Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How to perform tests with other datasets that are not listed? #4

Open
PoliteApps opened this issue Aug 25, 2022 · 4 comments
Open

How to perform tests with other datasets that are not listed? #4

PoliteApps opened this issue Aug 25, 2022 · 4 comments

Comments

@PoliteApps
Copy link

I looked into the repository and did not find an easy way to use our code in my own datasets. Something I would expect is an interface similar to the regression functions on scikit learn. This would be amazing for other researchers and students to use this new network. Is there any script, change or material available to help use this repository this way?

E.g. hopular.fit(x,y)

Thanks!

@YuvalRom
Copy link

The sklearn API is also valuable for hyperopt and other research. For example, if I want to run the model on the "Why do tree-based models still outperform deep learning on tabular data?" (Léo Grinsztajn 2022) dataset and code for benchmarking the model, I will need to implement it myself.

@akash-isu
Copy link

Were you able to figure out how to use this on custom datasets?

@PoliteApps
Copy link
Author

I just gave up after reading that: https://medium.com/@tunguz/trouble-with-hopular-6649f22fa2d3

@YuvalRom
Copy link

I was able to run it on a custom dataset.
You need to create a class that fits the datasets classes API here (https://github.com/ml-jku/hopular/blob/main/hopular/auxiliary/data.py) then you can just run it with the instruction on the README file.

I ran some tests comparing the model to xgboost and catboost on the same datasets as the paper and optimized as they said they did but reached much better results than reported.

Also ran the model on a bigger dataset (58K samples) and I was amazed at how much memory it uses.
I believe this is a very interesting Idea but still not a usable model.

still a great paper and repo though

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants