-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprefixsum.java
executable file
·308 lines (269 loc) · 7.98 KB
/
prefixsum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import java.util.Arrays;
public class prefixsum {
public static void main(String[] args) {
int[] arr = { 0, 0, 0, 0, 0, 0, 0 };
int B = 2;
int[][] mat = { { 1, 3, 6 }, { 3, 5, 8 }, { 1, 6, 8 } };
// solve(arr, 4);
// rangeSum(arr, B);
// equlibriumIndex(arr);
// specialIndex(arr);
// pickFromBothSides(arr, B);
// inPlacePrefixSum(arr);
// evenInRange(arr, mat);
System.out.print(Arrays.toString(modify(arr, mat)));
}
// given a all zero array perform all the querries
// q{ i , j , x} add x from i to jth index
static int[] modify(int[] A, int[][] querry) {
// intution: add ho rhi hai chize matlab prefix sum lagega
// aur another observation is regarding adding values and substraction values
// add values to the array from querries
for (int row = 0; row < querry.length; row++) {
int i = querry[row][0];
int j = querry[row][1];
int x = querry[row][2];
A[i] += x;
if (j == A.length - 1) {
continue;
} else {
A[j + 1] += (x - (2 * x));
}
}
// create prefix sum
int[] ps = new int[A.length];
ps[0] = A[0];
for (int i = 1; i < A.length; i++) {
ps[i] = ps[i - 1] + A[i];
}
return ps;
}
static void solve(int[] A, int B) {
int n = A.length;
int start = 0;
int end = n - 1;
int sum = 0;
while (B > 0) {
int s = A[start];
int e = A[end];
if (s >= e) {
sum = sum + s;
start++;
} else {
sum = sum + e;
end--;
}
B--;
}
System.out.println(sum);
}
// Range Sum Query
static void rangeSum(int[] A, int[][] B) {
// create prefix sum
int n = A.length;
long[] ps = new long[n];
ps[0] = A[0];
for (int i = 1; i < n; i++) {
ps[i] = A[i] + ps[i - 1];
}
// now we will find sum of range by looping on 2d array
int r = B.length;
int c = B[0].length;
long[] ans = new long[r];
int count = 0;
for (int i = 0; i < r; i++) {
int start = B[i][0];
int end = B[i][1];
long sumij = 0;
if (start == 0) {
sumij = ps[end];
} else {
sumij = ps[end] - ps[start - 1];
}
ans[count] = sumij;
count++;
}
System.out.print(Arrays.toString(ans));
}
// Equlibrium Index
static void equlibriumIndex(int[] A) {
// ! 1. Find prefix sum
int n = A.length;
int ans = n + 1;
int[] ps = new int[n];
ps[0] = A[0];
for (int i = 1; i < n; i++) {
ps[i] = A[i] + ps[i - 1];
}
// ! 2. Iterate over prefix sum array considering every index as equlibrium
// ! index
for (int center = 0; center < A.length; center++) {
// calculating if( ps[0 , center-1] == ps[centre+1 , n-1]);
// ps[0 , center-1] = ps[centre -1];
// ps[centre+1 , n-1] = ps[n-1] - ps[centre+1 -1];
int leftSum = 0;
if (center == 0) {
leftSum = 0;
} else {
leftSum = ps[center - 1];
}
int rightSum = ps[n - 1] - ps[center];
if (leftSum == rightSum) {
ans = Math.min(ans, center);
}
}
// ! 3. print the answer
if (ans > n) {
System.out.println(-1);
} else {
System.out.println(ans);
}
}
// Special Index
static void specialIndex(int[] A) {
// sum of even == sum of odd ???
// sum[even left] + sum[even right] == sum[odd left] + sum[odd right]
// ! after removing an index the right values will toggle
// sum[even left] + sum[odd right] == sum[odd left] + sum[even right]
// 1. construct 2 prefix sum now [ even , odd]
int ans = 0;
int n = A.length;
int[] pse = new int[n];
int[] pso = new int[n];
pse[0] = A[0];
// even prefix sum array
for (int i = 1; i < n; i++) {
if (i % 2 == 0) {
pse[i] = A[i] + pse[i - 1];
} else {
pse[i] = pse[i - 1];
}
}
pso[0] = 0;
pso[1] = A[1];
// odd prefix sum array
for (int i = 2; i < n; i++) {
if (i % 2 == 0) {
pso[i] = pso[i - 1];
} else {
pso[i] = A[i] + pso[i - 1];
}
}
System.out.println(Arrays.toString(pso));
System.out.println(Arrays.toString(pse));
// loop through entire orignal array considering every index as special
// check if { sum[even left] + sum[odd right] == sum[odd left] + sum[even
// right] }
int sumEvenLeft = 0;
int sumOddLeft = 0;
int sumEvenRight = 0;
int sumOddRight = 0;
for (int i = 0; i < n; i++) {
int end = n - 1;
// ! 0 index check
if (i == 0) {
sumEvenLeft = 0;
sumEvenRight = pse[end] - pse[i];
sumOddRight = pso[end] - pso[i];
sumOddLeft = 0;
} else {
sumEvenLeft = pse[i - 1];
sumEvenRight = pse[end] - pse[i];
sumOddRight = pso[end] - pso[i];
sumOddLeft = pso[i - 1];
}
System.out.println(sumOddLeft);
System.out.println(sumEvenLeft);
System.out.println(sumOddRight);
System.out.println(sumEvenRight);
System.out.println("============");
if (sumEvenLeft + sumOddRight == sumOddLeft + sumEvenRight) {
ans++;
}
}
System.out.println(ans);
}
// pickFromBothSides
static void pickFromBothSides(int[] A, int B) {
// !observation : Think of all posible combinations of removing elements from
// front and back
// loop through all posible combinations and find max from that
int n = A.length;
// prefix and suffix array
int[] ps = new int[n];
int[] ss = new int[n];
ps[0] = A[0];
ss[n - 1] = A[n - 1];
for (int i = 1; i < n; i++) {
ps[i] = A[i] + ps[i - 1];
}
for (int i = n - 2; i >= 0; i--) {
ss[i] = A[i] + ss[i + 1];
}
System.out.println(Arrays.toString(ps));
System.out.println(Arrays.toString(ss));
int maxSum = Integer.MIN_VALUE;
int i = 0;
while (i <= B) {
// prefix sum of 0,0 + suffix sum of last b elements
int pSum = 0;
int sSum = 0;
if (i == 0) {
pSum = 0;
sSum = ss[n - B + i];
} else {
pSum = ps[i - 1];
if (i == B) {
sSum = 0;
} else {
sSum = ss[n - B + i];
}
}
int sum = pSum + sSum;
System.out.println(sum);
maxSum = Math.max(maxSum, sum);
i++;
}
System.out.println("========");
System.out.println(maxSum);
}
// In place prefix sum
static void inPlacePrefixSum(int[] A) {
int n = A.length;
// ! Approach 1
// int ps = A[0];
// for (int i = 1; i < n; i++) {
// ps = ps + A[i];
// A[i] = ps;
// }
// ! Approach 2
for (int i = 1; i < n; i++) {
A[i] += A[i - 1];
}
System.out.println(Arrays.toString(A));
}
// Even numbers in a range
static void evenInRange(int[] A, int[][] mat) {
int n = A.length;
// ! 1.) create a evenPrefix array
int[] psEven = new int[n];
int evenCount = 0;
for (int i = 0; i < n; i++) {
if (A[i] % 2 == 0) {
evenCount++;
}
psEven[i] = evenCount;
}
// ! 2.) Now loop through the given matrix of testcase to find any value
int rows = mat.length;
int[] ans = new int[rows];
for (int r = 0; r < rows; r++) {
if (mat[r][0] == 0) {
ans[r] = psEven[mat[r][1]];
} else {
ans[r] = psEven[mat[r][1]] - psEven[mat[r][0] - 1];
}
}
System.out.println(Arrays.toString(ans));
}
}