You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
however, this calls whiten() in PDMats with a scalar value (F.U defined directly as0.0 # ignored in the example when instantiating the B. Particle)
I couldn't find any whiten definion in PDMats that would accept a scalar (and I cannot imagine what it would mean), so is it perhaps that the API has changed and shortcut similar to this should be defined?
Error trace:
julia> el = @elapsed begin
trace, final, (acc, num), cs = @time pdmp(
dneglogp, # return first two directional derivatives of negative target log-likelihood in direction v
∇neglogp!, # return gradient of negative target log-likelihood
t0, x0, θ0, T, # initial state and duration
ZZB.LocalBound(c), # use Hessian information
Z; # sampler
adapt=true, # adapt bound c
progress=true, # show progress bar
subsample=true # keep only samples at refreshment times
)
end
ERROR: MethodError: no method matching whiten(::Float64, ::Vector{Float64})
Closest candidates are:
whiten(::AbstractMatrix, ::AbstractVecOrMat) at ~/.julia/packages/PDMats/ZW0lN/src/generics.jl:75
Stacktrace:
[1] record_rate(θ::Vector{Float64}, F::BouncyParticle{Nothing, Nothing, Float64, Float64, Diagonal{Float64, Vector{Float64}}})
@ ZigZagBoomerang ~/.julia/packages/ZigZagBoomerang/BNuRn/src/not_fact_samplers.jl:197
[2] pdmp(::var"#139#143"{Turing.LogDensityFunction{DynamicPPL.TypedVarInfo{NamedTuple{(:α, :β), Tuple{DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:α, Setfield.IdentityLens}, Int64}, Vector{Normal{Float64}}, Vector{AbstractPPL.VarName{:α, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:β, Setfield.IdentityLens}, Int64}, Vector{DiagNormal}, Vector{AbstractPPL.VarName{:β, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}}, Float64}, DynamicPPL.Model{typeof(lr_nuts), (:x, :y, :σ), (), (), Tuple{Matrix{Float64}, Vector{Float64}, Float64}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SampleFromPrior, Turing.ModeEstimation.OptimizationContext{DynamicPPL.DefaultContext}}}, ::var"#141#145"{Turing.LogDensityFunction{DynamicPPL.TypedVarInfo{NamedTuple{(:α, :β), Tuple{DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:α, Setfield.IdentityLens}, Int64}, Vector{Normal{Float64}}, Vector{AbstractPPL.VarName{:α, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:β, Setfield.IdentityLens}, Int64}, Vector{DiagNormal}, Vector{AbstractPPL.VarName{:β, Setfield.IdentityLens}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}}, Float64}, DynamicPPL.Model{typeof(lr_nuts), (:x, :y, :σ), (), (), Tuple{Matrix{Float64}, Vector{Float64}, Float64}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SampleFromPrior, Turing.ModeEstimation.OptimizationContext{DynamicPPL.DefaultContext}}}, ::Float64, ::Vector{Float64}, ::Vector{Float64}, ::Float64, ::ZigZagBoomerang.LocalBound{Float64}, ::BouncyParticle{Nothing, Nothing, Float64, Float64, Diagonal{Float64, Vector{Float64}}}; iter_offset::Int64, adapt_mass::Bool, oscn::Bool, adapt::Bool, subsample::Bool, progress::Bool, progress_stops::Int64, islocal::Bool, seed::Tuple{UInt64, UInt64}, factor::Float64)
@ ZigZagBoomerang ~/.julia/packages/ZigZagBoomerang/BNuRn/src/not_fact_samplers.jl:339
System Info:
Julia Version 1.8.0
Commit 5544a0fab76 (2022-08-17 13:38 UTC)
Platform Info:
OS: macOS (arm64-apple-darwin21.3.0)
CPU: 8 × Apple M1 Pro
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-13.0.1 (ORCJIT, apple-m1)
Threads: 1 on 6 virtual cores
Environment:
JULIA_EDITOR = nvim
Environment info:
(slightly different from the Project.toml in the repo, as it was for Julia 1.7 and it still had a local dev dependency on ZigZag, which I had to free first)
First of all, thank you for the awesome package!
I was keen to try it but I got stuck with a method error on whiten()
I've tried to execute by running the example
turing/lr.jl
as is.My debugging efforts have been unsuccessful:
pmdp()
callwhiten()
in PDMats with a scalar value (F.U
defined directly as0.0 # ignored
in the example when instantiating the B. Particle)Error trace:
System Info:
Environment info:
(slightly different from the Project.toml in the repo, as it was for Julia 1.7 and it still had a local dev dependency on ZigZag, which I had to free first)
The text was updated successfully, but these errors were encountered: