forked from wolfSSL/wolfBoot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstm32h5.c
684 lines (560 loc) · 17.3 KB
/
stm32h5.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
/* stm32h5.c
*
* Copyright (C) 2024 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <stdint.h>
#include <image.h>
#include <string.h>
#include "hal.h"
#include "hal/stm32h5.h"
#define PLL_SRC_HSE 1
#if TZ_SECURE()
static int is_flash_nonsecure(uint32_t address)
{
uint32_t in_bank_offset = address & 0x000FFFFF;
#ifdef DUALBANK_SWAP
if (in_bank_offset >= (WOLFBOOT_PARTITION_BOOT_ADDRESS - FLASHMEM_ADDRESS_SPACE))
return 1;
else
return 0;
#else
if (address >= WOLFBOOT_PARTITION_BOOT_ADDRESS)
return 1;
else
return 0;
#endif
}
#endif
static void RAMFUNCTION flash_set_waitstates(unsigned int waitstates)
{
uint32_t reg = FLASH_ACR;
if ((reg & FLASH_ACR_LATENCY_MASK) < waitstates)
do {
FLASH_ACR = (reg & ~(FLASH_ACR_LATENCY_MASK | (FLASH_ACR_WRHIGHFREQ_MASK << FLASH_ACR_WRHIGHFREQ_SHIFT))) |
waitstates | (0x02 << FLASH_ACR_WRHIGHFREQ_SHIFT) ;
}
while ((FLASH_ACR & FLASH_ACR_LATENCY_MASK) != waitstates);
}
void RAMFUNCTION hal_flash_wait_complete(uint8_t bank)
{
while ((FLASH_SR & FLASH_SR_BSY) == FLASH_SR_BSY)
;
#if (TZ_SECURE())
while ((FLASH_NS_SR & FLASH_SR_BSY) == FLASH_SR_BSY)
;
#endif
}
static void RAMFUNCTION hal_flash_wait_buffer_empty(uint8_t bank)
{
while ((FLASH_SR & FLASH_SR_DBNE) == FLASH_SR_DBNE)
;
#if (TZ_SECURE())
while ((FLASH_NS_SR & FLASH_SR_DBNE) == FLASH_SR_DBNE)
;
#endif
}
void RAMFUNCTION hal_flash_clear_errors(uint8_t bank)
{
FLASH_CCR |= ( FLASH_CCR_CLR_WBNE | FLASH_CCR_CLR_DBNE | FLASH_CCR_CLR_INCE|
FLASH_CCR_CLR_PGSE | FLASH_CCR_CLR_OPTE | FLASH_CCR_CLR_OPTWE |
FLASH_CCR_CLR_WRPE | FLASH_CCR_CLR_EOP);
}
int RAMFUNCTION hal_flash_write(uint32_t address, const uint8_t *data, int len)
{
int i = 0;
uint32_t *src, *dst;
uint32_t dword[2];
uint32_t off = 0;
uint32_t una_len = 0;
hal_flash_clear_errors(0);
src = (uint32_t *)data;
dst = (uint32_t *)address;
#if (TZ_SECURE())
if (is_flash_nonsecure(address)) {
hal_tz_claim_nonsecure_area(address, len);
} else if (((uint32_t)dst & 0x0F000000) == 0x08000000) {
/* Convert into secure address space */
dst = (uint32_t *)((address & (~FLASHMEM_ADDRESS_SPACE)) | FLASH_SECURE_MMAP_BASE);
}
#endif
while (i < len) {
dword[0] = src[i >> 2];
if (len > i + 1)
dword[1] = src[(i >> 2) + 1];
else
dword[1] = 0xFFFFFFFF;
FLASH_CR |= FLASH_CR_PG;
dst[i >> 2] = dword[0];
ISB();
dst[(i >> 2) + 1] = dword[1];
ISB();
hal_flash_wait_complete(0);
if ((FLASH_SR & FLASH_SR_EOP) != 0)
FLASH_SR |= FLASH_SR_EOP;
FLASH_CR &= ~FLASH_CR_PG;
i+=8;
}
#if (TZ_SECURE())
if (is_flash_nonsecure(address)) {
hal_tz_release_nonsecure_area();
}
#endif
return 0;
}
void RAMFUNCTION hal_flash_unlock(void)
{
hal_flash_wait_complete(0);
if ((FLASH_CR & FLASH_CR_LOCK) != 0) {
FLASH_KEYR = FLASH_KEY1;
DMB();
FLASH_KEYR = FLASH_KEY2;
DMB();
while ((FLASH_CR & FLASH_CR_LOCK) != 0)
;
}
}
void RAMFUNCTION hal_flash_lock(void)
{
hal_flash_wait_complete(0);
if ((FLASH_CR & FLASH_CR_LOCK) == 0)
FLASH_CR |= FLASH_CR_LOCK;
}
void RAMFUNCTION hal_flash_opt_unlock(void)
{
hal_flash_wait_complete(0);
if ((FLASH_OPTCR & FLASH_OPTCR_OPTLOCK) != 0) {
FLASH_OPTKEYR = FLASH_OPTKEY1;
DMB();
FLASH_OPTKEYR = FLASH_OPTKEY2;
DMB();
while ((FLASH_CR & FLASH_CR_LOCK) != 0)
;
}
}
void RAMFUNCTION hal_flash_opt_lock(void)
{
FLASH_OPTCR |= FLASH_OPTCR_OPTSTRT;
hal_flash_wait_complete(0);
if ((FLASH_OPTCR & FLASH_OPTCR_OPTLOCK) == 0)
FLASH_OPTCR |= FLASH_OPTCR_OPTLOCK;
}
int RAMFUNCTION hal_flash_erase(uint32_t address, int len)
{
uint32_t end_address;
uint32_t p;
hal_flash_clear_errors(0);
if (len == 0)
return -1;
if (address < 0x08000000)
return -1;
end_address = address + len - 1;
for (p = address; p < end_address; p += FLASH_PAGE_SIZE) {
uint32_t reg;
uint32_t base;
uint32_t bnksel = 0;
base = FLASHMEM_ADDRESS_SPACE;
reg = FLASH_CR & (~((FLASH_CR_PNB_MASK << FLASH_CR_PNB_SHIFT) | FLASH_CR_BER));
if(p >= (FLASH_BANK2_BASE) && (p <= (FLASH_TOP) ))
{
base = FLASH_BANK2_BASE;
bnksel = 1;
}
#if TZ_SECURE()
/* When in secure mode, skip erasing non-secure pages: will be erased upon claim */
if (is_flash_nonsecure(address)) {
return 0;
}
#endif
/* Check for swapped banks to invert bnksel */
if ((FLASH_OPTSR_CUR & FLASH_OPTSR_SWAP_BANK) >> 31)
bnksel = !bnksel;
reg |= ((((p - base) >> 13) << FLASH_CR_PNB_SHIFT) | FLASH_CR_SER | (bnksel << 31));
FLASH_CR = reg;
ISB();
FLASH_CR |= FLASH_CR_STRT;
hal_flash_wait_complete(0);
}
/* If the erase operation is completed, disable the associated bits */
FLASH_CR &= ~FLASH_CR_SER ;
return 0;
}
static void clock_pll_off(void)
{
uint32_t reg32;
/* Select HSI as SYSCLK source. */
RCC_CFGR1 &= ~(0x07 << RCC_CFGR1_SW_SHIFT);
DMB();
/* Turn off PLL1 */
RCC_PLL1CFGR &= ~RCC_PLLCFGR_PLL1PEN;
DMB();
RCC_CR &= ~RCC_CR_PLL1ON;
DMB();
/* Wait until PLL1 is disabled */
while ((RCC_CR & RCC_CR_PLL1RDY) != 0)
;
/* Turn off PLL2 */
RCC_PLL2CFGR &= ~RCC_PLLCFGR_PLLPEN;
DMB();
RCC_CR &= ~RCC_CR_PLL2ON;
DMB();
/* Wait until PLL2 is disabled */
while ((RCC_CR & RCC_CR_PLL2RDY) != 0)
;
}
/*This implementation will setup MSI 48 MHz as PLL Source Mux, PLLCLK as System Clock Source*/
static void clock_pll_on(void)
{
uint32_t reg32;
uint32_t plln, pllm, pllq, pllp, pllr, hpre, apb1pre, apb2pre, apb3pre, flash_waitstates;
#if PLL_SRC_HSE
pllm = 4;
plln = 250;
pllp = 2;
pllq = 2;
pllr = 2;
#else
pllm = 1;
plln = 129;
pllp = 2;
pllq = 2;
pllr = 2;
#endif
flash_waitstates = 5;
/* Set voltage scaler */
reg32 = PWR_VOSCR & (~PWR_VOS_MASK);
PWR_VOSCR = reg32 | PWR_VOS_SCALE_0;
/* Wait until scale has changed */
while ((PWR_VOSSR & PWR_VOSRDY) == 0)
;
/* Disable PLL1 */
RCC_CR &= ~RCC_CR_PLL1ON;
/* Wait until PLL1 is disabled */
while ((RCC_CR & RCC_CR_PLL1RDY) != 0)
;
/* Set flash wait states */
flash_set_waitstates(flash_waitstates);
#if PLL_SRC_HSE
/* PLL Oscillator configuration */
RCC_CR |= RCC_CR_HSEON | RCC_CR_HSEBYP;
/* Wait until HSE is Ready */
while ((RCC_CR & RCC_CR_HSERDY) == 0)
;
/* Configure PLL1 div/mul factors */
reg32 = RCC_PLL1CFGR;
reg32 &= ~((0x3F << RCC_PLLCFGR_PLLM_SHIFT) | (0x03));
reg32 |= (pllm << RCC_PLLCFGR_PLLM_SHIFT) | RCC_PLLCFGR_PLLSRC_HSE;
RCC_PLL1CFGR = reg32;
#else
RCC_CR |= RCC_CR_HSION;
/* Wait until HSI is Ready */
while ((RCC_CR & RCC_CR_HSIRDY) == 0)
;
RCC_CR |= RCC_CR_CSION;
/* Wait until CSI is Ready */
while ((RCC_CR & RCC_CR_HSIRDY) == 0)
;
/* Configure PLL1 div/mul factors */
reg32 = RCC_PLL1CFGR;
reg32 &= ~((0x3F << RCC_PLLCFGR_PLLM_SHIFT) | (0x03));
reg32 |= (pllm << RCC_PLLCFGR_PLLM_SHIFT) | RCC_PLLCFGR_PLLSRC_CSI;
RCC_PLL1CFGR = reg32;
#endif
DMB();
RCC_PLL1DIVR = ((plln - 1) << RCC_PLLDIVR_DIVN_SHIFT) | ((pllp - 1) << RCC_PLLDIVR_DIVP_SHIFT) |
((pllq - 1) << RCC_PLLDIVR_DIVQ_SHIFT) | ((pllr - 1) << RCC_PLLDIVR_DIVR_SHIFT);
DMB();
/* Disable Fractional PLL */
RCC_PLL1CFGR &= ~RCC_PLLCFGR_PLLFRACEN;
DMB();
/* Configure Fractional PLL factor */
RCC_PLL1FRACR = 0x00000000;
DMB();
/* Enable Fractional PLL */
RCC_PLL1CFGR |= RCC_PLLCFGR_PLLFRACEN;
DMB();
/* Select PLL1 Input frequency range: VCI */
RCC_PLL1CFGR |= RCC_PLLCFGR_RGE_2_4 << RCC_PLLCFGR_PLLRGE_SHIFT;
/* Select PLL1 Output frequency range: VCO = 0 */
RCC_PLL1CFGR &= ~RCC_PLLCFGR_PLLVCOSEL;
DMB();
/* Enable PLL1 system clock out (DIV: P) */
RCC_PLL1CFGR |= RCC_PLLCFGR_PLL1PEN;
/* Enable PLL1 */
RCC_CR |= RCC_CR_PLL1ON;
/* Set up APB3, 2, 1 and AHB prescalers */
hpre = RCC_AHB_PRESCALER_DIV_NONE;
apb1pre = RCC_APB_PRESCALER_DIV_NONE;
apb2pre = RCC_APB_PRESCALER_DIV_NONE;
apb3pre = RCC_APB_PRESCALER_DIV_NONE;
reg32 = RCC_CFGR2;
reg32 &= ~( (0x0F << RCC_CFGR2_HPRE_SHIFT) |
(0x07 << RCC_CFGR2_PPRE1_SHIFT) |
(0x07 << RCC_CFGR2_PPRE2_SHIFT) |
(0x07 << RCC_CFGR2_PPRE3_SHIFT));
reg32 |= ((hpre) << RCC_CFGR2_HPRE_SHIFT) | ((apb1pre) << RCC_CFGR2_PPRE1_SHIFT) |
((apb2pre) << RCC_CFGR2_PPRE2_SHIFT) | ((apb3pre) << RCC_CFGR2_PPRE3_SHIFT);
RCC_CFGR2 = reg32;
DMB();
/* Wait until PLL1 is Ready */
while ((RCC_CR & RCC_CR_PLL1RDY) == 0)
;
/* Set PLL as clock source */
reg32 = RCC_CFGR1 & (~RCC_CFGR1_SW_MASK);
RCC_CFGR1 = reg32 | RCC_CFGR1_SW_PLL1;
DMB();
/* Wait until selection of PLL as source is complete */
while ((RCC_CFGR1 & (RCC_CFGR1_SW_PLL1 << RCC_CFGR1_SWS_SHIFT)) == 0)
;
/* Set PLL1 as system clock */
RCC_PLL1CFGR |= RCC_PLLCFGR_PLL1PEN;
}
#if (TZ_SECURE())
#define NVIC_ISER_BASE (0xE000E100)
#define NVIC_ICER_BASE (0xE000E180)
#define NVIC_IPRI_BASE (0xE000E400)
#define NVIC_USART3_IRQ 60
/* Cortex M-33 has an extra register to set up non-secure interrupts */
#define NVIC_ITNS_BASE (0xE000E380)
static void periph_unsecure(void)
{
uint32_t pin;
volatile uint32_t reg;
volatile uint32_t *nvic_itns;
uint32_t nvic_reg_pos, nvic_reg_off;
/*Enable clock for User LED GPIOs */
RCC_AHB2_CLOCK_ER|= LED_AHB2_ENABLE;
/* Enable GPIO clock for accessing SECCFGR registers */
RCC_AHB2_CLOCK_ER |= GPIOA_AHB2_CLOCK_ER;
RCC_AHB2_CLOCK_ER |= GPIOB_AHB2_CLOCK_ER;
RCC_AHB2_CLOCK_ER |= GPIOC_AHB2_CLOCK_ER;
RCC_AHB2_CLOCK_ER |= GPIOD_AHB2_CLOCK_ER;
/* Enable clock for LPUART1 */
RCC_APB2_CLOCK_ER |= UART1_APB2_CLOCK_ER_VAL;
/* Enable clock for USART3 */
RCC_APB1L_CLOCK_ER |= UART3_APB1L_CLOCK_ER_VAL;
PWR_CR2 |= PWR_CR2_IOSV;
/*Un-secure User LED GPIO pins */
GPIO_SECCFGR(GPIOG_BASE) &= ~(1 << 4);
GPIO_SECCFGR(GPIOB_BASE) &= ~(1 << 0);
GPIO_SECCFGR(GPIOF_BASE) &= ~(1 << 4);
/* Unsecure LPUART1 */
GPIO_SECCFGR(GPIOB_BASE) &= ~(1<<UART1_TX_PIN);
GPIO_SECCFGR(GPIOB_BASE) &= ~(1<<UART1_RX_PIN);
reg = TZSC_SECCFGR2;
if (reg & TZSC_SECCFGR2_LPUART1SEC) {
reg &= (~TZSC_SECCFGR2_LPUART1SEC);
DMB();
TZSC_SECCFGR2 = reg;
}
/* Unsecure USART3 */
GPIO_SECCFGR(GPIOD_BASE) &= ~(1<<UART3_TX_PIN);
GPIO_SECCFGR(GPIOD_BASE) &= ~(1<<UART3_RX_PIN);
reg = TZSC_SECCFGR1;
if (reg & TZSC_SECCFGR1_USART3SEC) {
reg &= (~TZSC_SECCFGR1_USART3SEC);
DMB();
TZSC_SECCFGR1 = reg;
}
/* Set USART3 interrupt as non-secure */
nvic_reg_pos = NVIC_USART3_IRQ / 32;
nvic_reg_off = NVIC_USART3_IRQ % 32;
nvic_itns = ((volatile uint32_t *)(NVIC_ITNS_BASE + 4 * nvic_reg_pos));
*nvic_itns |= (1 << nvic_reg_off);
/* Disable GPIOs clock used previously for accessing SECCFGR registers */
#if 0
RCC_AHB2_CLOCK_ER &= ~GPIOA_AHB2_CLOCK_ER;
RCC_AHB2_CLOCK_ER &= ~GPIOB_AHB2_CLOCK_ER;
RCC_AHB2_CLOCK_ER &= ~GPIOC_AHB2_CLOCK_ER;
RCC_AHB2_CLOCK_ER &= ~GPIOD_AHB2_CLOCK_ER;
#endif
}
#endif
#define AIRCR *(volatile uint32_t *)(0xE000ED0C)
#define AIRCR_VKEY (0x05FA << 16)
#define AIRCR_SYSRESETREQ (1 << 2)
static void RAMFUNCTION stm32h5_reboot(void)
{
AIRCR = AIRCR_SYSRESETREQ | AIRCR_VKEY;
while(1)
;
}
#if defined(DUALBANK_SWAP) && defined(__WOLFBOOT)
void RAMFUNCTION hal_flash_dualbank_swap(void)
{
uint32_t cur_opts;
cur_opts = (FLASH_OPTSR_CUR & FLASH_OPTSR_SWAP_BANK) >> 31;
hal_flash_clear_errors(0);
hal_flash_unlock();
hal_flash_opt_unlock();
if (cur_opts)
FLASH_OPTSR_PRG &= ~(FLASH_OPTSR_SWAP_BANK);
else
FLASH_OPTSR_PRG |= FLASH_OPTSR_SWAP_BANK;
FLASH_OPTCR |= FLASH_OPTCR_OPTSTRT;
DMB();
hal_flash_opt_lock();
hal_flash_lock();
stm32h5_reboot();
}
#define BOOTLOADER_COPY_MEM_SIZE 0x1000
static uint8_t bootloader_copy_mem[BOOTLOADER_COPY_MEM_SIZE];
static void fork_bootloader(void)
{
uint32_t data = (uint32_t) FLASHMEM_ADDRESS_SPACE;
uint32_t dst = FLASH_BANK2_BASE;
uint32_t r = 0, w = 0;
int i;
#if TZ_SECURE()
data = (uint32_t)((data & (~FLASHMEM_ADDRESS_SPACE)) | FLASH_SECURE_MMAP_BASE);
dst = (uint32_t)((dst & (~FLASHMEM_ADDRESS_SPACE)) | FLASH_SECURE_MMAP_BASE);
#endif
/* Return if content already matches */
if (memcmp((void *)data, (const char*)dst, BOOTLOADER_SIZE) == 0)
return;
hal_flash_unlock();
/* Mass-erase second block */
hal_flash_erase(dst, BOOTLOADER_SIZE);
/* Read the wolfBoot image in RAM */
for (i = 0; i < BOOTLOADER_SIZE;
i += BOOTLOADER_COPY_MEM_SIZE) {
memcpy(bootloader_copy_mem, (void*)(data + i),
BOOTLOADER_COPY_MEM_SIZE);
hal_flash_write(dst + i, bootloader_copy_mem,
BOOTLOADER_COPY_MEM_SIZE);
}
hal_flash_lock();
}
#endif
#include "uart_drv.h"
void hal_init(void)
{
clock_pll_on();
#if TZ_SECURE()
hal_gtzc_init();
hal_tz_sau_init();
#endif
#if defined(DUALBANK_SWAP) && defined(__WOLFBOOT)
fork_bootloader();
#endif
}
void hal_prepare_boot(void)
{
/* Keep clock settings when staging a NS-application */
#if (TZ_SECURE())
periph_unsecure();
#else
clock_pll_off();
#endif
}
#ifdef FLASH_OTP_KEYSTORE
#define FLASH_OTP_BLOCK_SIZE (64)
/* Public API */
int hal_flash_otp_set_readonly(uint32_t flashAddress, uint16_t length)
{
uint32_t start_block = (flashAddress - FLASH_OTP_BASE) / FLASH_OTP_BLOCK_SIZE;
uint32_t count = length / FLASH_OTP_BLOCK_SIZE;
uint32_t bmap = 0;
unsigned int i;
if (start_block + count > 32)
return -1;
if ((length % FLASH_OTP_BLOCK_SIZE) != 0)
{
count++;
}
/* Turn on the bits */
for (i = start_block; i < (start_block + count); i++) {
bmap |= (1 << i);
}
/* Enable OTP write protection for the selected blocks */
while ((bmap & FLASH_OTPBLR_CUR) != bmap) {
FLASH_OTPBLR_PRG |= bmap;
ISB();
DSB();
}
return 0;
}
int hal_flash_otp_write(uint32_t flashAddress, const void* data, uint16_t length)
{
volatile uint16_t tmp_msw, tmp_lsw;
uint16_t *pdata = (uint16_t *)data;
uint16_t idx = 0, len_align;
uint16_t last_word;
uint32_t blr_bitmap = 0;
if (!(flashAddress >= FLASH_OTP_BASE && flashAddress <= FLASH_OTP_END)) {
return -1;
}
/* Reject misaligned destination address */
if ((flashAddress & 0x01) != 0) {
return -1;
}
hal_flash_wait_complete(0);
hal_flash_wait_buffer_empty(0);
hal_flash_unlock();
hal_flash_clear_errors(0);
/* Truncate to 2B alignment */
length = (length / 2 * 2);
while ((idx < length) && (flashAddress <= FLASH_OTP_END-1)) {
hal_flash_wait_complete(0);
/* Set PG bit */
FLASH_CR |= FLASH_CR_PG;
/* Program an OTP word (16 bits) */
*(volatile uint16_t*)flashAddress = pdata[0];
/* Program a second OTP word (16 bits) */
*(volatile uint16_t*)(flashAddress + sizeof(uint16_t)) = pdata[1];
ISB();
DSB();
/* Wait until not busy */
while ((FLASH_SR & FLASH_SR_BSY) != 0)
;
/* Read it back */
tmp_msw = *(volatile uint16_t*)flashAddress;
tmp_lsw = *(volatile uint16_t*)(flashAddress + sizeof(uint16_t));
if ((tmp_msw != pdata[0]) || (tmp_lsw != pdata[1])) {
/* Provisioning failed. OTP already programmed? */
while(1)
;
}
/* Clear PG bit */
FLASH_CR &= ~FLASH_CR_PG;
/* Advance to next two words */
flashAddress += (2 * sizeof(uint16_t));
pdata += 2;
idx += (2 * sizeof(uint16_t));
}
hal_flash_lock();
return 0;
}
int hal_flash_otp_read(uint32_t flashAddress, void* data, uint32_t length)
{
uint16_t i;
uint16_t *pdata = (uint16_t *)data;
if (!(flashAddress >= FLASH_OTP_BASE && flashAddress <= FLASH_OTP_END)) {
return -1;
}
for (i = 0;
(i < length) && (flashAddress <= (FLASH_OTP_END-1));
i += sizeof(uint16_t))
{
*pdata = *(volatile uint16_t*)flashAddress;
flashAddress += sizeof(uint16_t);
pdata++;
}
return 0;
}
#endif /* FLASH_OTP_KEYSTORE */