-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
37 lines (26 loc) · 1.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import warnings
import pandas as pd
from sklearn.model_selection import train_test_split
warnings.filterwarnings('ignore')
from sklearn.neural_network import MLPRegressor
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report, roc_auc_score, average_precision_score
df = pd.read_csv("./breastData.csv", sep='\s*,\s*',
header=0, encoding='ascii', engine='python')
def get_features():
features = df.columns.tolist()
del features[10]
del features[0]
return features
X = df[get_features()]
y = df["class"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
clf = MLPClassifier(solver='lbfgs', alpha=1e-5,
hidden_layer_sizes=(5, 2), random_state=0)
clf.fit(X_train, y_train)
predict = clf.predict(X_test)
auc_score = roc_auc_score(y_test, predict)
# average_precision_score(y_true, y_scores)
f = open(f"./results/mlp.txt", "w")
f.write(f"classification_report:\n\n{classification_report(y_test,predict)}\n\n \n"
f"auc_score : {auc_score}")