/(I->annihilator exteriorTorModule I)
II/(I-> cvw I);
I = last II
I0 = II_4
--I' = doubleLink I0
I' = generalLink I0
cvw I0
betti (F = localResolution I')
om = dual F.dd_3
I'' = generalLink I'
R = S/I''
red = map(kk,R,{3:0})
omR = sub(om,R)
red gens ker omR
restart
load "Linkage.m2"
S = ZZ/32003[x,y,z]
M = ideal vars S
setMaxIdeal M
localNumGens = J -> prune (module J)/M*(module J)
d = 4 -- there are 6 golod monomial ideals with d=4, n=6. I only got through one, and partly a second.
n = 6
I0 = monomialIdeal apply(numgens S, i->S_i^d)
L = orbitRepresentatives(S, I0, n-3:d)
l = L/regularProducts
L' = L_(positions(l, t -> t))
L'_2
(L'/cvw)
cvw(L'_5)
I = L'_5
isGolod(S/I)
T = exteriorTorModule(gens I, res I)
E = ring T
ann prune((ideal vars E)*T)
I' = generalLink I
0 1 2 3
oo34 = total: 1 6 8 3
0: 1 . . .
1: . . . .
2: . 2 . .
3: . 2 2 .
4: . 2 4 .
5: . . 2 3
betti res I'
T' = exteriorTorModule(gens I', res I');
E' = ring T'
ann prune((ideal vars E')*T')
--it's golod!
I'' = doubleLink I';
localPrune module I'' -- still 6 gens
elapsedTime I''' = doubleLink I''; -- 47 sec
elapsedTime localPrune module I''' -- slow!
elapsedTime res localTrim I'''
elapsedTime d1 = localMingens gens I'''; -- fast!
d2 = localsyz d1; -- slow!
F = res I''' -- fast
needsPackage "PruneComplex"
pruneComplex o24
elapsedTime H = minBetti I'''
rank H_1
#H
apply(#H, i-> H_i)
describe S
S' = kk{x,y,z}
kk = coefficientRing S'
J = sub(I''', S');
F' = res J
errorDepth = 0
redd' = map(kk, S', {numgens S':0})
Fbar' = redd F'
prune HH Fbar' -- fast!
K = ideal mingens J; -- fast!
K = ideal K_*;
res( K, Strategy => 2) -- nope
gens gb K;
gbTrace = 0
gens gb K;
I = L_6
basicKoszulSyzygies I
F = res I
F.dd_2
T = exteriorTorModule(gens I, res I);
ann oo
E = ring T
prune ((ideal vars E)*T)
ann oo
gens I
cvw L_3
S' = (ZZ/32003){x,y,z}
J' = sub(localTrim J, S');
F = res J'
F.dd_3_0_0
betti oo
L = select(orbitRepresentatives(S, I0, n-3:d)/ideal, I -> testGolod I)
L/minimalBetti
for I' in L do(
<<sumBettis I'<<endl;
apply(2,i-> (
I' = doubleLink I';
<<sumBettis I'<<flush<<endl;
));
<<endl;
)
I = L_0
I = ideal(x^3,x^2*y,x*y^2,y^3,x^2*z,x*y*z,y^2*z,z^3)
assert(isGolod(S/I) == true)
betti res I
assert(sumBettis I == 26)
I' = generalLink I
isHomogeneous I'
betti res I'
assert(isGolod(S/I') == true)
sumBettis I' == 26
I'' = generalLink I';
isHomogeneous I'' == false
R = S/I''
K = koszul vars R
apply(4, i-> numgens prune HH_i K)
tI'' = localTrim I''
localResolution tI''
basicKoszulSyzygies I''
restart
load "Linkage.m2"
J = CLKW 32003
S = ring J
cvw J
minimalBetti J
S= ZZ/32003[x,y,z]
M = ideal vars S
I = (ideal vars S)^3
J = doubleLink I
trim J
J' = doubleLink J;
elapsedTime J''= doubleLink J'
elapsedTime F = res J'
kk = coefficientRing S
redd = map(kk, S, {numgens S:0})
Fbar = redd F
prune HH Fbar -- fast!
restart
load "Linkage.m2"
S = ZZ/32003[x,y,z]
I = ideal"xyz, x3+xz2, y3+yz2, z3, x4+y4-x2y2"
betti res I
cvwh I
I = hmnu (ZZ/32003)
cvwh I
betti res I
G = matrix{select (I_*, g -> (degree g)_0 == 6)}
F = res I
S = ring I
m3 =matrix basis(3, I)
m4 = matrix basis(4, I)
m6 = matrix basis(6, I)
G3 = (gens I)*m3*random(source m3, S^{-3})
G4 = (gens I)*m4*random(source m4, S^{-4})
G6 = (gens I)*m6*random(source m6, S^{-6})
J = ideal(G3|G4|G6)
codim J
I' = J:I
betti res I'
source gens I
target basis(3,I)
gens I
makeHomotopies1(G3,F)
makeHomotopies1(G3,F)
m3 =matrix basis(3, I')
m4 = matrix basis(4, I')
m5 = matrix basis(5, I')
G3 = (gens I')*m3*random(source m3, S^{-3})
G4 = (gens I')*m4*random(source m4, S^{-4})
G5 = (gens I')*m5*random(source m5, S^{-5})
J = ideal(G3|G4|G6)
codim J
I'' = J:I'
betti res I'
betti res I''
m3 =matrix basis(3, I')
m4 = matrix basis(4, I')
m5 = matrix basis(5, I')
G3 = matrix{select(I'_*,g-> (degree g)_0 == 3)}
G4 = matrix{select(I'_*,g-> (degree g)_0 == 4)}
G5 = matrix{select(I'_*,g-> (degree g)_0 == 5)}
F = res I'
makeHomotopies1(G3, F)
makeHomotopies1(G4, F)
makeHomotopies1(G5, F)
---------------------
ring r=32003,(x,y,z),(c,ls);
ideal id1=maxideal(3);
ideal id2=x2+xyz,y2-z3y,z3+y5xz;
ideal id6=quotient(id1,id2);
id6;
==> id6[1]=z
==> id6[2]=y
==> id6[3]=x
quotient(id2,id1);
==> _[1]=z2
==> _[2]=yz
==> _[3]=y2
==> _[4]=xz
==> _[5]=xy
==> _[6]=x2
module m=x*freemodule(3),y*freemodule(2);
ideal id3=x,y;
quotient(m,id3);
==> _[1]=[1]
==> _[2]=[0,1]
==> _[3]=[0,0,x]