-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathset.hpp
266 lines (237 loc) · 7.38 KB
/
set.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#pragma once
#ifndef SET_HPP
# define SET_HPP
#include <functional>
#include <memory>
#include "iterators/BidirectionalIterator.hpp"
#include "iterators/reverse_iterator.hpp"
#include "utils/pair.hpp"
#include "utils/RBTree.hpp"
#include "utils/equal.hpp"
#include "utils/lexicographical_compare.hpp"
namespace ft {
template < class T,
class Compare = std::less<T>,
class Alloc = std::allocator<T>
>
class set {
public:
//
// TYPES DEFINITIONS
//
typedef T key_type;
typedef const T value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef Alloc allocator_type;
typedef typename Alloc::reference reference;
typedef typename Alloc::const_reference const_reference;
typedef typename Alloc::pointer pointer;
typedef typename Alloc::const_pointer const_pointer;
typedef ft::BidirectionalIterator<value_type> iterator;
typedef ft::BidirectionalIterator<const value_type> const_iterator;
typedef ft::reverse_iterator<iterator> reverse_iterator;
typedef ft::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::ptrdiff_t difference_type;
typedef std::size_t size_type;
//
// Constructors AND Sestrucor
//
// empty (1)
explicit set (const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type())
: _comp(comp), _alloc(alloc), _tree_alloc(alloc), _rb_tree(_tree_alloc.allocate(1)) {
_tree_alloc.construct(_rb_tree, tree_type(value_comp(), alloc));
}
// range (2)
template <class InputIterator>
set (InputIterator first, InputIterator last,
const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type())
: _comp(comp), _alloc(alloc), _tree_alloc(alloc), _rb_tree(_tree_alloc.allocate(1)) {
_tree_alloc.construct(_rb_tree, tree_type(value_comp(), alloc));
for (; first != last; first++)
_rb_tree->insert(*first);
}
// copy (3)
set (const set& from): _comp(from._comp), _alloc(from._alloc), _tree_alloc(from._tree_alloc), _rb_tree(_tree_alloc.allocate(1)) {
_tree_alloc.construct(_rb_tree, *from._rb_tree);
};
~set() {
_tree_alloc.destroy(_rb_tree);
_tree_alloc.deallocate(_rb_tree, 1);
};
set& operator= (const set& rhs) {
if (this == &rhs)
return (*this);
_comp = rhs._comp;
*_rb_tree = *rhs._rb_tree;
return (*this);
}
//
// Iterators
//
iterator begin() {
return (iterator(_rb_tree->min()));
}
iterator end() {
return (iterator(_rb_tree->sentinel()));
}
const_iterator begin() const {
return (const_iterator(_rb_tree->min()));
}
const_iterator end() const {
return (const_iterator(_rb_tree->sentinel()));
}
reverse_iterator rbegin() {
return (reverse_iterator(_rb_tree->sentinel()));
};
const_reverse_iterator rbegin() const {
return (const_reverse_iterator(_rb_tree->sentinel()));
};
reverse_iterator rend() {
return (reverse_iterator(_rb_tree->min()));
};
const_reverse_iterator rend() const {
return (const_reverse_iterator(_rb_tree->min()));
};
//
// CAPACITY
//
bool empty() const {
return (_rb_tree->empty());
}
size_type size() const {
return (_rb_tree->size());
}
size_type max_size() const {
return (_rb_tree->max_size());
}
//
// MODIFIERS
//
// single element (1)
ft::pair<iterator,bool> insert(const value_type& val) {
size_type last_size = size();
Node<value_type>* ptr = _rb_tree->insert(val);
ft::pair<iterator, bool> result = ft::make_pair<iterator, bool>(iterator(ptr), true);
if (size() == last_size)
result.second = false;
return (result);
}
// with hint (2)
iterator insert (iterator position, const value_type& val) {
Node<value_type>* ptr = _rb_tree->insert(val, position._elem);
return (iterator(ptr));
}
template <class InputIterator> // range
void insert (InputIterator first, InputIterator last) {
for (; first != last; first++)
_rb_tree->insert(*first);
}
void erase (iterator position) {
_rb_tree->remove(position._elem);
}
size_type erase (const value_type& val) {
Node<value_type>* z = _rb_tree->find(val);
return (_rb_tree->remove(z));
}
void erase (iterator first, iterator last) {
iterator next = first;
for (; first != last; first = next) {
++next;
_rb_tree->remove(first._elem);
}
}
void swap (set& x) {
key_compare _comp_temp = _comp;
allocator_type _alloc_temp = _alloc;
allocator_type _tree_alloc_temp = _tree_alloc;
tree_type* _rb_tree_temp = _rb_tree;
_comp = x._comp;
_alloc = x._alloc;
_tree_alloc = x._tree_alloc;
_rb_tree = x._rb_tree;
x._comp = _comp_temp;
x._alloc = _alloc_temp;
x._tree_alloc = _tree_alloc_temp;
x._rb_tree = _rb_tree_temp;
}
void clear() {
_rb_tree->clear();
}
//
// OBSERVERS
//
key_compare key_comp() const {
return (_comp);
}
value_compare value_comp() const {
return (_comp);
}
//
// OPERATIONS
//
iterator find (const value_type& val) const {
return (iterator(_rb_tree->find(val)));
}
size_type count (const value_type& val) const {
if (_rb_tree->find(val) == _rb_tree->sentinel())
return (0);
return (1);
}
iterator lower_bound (const value_type& val) const {
return (iterator(_rb_tree->lower_bound(val)));
}
iterator upper_bound (const value_type& val) const {
return (iterator(_rb_tree->upper_bound(val)));
}
ft::pair<iterator,iterator> equal_range (const value_type& val) const {
return ft::make_pair<iterator, iterator>(lower_bound(val), upper_bound(val));
}
//
// ALLOCATOR
//
allocator_type get_allocator() const {
return (_alloc);
}
private:
typedef ft::RBTree<value_type, value_compare, Alloc> tree_type;
typedef typename allocator_type::template rebind<tree_type>::other tree_allocator_type;
key_compare _comp;
allocator_type _alloc;
tree_allocator_type _tree_alloc;
tree_type* _rb_tree;
};
template <class T, class Compare, class Alloc>
bool operator== ( const set<T,Compare,Alloc>& lhs, const set<T,Compare,Alloc>& rhs ) {
if (lhs.size() != rhs.size())
return (false);
return (ft::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()));
}
template <class T, class Compare, class Alloc>
bool operator!= ( const set<T,Compare,Alloc>& lhs, const set<T,Compare,Alloc>& rhs ) {
return !(operator==(lhs, rhs));
}
template <class T, class Compare, class Alloc>
bool operator< ( const set<T,Compare,Alloc>& lhs, const set<T,Compare,Alloc>& rhs ) {
return (ft::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()));
}
template <class T, class Compare, class Alloc>
bool operator<= ( const set<T,Compare,Alloc>& lhs, const set<T,Compare,Alloc>& rhs ) {
return !(operator<(rhs, lhs));
}
template <class T, class Compare, class Alloc>
bool operator> ( const set<T,Compare,Alloc>& lhs, const set<T,Compare,Alloc>& rhs ) {
return (operator<(rhs, lhs));
}
template <class T, class Compare, class Alloc>
bool operator>= ( const set<T,Compare,Alloc>& lhs, const set<T,Compare,Alloc>& rhs ) {
return !(operator<(lhs, rhs));
}
template <class T, class Compare, class Alloc>
void swap (set<T,Compare,Alloc>& x, set<T,Compare,Alloc>& y) {
x.swap(y);
}
}
#endif