-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathby VGG
229 lines (180 loc) · 7.24 KB
/
by VGG
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import torch
import math
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchvision import datasets, transforms
import torch.nn.functional as F
import time
import os
import torch.backends.cudnn as cudnn
os.environ["CUDA_VISIBLE_DEVICES"] = '0' # GPU Number
start_time = time.time()
batch_size = 128
learning_rate = 0.001
root_dir = 'drive/app/cifar10/'
default_directory = 'drive/app/torch/save_models'
# Data Augmentation
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4), # Random Position Crop
transforms.RandomHorizontalFlip(), # right and left flip
transforms.ToTensor(), # change [0,255] Int value to [0,1] Float value
transforms.Normalize(mean=(0.4914, 0.4824, 0.4467), # RGB Normalize MEAN
std=(0.2471, 0.2436, 0.2616)) # RGB Normalize Standard Deviation
])
transform_test = transforms.Compose([
transforms.ToTensor(), # change [0,255] Int value to [0,1] Float value
transforms.Normalize(mean=(0.4914, 0.4824, 0.4467), # RGB Normalize MEAN
std=(0.2471, 0.2436, 0.2616)) # RGB Normalize Standard Deviation
])
# automatically download
train_dataset = datasets.CIFAR10(root=root_dir,
train=True,
transform=transform_train,
download=True)
test_dataset = datasets.CIFAR10(root=root_dir,
train=False,
transform=transform_test)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True, # at Training Procedure, Data Shuffle = True
num_workers=4) # CPU loader number
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False, # at Test Procedure, Data Shuffle = False
num_workers=4) # CPU loader number
class VGG(nn.Module):
def __init__(self, num_classes=10):
super(VGG, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.GELU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.GELU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.GELU(),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.GELU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.GELU(),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.GELU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.GELU(),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.GELU(),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(512, 512),
nn.GELU(),
nn.Dropout(),
nn.Linear(512, 512),
nn.GELU(),
nn.Linear(512, num_classes),
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
model = VGG()
optimizer = optim.SGD(model.parameters(), learning_rate,
momentum=0.9,
weight_decay=1e-4,
nesterov=True)
criterion = nn.CrossEntropyLoss()
scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=0.01, max_lr=0.1)
if torch.cuda.device_count() > 0:
print("USE", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model).cuda()
cudnn.benchmark = True
else:
print("USE ONLY CPU!")
def train(epoch):
model.train()
train_loss = 0
total = 0
correct = 0
for batch_idx, (data, target) in enumerate(train_loader):
if torch.cuda.is_available():
data, target = Variable(data.cuda()), Variable(target.cuda())
else:
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(output.data, 1)
total += target.size(0)
correct += predicted.eq(target.data).cpu().sum()
if batch_idx % 10 == 0:
print('Epoch: {} | Batch_idx: {} | Loss: ({:.4f}) | Acc: ({:.2f}%) ({}/{})'
.format(epoch, batch_idx, train_loss / (batch_idx + 1), 100. * correct / total, correct, total))
def test():
model.eval()
test_loss = 0
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(test_loader):
if torch.cuda.is_available():
data, target = Variable(data.cuda()), Variable(target.cuda())
else:
data, target = Variable(data), Variable(target)
outputs = model(data)
loss = criterion(outputs, target)
test_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += target.size(0)
correct += predicted.eq(target.data).cpu().sum()
print('# TEST : Loss: ({:.4f}) | Acc: ({:.2f}%) ({}/{})'
.format(test_loss / (batch_idx + 1), 100. * correct / total, correct, total))
def save_checkpoint(directory, state, filename='latest.tar.gz'):
if not os.path.exists(directory):
os.makedirs(directory)
model_filename = os.path.join(directory, filename)
torch.save(state, model_filename)
print("=> saving checkpoint")
def load_checkpoint(directory, filename='latest.tar.gz'):
model_filename = os.path.join(directory, filename)
if os.path.exists(model_filename):
print("=> loading checkpoint")
state = torch.load(model_filename)
return state
else:
return None
start_epoch = 0
checkpoint = load_checkpoint(default_directory)
if not checkpoint:
pass
else:
start_epoch = checkpoint['epoch'] + 1
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
for epoch in range(start_epoch, 165):
train(epoch)
scheduler.step()
save_checkpoint(default_directory, {
'epoch': epoch,
'model': model,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
})
test()
now = time.gmtime(time.time() - start_time)
print('{} hours {} mins {} secs for training'.format(now.tm_hour, now.tm_min, now.tm_sec))