-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsolver.py
295 lines (241 loc) · 11.8 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from data_utils import *
# from logger import Logger
from im_2_pcd_conv import Im2PcdConv
from im_2_pcd_graph import Im2PcdGraph
from random import shuffle
import numpy as np
import matplotlib.pyplot as plt
import time
import copy
import gc
import sys
import argparse
import shutil
import torch
from torch.autograd import Variable
from torch.utils.tensorboard import SummaryWriter
import tensorflow as tf
from torch.utils.data import DataLoader
import torchvision.transforms as TV
from point_set_gen import PointSetGen
class Solver(object):
default_adam_args = {"lr": 1e-4,
"betas": (0.9, 0.999),
"eps": 1e-8,
"weight_decay": 0.0}
def __init__(self, optim=torch.optim.Adam, optim_args={},
loss_func=torch.nn.CrossEntropyLoss(), name='runs/model_bckp_st'):
optim_args_merged = self.default_adam_args.copy()
optim_args_merged.update(optim_args)
self.optim_args = optim_args_merged
self.optim = optim
self.loss_func = loss_func
self._reset_histories()
self.name = name
self.writer = SummaryWriter()
def _reset_histories(self):
"""
Resets train and val histories for the accuracy and the loss.
"""
self.train_loss_history = []
self.val_loss_history = []
self.train_iou_history = []
self.val_iou_history = []
self.train_fscore_history = []
self.val_fscore_history = []
def train(self, model, dataloaders, start_epoch, num_epochs=10, log_nth=0, img_to_track_progress=None):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_loss = 10000.0
optim = self.optim(model.parameters(), **self.optim_args)
self._reset_histories()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# device = torch.device("cpu")
model.to(device)
if img_to_track_progress is not None:
ensure_dir('./model_progress/000000001.pcd')
img_to_track_progress = img_to_track_progress.to(device).unsqueeze(0)
iter_per_epoch = {mode: len(dataloaders[mode]) for mode in ['train', 'val']}
max_iter_per_epoch = max(iter_per_epoch.values())
print('START TRAIN.')
model.save(self.name)
# loop over the dataset multiple times
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch + 1, num_epochs))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['val', 'train']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_iou = 0.0
running_fscore = 0.0
# torch.random.manual_seed(torch.random.default_generator.seed() // 17)
# Iterate over data.
for i, data in enumerate(dataloaders[phase]):
# get the inputs
inputs, pcd, pcd_norms = data
inputs = inputs.to(device)
pcd = pcd.to(device)
pcd_norms = pcd_norms.to(device)
# zero the parameter gradients
optim.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
# Get model outputs and calculate loss
outputs = model(inputs)
loss, fscore = self.loss_func(outputs, pcd, pcd_norms, device)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optim.step()
# compute iou
iou = batch_voxelized_iou(outputs, pcd, voxel_size=2/32)
if log_nth > 0 and (i + 1) % log_nth == 0:
# print every log_nth mini-batches
step = (start_epoch + epoch) * max_iter_per_epoch + int(i / iter_per_epoch[phase] * max_iter_per_epoch)
print('[Iteration {}/{}] {} Loss / IoU / Fscore: {:.4f} / {:.4f} / {:.4f}'.format(i + 1, iter_per_epoch[phase], phase, loss, iou, fscore))
# ================================================================== #
# Tensorboard Logging #
# ================================================================== #
# 1. Log scalar values (scalar summary)
loss_info = {'{}'.format(phase): loss.item()}
iou_info = {'{}'.format(phase): iou}
fscore_info = {'{}'.format(phase): fscore}
self.writer.add_scalars('Losses', loss_info, step + 1)
self.writer.add_scalars('IoU', iou_info, step + 1)
self.writer.add_scalars('Fscore', fscore_info, step + 1)
# if phase == 'train':
# # 2. Log values and gradients of the parameters (histogram summary)
# for tag, value in model.named_parameters():
# tag = tag.replace('.', '/')
# self.writer.add_histogram(tag, value.data.cpu().numpy(), step + 1)
# self.writer.add_histogram(tag+'/grad', value.grad.data.cpu().numpy(), step+1)
# # 3. Log training images (image summary)
# info = {'images': inputs[:10].cpu().numpy()}
# for tag, images in info.items():
# for i in range(images.shape[0]):
# self.writer.add_image(tag, images[i], step + 1)
# statistics
running_loss += loss.item() * inputs.size(0)
running_iou += iou * inputs.size(0)
running_fscore += fscore * inputs.size(0)
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_iou = running_iou / len(dataloaders[phase].dataset)
epoch_fscore = running_fscore / len(dataloaders[phase].dataset)
print('{} Loss / IoU / Fscore: {:.4f} / {:.4f} / {:.4f}'.format(phase, epoch_loss, epoch_iou, epoch_fscore))
# deep copy the model
if phase == 'val':
self.val_loss_history.append(epoch_loss)
self.val_iou_history.append(epoch_iou)
self.val_fscore_history.append(epoch_fscore)
# store best model
if epoch_loss < best_loss:
best_loss = epoch_loss
best_model_wts = copy.deepcopy(model.state_dict())
best_name = self.name[:-4] + '_best.obj'
print('Saving best model...')
model.save(best_name)
# track progress
if img_to_track_progress is not None:
pcd_pred = model(img_to_track_progress).squeeze(0)
path_to_save_progress = './model_progress/{0:09}.pcd'.format(epoch+1)
save_geometry(pcd_pred, path_to_save=path_to_save_progress)
else:
self.train_loss_history.append(epoch_loss)
self.train_iou_history.append(epoch_iou)
self.train_fscore_history.append(epoch_fscore)
print('saving model...')
model.save(self.name)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val loss: {:4f}'.format(best_loss))
# load best model weights
model.load_state_dict(best_model_wts)
def loss(pred, target, target_norms, device):
l, m = losses(pred, target, target_norms, device)
return 1. * l['cd'] + 0.5 * l['el'] + 0.25 * l['nl'], m['fscore']
if __name__ == '__main__':
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-x", "--images", required=True,
help="path to images")
ap.add_argument("-y", "--points", required=True,
help="path to pcds")
ap.add_argument("-m", "--path_to_save_model", required=True,
help="path to pcds")
ap.add_argument('-n', '--net', help='model to use', default='ST')
ap.add_argument('-lr', '--lr', help='learning rate', default=1e-4, type=float)
ap.add_argument('-wd', '--wd', help='L2 decay', default=1e-4, type=float)
args = vars(ap.parse_args())
print('Args =', args)
# img_transform = TV.Compose([TV.ToTensor(), TV.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
img_transform = TV.Compose([TV.ToTensor()])
points_to_sample = 14*14*6 if args['net'] is 'ST' else 14*14*6
train_im2pcd = Im2PCD(args['images'],
args['points'],
train=True,
cache_pcds=True,
generate_norms=True,
img_transform=img_transform,
pts_to_save=points_to_sample)
test_im2pcd = Im2PCD(args['images'],
args['points'],
train=False,
cache_pcds=True,
generate_norms=True,
img_transform=img_transform,
pts_to_save=points_to_sample)
train_loader = DataLoader(train_im2pcd, batch_size=16, shuffle=True, pin_memory=torch.cuda.is_available())
test_loader = DataLoader(test_im2pcd, batch_size=16, shuffle=True, pin_memory=torch.cuda.is_available())
dataloaders = {'train': train_loader,
'val': test_loader}
print("Train size: %i" % len(train_im2pcd))
print("Img size: ", train_im2pcd[0][0].size())
print("PCD size: ", train_im2pcd[0][1].size())
if args['net'] is 'ST':
model = Im2PcdConv(num_points=14*14*6)
else:
model = PointSetGen()
k = 0
for p in model.parameters():
k += p.size().numel()
print(model)
print('Number of parameters: {}'.format(k))
shutil.rmtree('./runs', ignore_errors=True)
solver = Solver(optim_args={"lr": args['lr'], "weight_decay": args['wd']}, loss_func=loss, name=args['path_to_save_model'])
img_progress, pcd_progress, pcd_norms_progress = test_im2pcd[1]
solver.train(model,
dataloaders,
log_nth=100,
start_epoch=0,
num_epochs=50,
img_to_track_progress=img_progress)
model.save(args['path_to_save_model'])
f = plt.figure(figsize=(30, 10))
p1 = f.add_subplot(131)
p1.plot(solver.train_loss_history)
p1.plot(solver.val_loss_history)
p1.legend(['train loss', 'validation loss'])
p1.set_xlabel('Epochs')
p1.set_ylabel('Loss')
p1.set_title('Im2PCD Loss')
p2 = f.add_subplot(132)
p2.plot(solver.train_iou_history)
p2.plot(solver.val_iou_history)
p2.legend(['train iou', 'validation iou'])
p2.set_xlabel('Epochs')
p2.set_ylabel('IoU')
p2.set_title('Im2PCD IoU')
p3 = f.add_subplot(1, 3, 3)
p3.plot(solver.train_fscore_history)
p3.plot(solver.val_fscore_history)
p3.legend(['train fscore', 'validation fscore'])
p3.set_xlabel('Epochs')
p3.set_ylabel('Fscore')
p3.set_title('Im2PCD Fscore')
plt.savefig('learning_curves.png')