-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathREADME.Rmd
139 lines (100 loc) · 6.8 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# tabnet
<!-- badges: start -->
[![R build status](https://github.com/mlverse/tabnet/workflows/R-CMD-check/badge.svg)](https://github.com/mlverse/tabnet/actions) [![Lifecycle: experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://lifecycle.r-lib.org/articles/stages.html) [![CRAN status](https://www.r-pkg.org/badges/version/tabnet)](https://CRAN.R-project.org/package=tabnet) [![](https://cranlogs.r-pkg.org/badges/tabnet)](https://cran.r-project.org/package=tabnet) [![Discord](https://img.shields.io/discord/837019024499277855?logo=discord)](https://discord.com/invite/s3D5cKhBkx)
<!-- badges: end -->
An R implementation of: [TabNet: Attentive Interpretable Tabular Learning](https://arxiv.org/abs/1908.07442) [(Sercan O. Arik, Tomas Pfister)](
https://doi.org/10.48550/arXiv.1908.07442).
The code in this repository is an R port using the [torch](https://github.com/mlverse/torch) package of [dreamquark-ai/tabnet](https://github.com/dreamquark-ai/tabnet) PyTorch's implementation.
TabNet is augmented with [Coherent Hierarchical Multi-label Classification Networks](https://proceedings.neurips.cc//paper/2020/file/6dd4e10e3296fa63738371ec0d5df818-Paper.pdf) [(Eleonora Giunchiglia et Al.)]( https://doi.org/10.48550/arXiv.2010.10151) for hierarchical outcomes.
## Installation
You can install the released version from CRAN with:
``` r
install.packages("tabnet")
```
The development version can be installed from [GitHub](https://github.com/mlverse/tabnet) with:
``` r
# install.packages("remotes")
remotes::install_github("mlverse/tabnet")
```
## Basic Binary Classification Example
Here we show a **binary classification** example of the `attrition` dataset, using a **recipe** for dataset input specification.
```{r model-fit}
library(tabnet)
suppressPackageStartupMessages(library(recipes))
library(yardstick)
library(ggplot2)
set.seed(1)
data("attrition", package = "modeldata")
test_idx <- sample.int(nrow(attrition), size = 0.2 * nrow(attrition))
train <- attrition[-test_idx,]
test <- attrition[test_idx,]
rec <- recipe(Attrition ~ ., data = train) %>%
step_normalize(all_numeric(), -all_outcomes())
fit <- tabnet_fit(rec, train, epochs = 30, valid_split=0.1, learn_rate = 5e-3)
autoplot(fit)
```
The plots gives you an immediate insight about model over-fitting, and if any, the available model checkpoints available before the over-fitting
Keep in mind that **regression** as well as **multi-class classification** are also available, and that you can specify dataset through **data.frame** and **formula** as well. You will find them in the package vignettes.
## Model performance results
As the standard method `predict()` is used, you can rely on your usual metric functions for model performance results. Here we use {yardstick} :
```{r}
metrics <- metric_set(accuracy, precision, recall)
cbind(test, predict(fit, test)) %>%
metrics(Attrition, estimate = .pred_class)
cbind(test, predict(fit, test, type = "prob")) %>%
roc_auc(Attrition, .pred_No)
```
## Explain model on test-set with attention map
TabNet has intrinsic explainability feature through the visualization of attention map, either **aggregated**:
```{r model-explain}
explain <- tabnet_explain(fit, test)
autoplot(explain)
```
or at **each layer** through the `type = "steps"` option:
```{r step-explain}
autoplot(explain, type = "steps")
```
## Self-supervised pretraining
For cases when a consistent part of your dataset has no outcome, TabNet offers a self-supervised training step allowing to model to capture predictors intrinsic features and predictors interactions, upfront the supervised task.
```{r step-pretrain}
pretrain <- tabnet_pretrain(rec, train, epochs = 50, valid_split=0.1, learn_rate = 1e-2)
autoplot(pretrain)
```
The example here is a toy example as the `train` dataset does actually contain outcomes. The vignette on [Self-supervised training and fine-tuning](https://mlverse.github.io/tabnet/articles/selfsupervised_training.html) will gives you the complete correct workflow step-by-step.
## Missing data in predictors
{tabnet} leverage the masking mechanism to deal with missing data, so you don't have to remove the entries in your dataset with some missing values in the predictors variables.
# Comparison with other implementations
| Group | Feature | {tabnet} | dreamquark-ai | fast-tabnet |
|-------------|---------------------|:--------:|:-------------:|:----------:|
| Input format | data-frame | ✅ | ✅ | ✅ |
| | formula | ✅ | | |
| | recipe | ✅ | | |
| | Node | ✅ | | |
| | missings in predictor | ✅ | | |
| Output format | data-frame | ✅ | ✅ | ✅ |
| | workflow | ✅ | | |
| ML Tasks | self-supervised learning | ✅ | ✅ | |
| | classification (binary, multi-class) | ✅ | ✅ | ✅ |
| | regression | ✅ | ✅ | ✅ |
| | multi-outcome | ✅ | ✅ | |
| | hierarchical multi-label classif. | ✅ | | |
| Model management | from / to file | ✅ | ✅ | v |
| | resume from snapshot | ✅ | | |
| | training diagnostic | ✅ | | |
| Interpretability | | ✅ | ✅ | ✅ |
| Performance | | 1 x | 2 - 4 x | |
| Code quality | test coverage | 85% | | |
| | continuous integration | 4 OS including GPU | | |
: Alternative TabNet implementation features