-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelements.py
912 lines (803 loc) · 33.3 KB
/
elements.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
"""
elements.py
Author: bedlamzd of MT.lab
Классы для переопределения элементов в dxf для удобства использования,
т.к. ezdxf не предоставляет методов необходимых для решения задачи.
"""
from typing import List, Union, Optional, Tuple, Dict
from itertools import count
from ezdxf.math.vector import Vector, NULLVEC
from ezdxf.math.bspline import BSpline
from re import findall
import numpy as np
import utilities
from utilities import X, Y, Z, pairwise, apprx_point_height, triangle_area
from numpy import cos, sin, pi
# TODO: нарзека одновременно с расчётом Z координаты
class Element():
"""
Общий класс с функциями общими для всех элементов, многие оверрайдятся в конкретных случаях
"""
def __init__(self, entity, points: List['Vector'] = None):
"""
Конструктор объекта
:param entity: элемент из dxf
"""
self.entity = entity
self.points = points # type: List[Vector]
self.sliced = False
self.with_z = False
self.backwards = False
self._length = None
self._flat_length = None
@property
def first(self) -> Vector:
return self.points[0] if not self.backwards else self.points[-1]
@property
def last(self) -> Vector:
return self.points[-1] if not self.backwards else self.points[0]
@property
def centroid(self) -> Vector:
try:
return self._centroid
except AttributeError:
centroid = NULLVEC
for p1, p2 in pairwise(self.points):
centroid += p1.lerp(p2)
self._centroid = centroid
return centroid
@property
def length(self) -> float:
if self._length is None:
length = 0
for v1, v2 in pairwise(self.points):
length += v1.distance(v2)
self._length = length
return self._length
@property
def flat_length(self) -> float:
if self._flat_length is None:
flat_length = 0
for v1, v2 in pairwise(self.points):
flat_length += v1.vec2.distance(v2.vec2)
self._flat_length = flat_length
return self._flat_length
def __str__(self) -> str:
return f'Element: {self.entity.dxftype()}\n ' + \
f'first point: {self.first}\n ' + \
f'last point: {self.last}'
def __repr__(self) -> str:
return f'Element: {self.entity.dxftype()}\n ' + \
f'first point: {self.first}\n ' + \
f'last point: {self.last}'
def translate(self, vector: 'Vector' = NULLVEC):
"""
Задать смещение для рисунка (добавить к нарезанным координатам смещение)
:param vector: величина смещение
:return: None
"""
self.points = [v + vector for v in self.points]
def rotate(self, angle: float, center: Vector = None):
if center is not None:
self.translate(-center)
self.points = [v.rotate(angle) for v in self.points]
if center is not None:
self.translate(center)
def best_distance(self, point: 'Vector' = NULLVEC) -> float:
"""
Вычисляет с какой стороны точка находится ближе к элементу и ориентирует его соответственно
:param point: точка от которой считается расстояние
:return: минимальное расстояние до одного из концов объекта
"""
dist2first = self.points[0].distance(point)
dist2last = self.points[-1].distance(point)
self.backwards = dist2last < dist2first
return min(dist2first, dist2last)
def get_points(self) -> List[Vector]:
"""
Возвращает точки
"""
return self.points if not self.backwards else self.points[::-1]
def get_sliced_points(self) -> List[Vector]:
"""
Возвращает нарезанные координаты
"""
if self.sliced:
return self.points if not self.backwards else self.points[::-1]
else:
return None
def slice(self, step=1):
"""
Нарезать элемент на более менее линии с заданным шагом
:param float step: шаг нарезки
:return:
"""
sliced = [self.points[0]]
for start, end in pairwise(self.points):
dist = start.distance(end)
n_steps = int(dist / step)
try:
param_step = step / dist
except ZeroDivisionError:
continue
v = Vector()
for i in range(n_steps):
v = start.lerp(end, param_step * (i + 1))
sliced.append(v)
if not v.isclose(end):
sliced.append(end)
self.points = sliced
self.sliced = True
self._length = None
def add_z(self, height_map: Optional[np.ndarray] = None, point_apprx=False, **kwargs):
if height_map is None:
pass
self.points = [v.replace(z=apprx_point_height(v, height_map, point_apprx=point_apprx, **kwargs)) for v in
self.points]
self.with_z = True
self._length = None
class Point(Element):
# TODO: написать обработку точек
pass
class Polyline(Element):
"""
Подкласс для элемента Полилиния из dxf
"""
def __init__(self, polyline):
points = [Vector(point) for point in polyline.points()]
super().__init__(polyline, points)
@property
def centroid(self):
try:
return self._centroid
except AttributeError:
points = [Vector(point) for point in self.entity.points()]
centroid = NULLVEC
for p1, p2 in pairwise(points):
centroid += p1.lerp(p2)
self._centroid = centroid
return centroid
def slice(self, step=1):
points = [Vector(point) for point in self.entity.points()]
sliced = [points[0]]
for start, end in pairwise(points):
dist = start.distance(end)
n_steps = int(dist / step)
try:
param_step = step / dist
except ZeroDivisionError:
continue
v = Vector()
for i in range(n_steps):
v = start.lerp(end, param_step * (i + 1))
sliced.append(v)
if not v.isclose(end):
sliced.append(end)
self.points = sliced
self.sliced = True
self._length = None
class LWPolyline(Polyline):
# TODO: написать обработку LW полилиний
pass
class Spline(Element, BSpline):
"""
Подкласс для объека Сплайн
"""
def __init__(self, spline):
control_points = [Vector(point) for point in spline.control_points]
knots = [knot for knot in spline.knots]
weights = [weight for weight in spline.weights] if spline.weights else None
order = spline.dxf.degree + 1
BSpline.__init__(self, control_points, order, knots, weights)
points = [point for point in self.approximate()]
Element.__init__(self, spline, points)
@property
def first(self):
return self.points[0] if not self.backwards else self.points[-1]
@property
def last(self):
return self.points[-1] if not self.backwards else self.points[0]
def slice(self, step=1):
# TODO: подумать как использовать градиентный спуск или т.п.
self.sliced = True
points = [Vector(point) for point in self.approximate(int(self.max_t / step))]
self.points = points
self._length = None
class Line(Element):
"""
Подкласс для объекта Линия
"""
def __init__(self, line):
points = [Vector(line.dxf.start), Vector(line.dxf.end)]
super().__init__(line, points)
@property
def centroid(self):
try:
return self._centroid
except AttributeError:
self._centroid = Vector(self.entity.dxf.start).lerp(self.entity.dxf.end)
return self._centroid
def slice(self, step=1):
points = [Vector(self.entity.dxf.start), Vector(self.entity.dxf.end)]
sliced = [points[0]]
for start, end in pairwise(points):
dist = start.distance(end)
n_steps = int(dist / step)
try:
param_step = step / dist
except ZeroDivisionError:
continue
v = Vector()
for i in range(n_steps):
v = start.lerp(end, param_step * (i + 1))
sliced.append(v)
if not v.isclose(end):
sliced.append(end)
self.points = sliced
self.sliced = True
self._length = None
class Circle(Element):
"""
Подкласс для объекта Окружность
"""
def __init__(self, circle):
self.center = circle.dxf.center # type: Vector
self.radius = circle.dxf.radius # type: float
points = [self.center.replace(x=self.center.x + self.radius),
self.center.replace(x=self.center.x + self.radius)]
super().__init__(circle, points=points)
@property
def flat_length(self):
if self._flat_length is None:
flat_length = 2 * pi * self.radius
self._flat_length = flat_length
return self._flat_length
def slice(self, step=1):
n_steps = int(self.flat_length / step)
angle_step = 2 * pi / n_steps
sliced = []
v = Vector()
for i in range(n_steps + 1):
v = self.first - self.center
v = v.rotate(i * angle_step)
v += self.center
sliced.append(v)
if not v.isclose(self.last):
sliced.append(self.last)
self.points = sliced
self.sliced = True
self._length = None
@property
def centroid(self):
return self.center
class Arc(Element):
"""
Подклас для объекта Дуга
"""
def __init__(self, arc):
self.center = arc.dxf.center # type: Vector
self.radius = arc.dxf.radius # type: float
self.start_angle = arc.dxf.start_angle * pi / 180 # в радианах
self.end_angle = arc.dxf.end_angle * pi / 180 # в радианах
if self.start_angle > self.end_angle:
self.end_angle += 2 * pi
points = [Vector.from_angle(self.start_angle, self.radius) + self.center,
Vector.from_angle(self.end_angle, self.radius) + self.center]
super().__init__(arc, points=points)
@property
def centroid(self):
try:
return self._centroid
except AttributeError:
centroid_x = self.radius / self.flat_length * (sin(self.end_angle) - sin(self.start_angle)) + self.center.x
centroid_y = self.radius / self.flat_length * (cos(self.start_angle) - cos(self.end_angle)) + self.center.y
self._centroid = Vector(centroid_x, centroid_y, 0)
return self._centroid
@property
def flat_length(self):
if self._flat_length is None:
flat_length = (self.end_angle - self.start_angle) * self.radius
self._flat_length = flat_length
return self._flat_length
def slice(self, step=1):
n_steps = int(self.flat_length / step)
angle_step = (self.end_angle - self.start_angle) / n_steps
sliced = []
v = Vector()
for i in range(n_steps + 1):
v = self.points[0] - self.center
v = v.rotate(i * angle_step)
v += self.center
sliced.append(v)
if not v.isclose(self.points[-1]):
sliced.append(self.points[-1])
self.sliced = True
self.points = sliced
self._length = None
def __str__(self):
return 'Arc object: ' + super().__str__()
class Ellipse(Element):
# TODO: написать обработку эллипсов
pass
class Contour:
def __init__(self, elements: Union[List[Element], Element] = None):
"""
:param elements: элементы составляющие контур
"""
self._length = None
self._flat_length = None
if elements is None:
self.elements = []
self.closed = False
else:
if isinstance(elements, List):
self.elements = elements
elif isinstance(elements, Element):
self.elements = [elements]
else:
raise TypeError('Contour should be either List[Element] or Element.')
if self.first_point == self.last_point:
self.closed = True
else:
self.closed = False
def __add__(self, other: Union['Contour', Element]) -> 'Contour':
if isinstance(other, Contour):
if not len(self):
elements = other.elements
self._length = None
self._flat_length = None
return Contour(elements)
if self.closed or other.closed:
raise Exception('Cannot add closed contours.')
"""
1. end to start
c1 + c2
2. end to end
c1 + c2.reversed
3. start to end
c2 + c1
4. start to start
c2.reversed + c1
"""
if self.last_point == other.first_point:
elements = self.elements + other.elements
# return Contour(elements)
elif self.last_point == other.last_point:
elements = self.elements + other.elements[::-1]
# return Contour(elements)
elif self.first_point == other.last_point:
elements = other.elements + self.elements
# return Contour(elements)
elif self.first_point == other.first_point:
elements = other.elements[::-1] + self.elements
# return Contour(elements)
else:
raise Exception('Contours not connected.')
# return Contour(elements)
elif isinstance(other, Element):
if self.last_point == other.first:
elements = self.elements + [other]
# return Contour(elements)
elif self.last_point == other.last:
elements = self.elements + [other]
other.backwards = not other.backwards
# return Contour(elements)
elif self.first_point == other.last:
elements = [other] + self.elements
# return Contour(elements)
elif self.first_point == other.first:
elements = [other] + self.elements
other.backwards = not other.backwards
# return Contour(elements)
else:
raise Exception('Shapes not connected.')
else:
raise TypeError('Can add only Contour or Element')
self._length = None
self._flat_length = None
return Contour(elements)
def add_element(self, element: Element):
if element in self.elements:
raise Exception('Element is in contour already.')
if not isinstance(element, Element):
raise TypeError('Adding object should be Element.')
if self.first_point == element.last:
self.elements = [element] + self.elements
elif self.last_point == element.first:
self.elements += [element]
elif self.first_point == element.first:
element.backwards = not element.backwards
self.elements = [element] + self.elements
elif self.last_point == element.last:
element.backwards = not element.backwards
self.elements += [element]
else:
raise Exception('Element does not connected to contour.')
def __len__(self):
return len(self.elements)
def __getitem__(self, item: Union[int, slice]) -> Element:
return self.elements[item]
def __reversed__(self):
for element in self.elements[::-1]:
yield element
@property
def first_element(self) -> Element:
return self.elements[0]
@property
def last_element(self) -> Element:
return self.elements[-1]
@property
def first_point(self) -> Vector:
return self.first_element.first
@property
def last_point(self) -> Vector:
return self.last_element.last
@property
def flat_length(self) -> float:
if self._flat_length is None:
flat_length = 0
for element in self.elements:
flat_length += element.flat_length
self._flat_length = flat_length
return self._flat_length
@property
def length(self) -> float:
if self._length is None:
length = 0
for element in self.elements:
length += element.length
self._length = length
return self._length
def isclose(self, other: Union[Vector, Element, "Contour"], abs_tol: float = 1e-12) -> bool:
if isinstance(other, Vector):
close2first = self.first_point.isclose(other, abs_tol)
close2last = self.last_point.isclose(other, abs_tol)
return close2first or close2last
elif isinstance(other, Element):
close2first = self.first_point.isclose(other.first, abs_tol) or self.first_point.isclose(other.last,
abs_tol)
close2last = self.last_point.isclose(other.first, abs_tol) or self.last_point.isclose(other.last, abs_tol)
return close2first or close2last
elif isinstance(other, Contour):
close2first = self.first_point.isclose(other.first_point, abs_tol) or self.first_point.isclose(
other.last_point,
abs_tol)
close2last = self.last_point.isclose(other.first_point, abs_tol) or self.last_point.isclose(
other.last_point,
abs_tol)
return close2first or close2last
else:
raise TypeError('Should be Vector or Element or Contour.')
def best_distance(self, point: Vector = NULLVEC) -> float:
dist2first = 0 if self.first_point == point else self.first_point.distance(point)
dist2last = 0 if self.last_point == point else self.last_point.distance(point)
return min(dist2first, dist2last)
def get_points(self) -> List[Vector]:
points = []
for element in self.elements:
points += element.get_points()
return points
def get_sliced_points(self) -> List[Vector]:
points = []
for element in self.elements:
points += element.get_sliced_points()
return points
class Layer:
number_generator = count()
def __init__(self, name=None, contours: Union[List[Contour], Contour] = None, priority=None):
if isinstance(contours, List):
self.contours = contours
elif isinstance(contours, Contour):
self.contours = [contours]
elif contours is None:
self.contours = []
self.number = next(Layer.number_generator)
self.name = name if name is not None else f'Layer {self.number}'
self.cookieContour = True if name == 'Contour' else False
self.priority = priority if priority is not None else 0
def add_contour(self, contours: Union[List[Contour], Contour]):
if isinstance(contours, List):
self.contours += contours
elif isinstance(contours, Contour):
self.contours += [contours]
def get_elements(self):
elements = []
for contour in self.contours:
elements += contour.elements
return elements
class Drawing:
"""
Attributes:
dxf: An ezdxf Drawing which basically contains all the necessary data
modelspace: A dxf.modelspace(), only for a convenience
layers Dict[str, Layer] : A dict of [layer.name, layer]
elements List[Element]: Contains all graphic entities from dxf.
contours List[Contour]: Contains all contours found in layers.
center Vector: Drawing geometrical center.
rotation float: Drawing angle or orientation.
organized bool: True if elements are ordered and contours are constructed
"""
def __init__(self, dxf=None, center: Vector = None, rotation: float = None):
"""
:param dxf: открытый библиотекой рисунок
:param center: смещение центра рисунка
:param rotation: угол поворота рисунка (его ориентация)
lookup Drawing for more
"""
self.layers = {} # type: Dict[str, Layer]
self.elements = [] # type: List[Element]
self.contours = [] # type: List[Contour]
self.organized = False # type: bool
self._length = None
self._flat_length = None
if dxf is None:
self.dxf = None
self.modelspace = None
else:
self.dxf = dxf
self.modelspace = self.dxf.modelspace()
self.read_by_layer()
self._center, self._rotation = self.find_center_and_rotation()
if center is not None:
self.center = center
if rotation is not None:
self.rotation = rotation
def __str__(self):
return f'Геометрический центр рисунка: X: {self.center[X]:4.2f} Y: {self.center[Y]:4.2f} мм\n' + \
f'Ориентация рисунка: {self.rotation * 180 / pi: 4.2f} градуса\n' + \
f'Общая плоская длина рисунка: {self.flat_length: 4.2f} мм'
@property
def center(self) -> Vector:
return self._center
@center.setter
def center(self, center: Union[Vector, List[float], Tuple[float]]):
center = Vector(center)
self.translate(center - self._center)
self._center = center
def translate(self, vector: Vector):
for element in self.elements:
element.translate(vector)
@property
def rotation(self) -> float:
return self._rotation
@rotation.setter
def rotation(self, angle: float):
self.rotate(angle - self._rotation)
self._rotation = angle
def rotate(self, angle: float):
for element in self.elements:
element.rotate(angle, self.center)
def find_center_and_rotation(self) -> Tuple[Vector, float]:
"""
Расчитывает геометрический центр рисунка
:return:
"""
cookie_contour_layer = self.layers.get('Contour')
if cookie_contour_layer is None:
# TODO: place warning here
return NULLVEC, 0
else:
points = []
for element in cookie_contour_layer.get_elements():
element.slice(0.1)
points += element.get_points()
points = np.asarray([list(v.vec2) for v in points], dtype=np.float32)
center, rotation = utilities.find_center_and_rotation(points[:, np.newaxis, :], True)
return center, rotation
@property
def length(self) -> float:
if self._length is None:
length = 0
for element in self.elements:
length += element.length
self._length = length
return self._length
@property
def flat_length(self) -> float:
if self._flat_length is None:
flat_length = 0
for element in self.elements:
flat_length += element.flat_length
self._flat_length = flat_length
return self._flat_length
def read_dxf(self, root):
for element in root:
if element.dxftype() == 'INSERT':
block = self.dxf.blocks[element.dxf.name]
self.read_dxf(block)
elif element_redef(element):
self.elements.append(element_redef(element))
self.organized = False
print('dxf прочтён.')
def read_entities(self, root, entities=None):
if entities is None:
entities = []
for element in root:
if element.dxftype() == 'INSERT':
block = self.dxf.blocks[element.dxf.name]
entities += self.read_entities(block)
elif element_redef(element):
entities.append(element_redef(element))
print('элементы получены')
return entities
def read_by_layer(self):
layers = {}
elements_in_dwg = []
contours_in_dwg = []
for layer in self.dxf.layers:
name = layer.dxf.name
print(f'чтение слоя {name}')
if name == 'Defpoints':
print(' пропуск')
continue
priority = findall('\d+', name)
priority = int(priority[0]) if priority else None
entities_in_layer = self.modelspace.query(f'*[layer=="{name}"]')
entities_in_layer = self.read_entities(entities_in_layer)
if not entities_in_layer:
continue
entities_in_layer = self.organize_entities(entities_in_layer)
elements_in_dwg += entities_in_layer
contours_in_layer = self.make_contours(entities_in_layer)
contours_in_dwg += contours_in_layer
layers[name] = Layer(name, contours_in_layer, priority)
self.layers = layers
self.elements = elements_in_dwg
self.contours = contours_in_dwg
self.organized = True
print('файл прочтён')
def slice(self, step: float = 1.0):
for element in self.elements:
element.slice(step)
self._length = None
print(f'Объекты нарезаны с шагом {step:2.1f} мм')
def add_z(self, height_map: Optional[np.ndarray] = None, point_apprx=False, **kwargs):
for element in self.elements:
element.add_z(height_map, point_apprx=point_apprx, **kwargs)
self._length = None
def organize_entities(self, entities: List[Element], start_point: Vector = NULLVEC):
path = []
elements = entities
# сортировать элементы по их удалению от точки
elements.sort(key=lambda x: x.best_distance(start_point))
while len(elements) != 0:
# первый элемент в списке (ближайший к заданной точке) - текущий
current = elements[0]
# добавить его в сориентированный массив
path.append(current)
# убрать этот элемент из неотсортированного списка
elements.pop(0)
# отсортировать элементы по их удалению от последней точки предыдущего элемента
elements.sort(key=lambda x: x.best_distance(current.last))
print('элементы отсортированы')
return path
def make_contours(self, entities: List[Element]):
contour = Contour([entities[0]])
contours = []
for element in entities[1:]:
if contour.isclose(element) and not contour.closed:
contour += element
else:
contours.append(contour)
contour = Contour([element])
contours.append(contour)
i = -1
while i < len(contours) - 1:
if contours[i].isclose(contours[i + 1]) and not contours[i].closed and not contours[i + 1].closed:
if i == -1:
contours[i + 1] = contours[i] + contours[i + 1]
del contours[i]
else:
contours[i:i + 2] = [contours[i] + contours[i + 1]]
else:
i += 1
print('контуры составлены')
return contours
def organize_elements(self, start_point=(0, 0)):
"""
Сортирует и ориентирует элементы друг за другом относительно данной точки
:param start_point: точка, относительно которой выбирается первый элемент
:return list of Element path: отсортированный и ориентированный массив элементов
"""
path = []
elements = self.elements.copy()
# сортировать элементы по их удалению от точки
elements.sort(key=lambda x: x.best_distance(start_point))
while len(elements) != 0:
# первый элемент в списке (ближайший к заданной точке) - текущий
current = elements[0]
# добавить его в сориентированный массив
path.append(current)
# убрать этот элемент из неотсортированного списка
elements.pop(0)
# отсортировать элементы по их удалению от последней точки предыдущего элемента
elements.sort(key=lambda x: x.best_distance(current.last))
self.elements = path
self.organized = True
print('Сформирована очередность элементов.')
def find_contours(self):
contour = Contour([self.elements[0]])
contours = []
for element in self.elements[1:]:
if contour.isclose(element):
contour += element
else:
contours.append(contour)
contour = Contour([element])
contours.append(contour)
i = -1
while i < len(contours) - 1:
if contours[i].isclose(contours[i + 1]):
if i == -1:
contours[i + 1] = contours[i] + contours[i + 1]
del contours[i]
else:
contours[i:i + 2] = [contours[i] + contours[i + 1]]
else:
i += 1
self.contours = contours
print('Найдены контуры.')
def get_centroid(poly):
"""Calculates the centroid of a non-intersecting polygon.
Args:
poly: a list of points, each of which is a list of the form [x, y].
Returns:
the centroid of the polygon in the form [x, y].
Raises:
ValueError: if poly has less than 3 points or the points are not
formatted correctly.
"""
# Make sure poly is formatted correctly
if len(poly) < 3:
raise ValueError('polygon has less than 3 points')
for point in poly:
if 2 != len(point):
raise ValueError('point is not a list of length 2')
# Calculate the centroid from the weighted average of the polygon's
# constituent triangles
area_total = 0
centroid_total = [float(poly[0][0]), float(poly[0][1])]
for i in range(0, len(poly) - 2):
# Get points for triangle ABC
a, b, c = poly[0], poly[i + 1], poly[i + 2]
# Calculate the signed area of triangle ABC
area = triangle_area(a, b, c, True)
# If the area is zero, the triangle's line segments are
# colinear so we should skip it
if 0 == area:
continue
# The centroid of the triangle ABC is the average of its three
# vertices
centroid = [(a[0] + b[0] + c[0]) / 3.0, (a[1] + b[1] + c[1]) / 3.0]
# Add triangle ABC's area and centroid to the weighted average
centroid_total[0] = ((area_total * centroid_total[0]) +
(area * centroid[0])) / (area_total + area)
centroid_total[1] = ((area_total * centroid_total[1]) +
(area * centroid[1])) / (area_total + area)
area_total += area
return centroid_total
def element_redef(element) -> Optional[Element]:
"""
Функция для переопределения полученного элемента в соответствующий подкласс класса Element
:param element: элемент из dxf
:return: переопределение этого элемента
"""
if element.dxftype() == 'POLYLINE':
return Polyline(element)
elif element.dxftype() == 'SPLINE':
return Spline(element)
elif element.dxftype() == 'LINE':
return Line(element)
elif element.dxftype() == 'CIRCLE':
return Circle(element)
elif element.dxftype() == 'ARC':
return Arc(element)
elif element.dxftype() == 'ELLIPSE':
pass
elif element.dxftype() == 'LWPOLYLINE':
pass
elif element.dxftype() == 'POINT':
pass
else:
print('Unknown element.')
return None