-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathobject_detection_YOLO.py
199 lines (132 loc) · 5.92 KB
/
object_detection_YOLO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import tensorflow as tf
k= int(tf.__version__.split('.')[0])
if k >=2:
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import tensornets as nets
import cv2
import numpy as np
import time
import argparse
import sys
from create_folder import createFolder
tf.disable_v2_behavior()
class YoloObjectDetection():
def __init__(self):
self.url1 = []
self.inputs = tf.placeholder(tf.float32, [None, 416, 416, 3])
self.model = nets.YOLOv3COCO(self.inputs, nets.Darknet19)
self.cap = []
self.query_obj_type = []
# model = nets.YOLOv2(inputs, nets.Darknet19)
# frame=cv2.imread("D://pyworks//yolo//truck.jpg",1)
self.count = 0
self.classes = {'0': 'person', '1': 'bicycle', '2': 'car', '3': 'bike', '5': 'bus', '7': 'truck', '8': 'chair'}
self.list_of_classes = [0, 1, 2, 3, 5, 7, 8]
def init_tf_session(self):
with tf.Session().as_default() as self.sess:
self.sess.run(self.model.pretrained())
def get_cropped_image(self):
ret, frame = self.cap.read()
img = cv2.resize(frame, (416, 416))
copy_img = img.copy()
imge = np.array(img).reshape(-1, 416, 416, 3)
start_time = time.time()
preds = self.sess.run(self.model.preds, {self.inputs: self.model.preprocess(imge)})
#print("--- %s seconds ---" % (time.time() - start_time))
boxes = self.model.get_boxes(preds, imge.shape[1:3])
# cv2.namedWindow('image', cv2.WINDOW_NORMAL)
#
# cv2.resizeWindow('image', 700, 700)
# print("--- %s seconds ---" % (time.time() - start_time))
boxes1 = np.array(boxes)
img_list = []
box_list = []
for j in self.list_of_classes:
count = 0
if str(j) in self.classes:
lab = self.classes[str(j)]
if lab == self.query_obj_type:
if len(boxes1) != 0:
for i in range(len(boxes1[j])):
box = boxes1[j][i]
if boxes1[j][i][4] >= 0.5:
count += 1
crop_img = copy_img[int(box[1]):int(box[3]), int(box[0]):int(box[2])]
# cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 1)
# cv2.putText(img, lab, (box[0], box[1]), cv2.FONT_HERSHEY_SIMPLEX, .5, (0, 0, 255),
# lineType=cv2.LINE_AA)
img_list.append(crop_img)
box_list.append(box)
return box_list,img_list, img
def crop_and_save(self):
with tf.Session() as sess:
sess.run(self.model.pretrained())
# "D://pyworks//yolo//videoplayback.mp4"
cap = cv2.VideoCapture(self.url1)
while (cap.isOpened()):
ret, frame = cap.read()
img = cv2.resize(frame, (416, 416))
copy_img = img.copy()
imge = np.array(img).reshape(-1, 416, 416, 3)
start_time = time.time()
preds = sess.run(self.model.preds, {self.inputs: self.model.preprocess(imge)})
print("--- %s seconds ---" % (time.time() - start_time))
boxes = self.model.get_boxes(preds, imge.shape[1:3])
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.resizeWindow('image', 700, 700)
# print("--- %s seconds ---" % (time.time() - start_time))
boxes1 = np.array(boxes)
for j in self.list_of_classes:
count = 0
if str(j) in self.classes:
lab = self.classes[str(j)]
if len(boxes1) != 0:
for i in range(len(boxes1[j])):
box = boxes1[j][i]
if boxes1[j][i][4] >= 0.5:
count += 1
crop_img = copy_img[int(box[1]):int(box[3] ), int(box[0]):int(box[2])]
cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 1)
cv2.putText(img, lab, (box[0], box[1]), cv2.FONT_HERSHEY_SIMPLEX, .5, (0, 0, 255),
lineType=cv2.LINE_AA)
cv2.imshow("cropped_image", crop_img)
cv2.waitKey(1)
dir = "temp/" + lab + "/"
createFolder(dir)
s1 = dir + '{}.jpg'.format(self.count)
self.count = self.count + 1
print("\n object_count :", self.count)
cv2.imwrite(s1, crop_img)
#print(lab, ": ", count)
cv2.imshow("image", img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def main(args):
objectDetetcion = YoloObjectDetection()
objectDetetcion.url1 = args.video_dir
objectDetetcion.cap = cv2.VideoCapture(objectDetetcion.url1)
objectDetetcion.crop_and_save()
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--video_dir', type=str,
help='Path to the data directory containing aligned LFW face patches.')
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))
#objectDetetcion.init_tf_session()
# for i in range(1000):
# print("Press Enter ")
# imgs = objectDetetcion.get_cropped_image()
#
# for index, img in enumerate(imgs) :
# cv2.waitKey(0)
#
# if index == 3:
# break
#
# cv2.imshow(str(index), img)
#
# print(len(imgs))