-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathentropic_smcTranslocator.pyx
591 lines (507 loc) · 26.2 KB
/
entropic_smcTranslocator.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: initializedcheck=True
import numpy as np
cimport numpy as np
import cython
cimport cython
from looplib import looptools
cdef extern from "<stdlib.h>":
double drand48()
cdef cython.double randnum():
return drand48()
cdef class smcTranslocatorDirectional(object):
cdef int N
cdef int M
cdef cython.double [:] emission
cdef cython.double [:] stallLeft
cdef cython.double [:] stallRight
cdef cython.double [:] stallFalloff
cdef cython.double [:] falloff
cdef cython.double [:] pause
cdef cython.double [:] cumEmission
cdef cython.long [:] SMCs1 #list of where the SMCs reside (left; SMCs2 is right); -1 for unbound SMC
cdef cython.long [:] SMCs2
cdef cython.long [:] SMCs3 #list of central site if dealing with case of "paired" SMCs
cdef cython.long [:] stalled1 #list of whether or not each SMC is stalled
cdef cython.long [:] stalled2
cdef cython.long [:] occupied # list of whether or not site is occupied
cdef cython.long [:] onesided # list of whether or not each SMC is one-sided
cdef cython.long [:] inactive_side # list of which of the two sides is inactive. needed to differentiate between two sides in case where active side runs into a stall site
cdef cython.int paired # whether or not SMCs are "paired"
cdef cython.int slide # whether or not one leg of the one-sided SMC diffuses passively instead of extruding
cdef cython.double [:] slidepause # pause probability for diffusing arms, so we can regulate v_diffuse / v_active ratio
cdef cython.double [:] slidepauseForward # pause probability for diffusing arms, so we can regulate v_diffuse / v_active ratio
cdef cython.double [:] slidepauseBackward
cdef cython.int [:] sliding_on # used to determine whether safety belt is attached or not
cdef cython.double [:] belt_off_rate
cdef cython.double [:] belt_on_rate
cdef cython.double [:] belt_off_rate_original # since belt_off_rate can be set to 0 sometimes, I need to store this variable for reuse later.
cdef cython.long [:] belt_attached
#cdef cython.double [:] slidepauseSum
cdef cython.double [:] switch
cdef cython.long [:] switch_life
cdef cython.int pushing
cdef int maxss
cdef int curss
cdef cython.long [:] ssarray
cdef cython.double FULL_LOOP_ENT
cdef cython.double loop_prefact
cdef cython.double SLIDE_PAUSEP
def __init__(self, emissionProb, deathProb, stallProbLeft, stallProbRight, pauseProb, stallFalloffProb,
numSmc, onesided, paired=0, switch=0,
slide=0, slidepauseForward=0,slidepauseBackward=0,
pushing=0, belt_on=0, belt_off=1., SLIDE_PAUSEPROB=0.9, loop_prefactor=1.5, FULL_LOOP_ENTROPY=1):
emissionProb[0] = 0
emissionProb[len(emissionProb)-1] = 0
emissionProb[stallProbLeft > 0.9] = 0
emissionProb[stallProbRight > 0.9] = 0
self.N = len(emissionProb)
self.M = numSmc
self.emission = emissionProb
self.stallLeft = stallProbLeft
self.stallRight = stallProbRight
self.falloff = deathProb
self.pause = pauseProb
cumem = np.cumsum(emissionProb)
cumem = cumem / float(cumem[len(cumem)-1])
self.cumEmission = np.array(cumem, np.double)
self.SMCs1 = np.zeros((self.M), int)
self.SMCs2 = np.zeros((self.M), int)
self.SMCs3 = np.zeros((self.M), int)
self.stalled1 = np.zeros(self.M, int)
self.stalled2 = np.zeros(self.M, int)
self.occupied = np.zeros(self.N, int)
self.stallFalloff = stallFalloffProb
self.occupied[0] = 1
self.occupied[self.N - 1] = 1
self.maxss = 1000000
self.curss = 99999999
self.onesided=onesided
self.paired=paired
self.slide=slide
self.pushing=pushing
self.belt_attached=np.ones(self.M, int)
self.FULL_LOOP_ENT=FULL_LOOP_ENTROPY
self.loop_prefact=loop_prefactor
self.SLIDE_PAUSEP=SLIDE_PAUSEPROB
if type(slidepauseForward) in [int,float, np.float64, np.double]: # just in case it's not initialized
self.slidepauseForward=np.zeros(self.M, np.double)
for i in range(self.M):
self.slidepauseForward[i]=slidepauseForward
else:
self.slidepauseForward=slidepauseForward
if type(slidepauseBackward) in [int,float, np.float64, np.double]: # just in case it's not initialized
self.slidepauseBackward=np.zeros(self.M, np.double)
for i in range(self.M):
self.slidepauseBackward[i]=slidepauseBackward
else:
self.slidepauseBackward=slidepauseBackward
self.switch_life=np.zeros(self.M,long) # time remaining until directional switch
if type(switch) in [int,float,np.float64,np.double]: # just in case it's not initialized
self.switch=np.zeros(self.M, np.double)
for i in range(self.M):
self.switch[i]=switch
else:
self.switch=switch
if type(belt_on) in [int,float,np.float64,np.double]:
self.belt_on_rate=np.zeros(self.M, np.double)
for i in range(self.M):
self.belt_on_rate[i] = belt_on
else:
self.belt_on_rate=belt_on
if type(belt_off) in [int,float,np.float64,np.double]:
self.belt_off_rate=np.zeros(self.M, np.double)
for i in range(self.M):
self.belt_off_rate[i] = belt_off
self.belt_off_rate_original[i] = belt_off
else:
self.belt_off_rate=belt_off
self.belt_off_rate_original = belt_off #
self.inactive_side= np.zeros(self.M,int)
for ind in xrange(self.M):
self.birth(ind)
cdef birth(self, cython.int ind):
cdef int pos,i
while True:
pos = self.getss()
if pos >= self.N - 1:
print "bad value", pos, self.cumEmission[len(self.cumEmission)-1]
continue
if pos <= 0:
print "bad value", pos, self.cumEmission[0]
continue
if self.occupied[pos] == 1:
continue
if self.occupied[pos+1] == 1:
continue
#want to avoid placing SMCs across chain breaks, so prohibit landing on stall sites
if self.stallLeft[pos]==1.: # hmm. I think this works in cython...
continue
if self.stallRight[pos+1]==1.:#this one is probably not even necessary, due to the above line.
continue
self.SMCs1[ind] = pos
self.SMCs2[ind] = pos+1 #don't let smcs start on single binding site
if self.paired:
self.SMCs3[ind]= pos + np.random.randint(0,2) #just put the center site on one of those two, don't allow shrinking
self.occupied[pos] = 1
self.occupied[pos+1] = 1
if self.onesided[ind]:
if randnum() < 0.5: #1-sided extrusion - stall 1 arm
self.stalled1[ind]=1
self.inactive_side[ind]=1
if self.paired:
self.SMCs3[ind]=self.SMCs2[ind]
else:
self.stalled2[ind]=1
self.inactive_side[ind]=2
if self.paired:
self.SMCs3[ind]=self.SMCs1[ind]
if self.switch[ind]>0:
self.set_switch_life(ind)
self.belt_attached[ind] = 1
self.belt_off_rate[ind] = self.belt_off_rate_original[ind]
return
cdef set_switch_life(self, cython.int ind):
self.switch_life[ind] = int(-np.log(np.random.uniform())/self.switch[ind])
return
def set_slidepause(self, slidepauseForward, slidepauseBackward):
self.slidepauseForward=slidepauseForward
self.slidepauseBackward=slidepauseBackward
cdef do_switch(self, cython.int ind):
self.inactive_side[ind] = 1 + self.inactive_side[ind]%2
# note that this allows repeat attempts against a stall site via directional switching
if self.inactive_side[ind] == 1:
self.stalled1[ind] = 1
self.stalled2[ind] = 0
else:
self.stalled1[ind] = 0
self.stalled2[ind] = 1
self.set_switch_life(ind)
cdef death(self):
cdef int i
cdef double falloff1, falloff2
cdef double falloff
for i in xrange(self.M):
if self.stalled1[i] == 0:
falloff1 = self.falloff[self.SMCs1[i]]
else:
falloff1 = self.stallFalloff[self.SMCs1[i]]
if self.stalled2[i] == 0:
falloff2 = self.falloff[self.SMCs2[i]]
else:
falloff2 = self.stallFalloff[self.SMCs2[i]]
falloff = max(falloff1, falloff2)
if randnum() < falloff:
self.occupied[self.SMCs1[i]] = 0
self.occupied[self.SMCs2[i]] = 0
if self.paired:
self.occupied[self.SMCs3[i]] = 0
self.stalled1[i] = 0
self.stalled2[i] = 0
self.birth(i)
cdef int getss(self):
if self.curss >= self.maxss - 1:
foundArray = np.array(np.searchsorted(self.cumEmission, np.random.random(self.maxss)), dtype = np.long)
self.ssarray = foundArray
#print np.array(self.ssarray).min(), np.array(self.ssarray).max()
self.curss = -1
self.curss += 1
return self.ssarray[self.curss]
cdef step(self):
cdef int i
cdef double pause
cdef double stall1, stall2
cdef int cur1
cdef int cur2
#cdef int stall_site1, stall_site2
cdef cython.double rr
cdef cython.double ratesum
cdef long pushing_allowed, x
cdef cython.long [:] y
self.entropic_rates() #set the rates according to the entropy
for i in range(self.M):
stall1 = self.stallLeft[self.SMCs1[i]]
stall2 = self.stallRight[self.SMCs2[i]]
#these variables will be used to determine whether stall is due to a stall size
#or simply due to being the inactive side of the extruder
#stall_site1=0
#stall_site2=0
if randnum() < stall1:
self.stalled1[i] = 1
#stall_site1=1 # used for book keeping before I had safety belt and inactive_side variables
if self.inactive_side[i]==1:
self.belt_off_rate[i] = 0.
self.belt_attached[i] = 1
if randnum() < stall2:
self.stalled2[i] = 1
#stall_site2=1
if self.inactive_side[i]==2:
self.belt_off_rate[i] = 0.
self.belt_attached[i] = 1
#note- smc can already be stalled if it is one-sided
cur1 = self.SMCs1[i]
cur2 = self.SMCs2[i]
if self.stalled1[i] == 0: # not stalled, just go if possible
if self.occupied[cur1-1] == 0:
pause1 = self.pause[self.SMCs1[i]]
if randnum() > pause1:
self.occupied[cur1-1] = 1
self.occupied[cur1] = 0
self.SMCs1[i] = cur1 - 1
if self.paired:#guarantee that center site remains occupied
self.occupied[self.SMCs3[i]] = 1
elif self.pushing and self.occupied[cur1-1] == 1: # if site occupied, but in a sim where pushing is allowed
#first check if pushing is allowed
pushing_allowed=1 # start with pushing allowed
x = cur1-1 # consider position of LEF of occupied site
if x-1<0: # if it's already at 0, it can't move
pushing_allowed=0
while pushing_allowed and self.occupied[x]: # while we need to check obstacle lefs
if x-1<0: # if lef at x can't move, can't push
pushing_allowed=0
break # not even necessary to break, just insurance.
else:
y=np.where(np.array(self.SMCs1)==x)[0] # check SMCs1 to see if it has the leg at x
if len(y)>0:
if self.stalled1[y[0]] and (not (self.stallLeft[x]>0.0)) and (not self.belt_attached[y[0]]):
x=x-1 # move on to check next position
else:# smc at x is an active leg ..break
pushing_allowed=0
break
else: # otherwise, check SMCs2
y=np.where(np.array(self.SMCs2)==x)[0]
#len y should necessarily be >0 (since occupied is a condition to be in the while loop)
if self.stalled2[y[0]] and (not (self.stallRight[x]>0.0)) and (not (self.stallLeft[x]>0.0)) and not self.belt_attached[y[0]]:
x=x-1
else:
pushing_allowed=0
break
if pushing_allowed:
#now check if active site makes a step
pause1=self.pause[self.SMCs1[i]]
if randnum() > pause1:
#x is now the site just past the last (leftmost) smc in the series of pushed sites
self.occupied[x]=1
x=x+1
while self.occupied[x] == 1 and not x==cur1: # go through chain, moving SMCs, note that self.occupied does not change except ends
y=np.where(np.array(self.SMCs1)==x)[0]
if len(y)>0:
self.SMCs1[y[0]]=x-1
else:
y=np.where(np.array(self.SMCs2)==x)[0]
self.SMCs2[y[0]]=x-1
x=x+1
self.occupied[cur1]=0
self.SMCs1[i]=cur1-1
#need to move all those LEFs now...
#need to repeat for SMCs2 moving rightward with cur+1, x+1 and x out of bounds when x>=L
elif self.slide and (not self.belt_attached[i]) and (self.inactive_side[i]==1):
if (self.occupied[cur1-1]==0) and (self.occupied[cur1+1]==0):
rr=randnum()
if rr < 2.-self.slidepauseForward[i]-self.slidepauseBackward[i]:
#probability of sliding one way or the other
if rr < 1.-self.slidepauseForward[i]:
#slide forward
self.occupied[cur1-1]=1
self.SMCs1[i]=cur1-1
else:
#slide backward
self.occupied[cur1+1]=1
self.SMCs1[i]=cur1+1
self.occupied[cur1]=0
slidestep_taken=1
elif (self.occupied[cur1-1]==0) and (self.occupied[cur1+1]==1):
if randnum() > self.slidepauseForward[i]:
#slide forward
self.occupied[cur1-1]=1
self.SMCs1[i]=cur1-1
self.occupied[cur1]=0
slidestep_taken=1
elif (self.occupied[cur1-1]==1) and (self.occupied[cur1+1]==0):
if randnum() > self.slidepauseBackward[i]:
#slide backward
self.occupied[cur1+1]=1
self.SMCs1[i]=cur1+1
self.occupied[cur1]=0
slidestep_taken=1
if self.stalled2[i] == 0:
if self.occupied[cur2 + 1] == 0:
pause2 = self.pause[self.SMCs2[i]]
if randnum() > pause2:
self.occupied[cur2 + 1] = 1
self.occupied[cur2] = 0
self.SMCs2[i] = cur2 + 1
if self.paired:#guarantee that center site remains occupied
self.occupied[self.SMCs3[i]] = 1
elif self.pushing and self.occupied[cur2+1] == 1: # if site occupied, but in a push sim
pushing_allowed=1 # start with pushing allowed
x = cur2+1 # consider position of LEF of occupied site
if x+1>=self.N: # if it's already at N-1, it can't move
pushing_allowed=0
while pushing_allowed and self.occupied[x]: # while we need to check obstacle lefs
if x+1>=self.N: # if lef at x can't move, can't push
pushing_allowed=0
break # not even necessary to break, just insurance.
else:
y=np.where(np.array(self.SMCs1)==x)[0] # check SMCs1 to see if it has the leg at x
if len(y)>0: # if so...
if self.stalled1[y[0]] and (not (self.stallRight[x]>0.0)) and (not (self.stallLeft[x]>0.0)) and not self.belt_attached[y[0]]: #check if stalled (inactive) and not due to stall site, verify not active
x=x+1 # move on to check next position
else:# smc at x is an active leg ..break
pushing_allowed=0
break
else: # otherwise, check SMCs2
y=np.where(np.array(self.SMCs2)==x)[0]
#len y should necessarily be >0 (since occupied is a condition to be in the while loop)
if self.stalled2[y[0]] and (not (self.stallRight[x]>0.0)) and not self.belt_attached[y[0]]: # SMCs2 move rightward, so don't really care if stallLeft==1... but do want to make sure I'm not pushing an active leg. and don't want to push past a stall size
x=x+1
else:
pushing_allowed=0
break
if pushing_allowed:
#now check if active site makes a step
pause2=self.pause[self.SMCs2[i]]
if randnum() > pause2:
#x is now the site of the last smc in the chain
self.occupied[x]=1
x=x-1
while self.occupied[x] == 1 and not x==cur2: # go through chain, moving SMCs, note that self.occupied does not change except ends
y=np.where(np.array(self.SMCs1)==x)[0]
if len(y)>0:
self.SMCs1[y[0]]=x+1
else:
y=np.where(np.array(self.SMCs2)==x)[0]
self.SMCs2[y[0]]=x+1
x=x-1
self.occupied[cur2]=0
self.SMCs2[i]=cur2+1
elif self.slide and (not self.belt_attached[i]) and (self.inactive_side[i]==2):# and (stall_site2==0):
if (self.occupied[cur2-1]==0) and (self.occupied[cur2+1]==0):
rr=randnum()
#print(rr)
#ratesum = self.slidepauseForward[i]
#ratesum += self.slidepauseBackward[i]
if rr < 2.-self.slidepauseForward[i]-self.slidepauseBackward[i]: #ratesum:
#probability of sliding one way or the other
if rr < 1.-self.slidepauseForward[i]:
#slide forward
self.occupied[cur2+1]=1
self.SMCs2[i]=cur2+1
else:
#slide backward
self.occupied[cur2-1]=1
self.SMCs2[i]=cur2-1
self.occupied[cur2]=0
slidestep_taken=1
elif (self.occupied[cur2-1]==1) and (self.occupied[cur2+1]==0):
if randnum() > self.slidepauseForward[i]:
#slide forward
self.occupied[cur2+1]=1
self.SMCs2[i]=cur2+1
self.occupied[cur2]=0
slidestep_taken=1
elif (self.occupied[cur2-1]==0) and (self.occupied[cur2+1]==1):
if randnum() > self.slidepauseBackward[i]:
#slide backward
self.occupied[cur2-1]=1
self.SMCs2[i]=cur2-1
self.occupied[cur2]=0
slidestep_taken=1
if self.switch[i]>0:
if self.switch_life[i] == 0:
self.do_switch(i)
else:
self.switch_life[i] -= 1
if self.belt_attached[i]:
if randnum() < self.belt_off_rate[i]:
self.belt_attached[i]=0
else:
if randnum() < self.belt_on_rate[i]:
self.belt_attached[i]=1
def steps(self,N):
cdef int i, slidestep_taken, remaining_steps
remaining_steps=0
for i in xrange(N):
self.death()
self.step()
def getOccupied(self):
return np.array(self.occupied)
def getSMCs(self):
if np.any(self.onesided):
return np.array(self.SMCs1), np.array(self.SMCs2), np.array(self.inactive_side)
elif not self.paired:
return np.array(self.SMCs1), np.array(self.SMCs2)
else:
return np.array(self.SMCs1), np.array(self.SMCs2), np.array(self.SMCs3)
def updateMap(self, cmap):
cmap[self.SMCs1, self.SMCs2] += 1
cmap[self.SMCs2, self.SMCs1] += 1
def updatePos(self, pos, ind):
pos[ind, self.SMCs1] = 1
pos[ind, self.SMCs2] = 1
def entropic_rates(self):
if np.any(self.onesided):
left, right, inactive = self.getSMCs() #SMCTran.getSMCs()
elif not self.paired:
left, right = self.getSMCs()
else:
left, right, center = self.getSMCs()
lefsites= [[left[k],k] for k in range(len(left))]
lefsites.extend([[right[k],k] for k in range(len(right))])
# allBonds.append(bonds)
#bonds.sort()
lefsites.sort()
loop_len=np.zeros(self.M)
parent_loop = np.zeros(self.M,dtype=np.int64)-1 # i^th component is the index of the smc that contains smc i. or -1 if none.
loop_entropy_forward=np.zeros(self.M,dtype=np.float64)
loop_entropy_backward=np.zeros(self.M,dtype=np.float64)
k=0
i=lefsites[k][0]
while k < len(lefsites):
lef_list=[]
#need to find which LEF occupies site
lef_id=lefsites[k][1]#np.where((left==i))[0]#|(right==i) # actually, this should only catch left sides.
lef_list.append(lef_id)
j=k+1
#NEED TO CHECK K+1<LEN(ARRAY)
if j < len(lefsites)-1:
while not (right[lef_id]==lefsites[j][0]):
lef_at_j=lefsites[j][1]#np.where((left==j)|(right==j))[0]
#print('lefatj and list type',type(lef_at_j), print(type(lef_list)), "lefatj", lef_at_j)
if lef_at_j in lef_list:
sum_loop_lens=0
for l in lef_list[lef_list.index(lef_at_j):]:
sum_loop_lens += loop_len[l]
loop_len[lef_at_j]+= right[lef_at_j]-left[lef_at_j] - sum_loop_lens
#also need to add contribution of containing loop.
else:
lef_list.append(lef_at_j)
j+=1 # no more checking j<len since it should always be enclosed by lef_id
if not right[lef_id] == lefsites[j][0]:
print("Right side of LEF inconsistency! STOP!")
#exit()
sum_loop_lens=0
if not lef_list.index(lef_id)==0:
print("Last LEF index wrong? STOP!")
#exit()
for l in lef_list[1:]:
sum_loop_lens += loop_len[l]
loop_len[lef_id]+= right[lef_id] - left[lef_id] - sum_loop_lens
k= j
del lef_list
k+=1
#not really the entropy - instead, the derivative of entropy
loop_entropy_forward[loop_len>0]= -1.*self.loop_prefact / loop_len[loop_len>0]
if self.FULL_LOOP_ENT:
parents = looptools.get_parent_loops(left, right)
loop_entropy_forward[parents>=0] = loop_entropy_forward[parents>=0] + self.loop_prefact / loop_len[parents[parents>=0]]
loop_entropy_backward=-1.*loop_entropy_forward
#adjust rates based on loop_entropy
slidePauseArrayForward=np.zeros(self.M) + 1.-(1.-self.SLIDE_PAUSEP)*np.exp(loop_entropy_forward)
slidePauseArrayBackward=np.zeros(self.M) + 1.-(1.-self.SLIDE_PAUSEP)*np.exp(loop_entropy_backward)
#feed in new rates to smctranslocator
#slidePauseSum=slidePauseArrayForward+slidePauseArrayBackward
#SMCTran
self.set_slidepause(slidePauseArrayForward, slidePauseArrayBackward)#, slidePauseSum)