-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeep_Func2class_v2.py
335 lines (277 loc) · 12.3 KB
/
Deep_Func2class_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import os, time
import warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' #Hide messy TensorFlow warnings
warnings.filterwarnings("ignore") #Hide messy Numpy warnings
start = time.time()
from keras.datasets import mnist
from keras import utils as np_utils
from keras.models import Model, load_model
from keras.callbacks import EarlyStopping, ModelCheckpoint , ReduceLROnPlateau
from keras.layers import Dense, Dropout, Input, Conv1D,MaxPool1D,Flatten,Reshape,LSTM, Conv2D,MaxPool2D
import numpy as np
import h5py
print('deep-libs imported elaT=%.1f sec'%(time.time() - start))
#............................
from keras.callbacks import Callback
import keras.backend as K
class MyLearningTracker(Callback):
def __init__(self):
self.hir=[]
def on_epoch_end(self, epoch, logs={}):
optimizer = self.model.optimizer
#lr = K.eval(optimizer.lr * (1. / (1. + optimizer.decay * optimizer.iterations)))
lr = K.eval(optimizer.lr)
self.hir.append(lr)
#............................
#............................
#............................
class Deep_Func2class_v2(object):
def __init__(self,**kwargs):
for k, v in kwargs.items():
self.__setattr__(k, v)
for xx in [ self.dataPath, self.outPath]:
if os.path.exists(xx): continue
print('Aborting on start, missing dir:',xx)
exit(99)
print(self.__class__.__name__,'TF ver:', K.tf.__version__,', prj:',self.prjName)
self.data={}
''' data container holds only X-values
data[dom][X,Y], where dom=train/val/test, X=func, Y=0/1
'''
#............................
def read_mnist_raw(self):
print('read raw data')
# Load pre-shuffled MNIST data into train and test sets
(X, Y), (Xt, Yt) = mnist.load_data()
self.raw={}
self.raw['Xorg']=np.concatenate((X,Xt))
self.raw['Yorg']=np.concatenate((Y,Yt))
print('raw MNIST Xorg sum',self.raw['Xorg'].shape)
#............................
def select_digits_and_split(self,digL):
assert len(digL)==2
print('select_digits:',digL)
#self.roleL={'neg':digL[0],'pos':digL[1]} #???
trainFrac=0.7; valFrac=0.1
prob2=trainFrac+valFrac
assert prob2 <1
assert trainFrac <prob2
self.data={dom:{'X':[],'Y':[]} for dom in ['train','val','test']}
n=0
for x,d in zip(self.raw['Xorg'],self.raw['Yorg']):
if n > self.events and self.events>0 : break
if d not in digL: continue # skip not used digits
n+=1
if self.funcDim=='h1dim':
xf=x.flatten().astype(float)
else:
xf=x.astype(float)
sum=np.sum(xf)/100.
xf/=sum
y= d==digL[1] # binary label
r=np.random.uniform()
if r <trainFrac :
dom='train'
elif r <prob2 :
dom='val'
else:
dom='test'
self.data[dom]['X'].append(xf)
self.data[dom]['Y'].append(y)
print('split summary for ',self.data.keys())
for dom in self.data:
ddd=self.data[dom]
for xy in ddd:
ddd[xy]=np.array(ddd[xy]).astype(float)
if xy=='X':
print('split for dom=',dom,xy,ddd[xy].shape)
if xy=='Y':
n01=ddd[xy].shape[0]
n1=np.sum(ddd[xy])
bal=n1/n01
print(' ',dom,'Y balance:%.3f'%bal)
#............................
def save_input_hdf5(self):
for dom in self.data:
outF=self.dataPath+'/'+self.prjName+'_%s.%s.hd5'%(dom,self.funcDim)
#print('save data as hdf5:',outF)
h5f = h5py.File(outF, 'w')
for xy in self.data[dom]:
xobj=self.data[dom][xy]
h5f.create_dataset(xy, data=self.data[dom][xy])
h5f.close()
xx=os.path.getsize(outF)/1048576
print('closed hdf5:',outF,' size=%.2f MB'%xx)
#............................
def load_input_hdf5(self,domL):
for dom in domL:
#inpF=self.dataPath+'/'+self.prjName+'_%s.%s.hd5'%(dom,self.funcDim)
#if self.dataPath=='data2':
#if self.dataPath=='':
inpF=self.dataPath+'/%s.hd5'%(dom)
#inpF=self.dataPath+'/tzfunc2class_%s.hd5'%(dom)
print('load hdf5:',inpF)
h5f = h5py.File(inpF, 'r')
self.data[dom]={}
for xy in h5f.keys():
npA=h5f[xy][:]
# this code only reduces the size of input - if requested
if self.events>0:
mxe=self.events
if dom!='train': mxe=int(mxe/5)
pres=int(npA.shape[0]/ mxe)
if pres>1: npA=npA[::pres]
print('reduced ',dom,xy,' to %d events'%npA.shape[0])
self.data[dom][xy] = npA
print(' done',dom,xy,self.data[dom][xy].shape)
h5f.close()
print('load_input_hdf5 done, elaT=%.1f sec'%(time.time() - start))
#............................
def print_input(self,name,k=2):
for x in self.data:
if name not in x: continue
xobj=self.data[x]
print('\nsample of ',x, xobj.shape)
for i in range(k):
if 'Y' in x:
print('\nidx=%d digit=%d, X-data:'%(i,xobj[i]))
else:
print('\n%d data:'%i)
print(xobj[i][5:7])
#............................
def build_model(self,args):
# based https://keras.io/getting-started/functional-api-guide/
start = time.time()
# CPUs are used via a "device" which is just a threadpool
if args.nCpu>0:
import tensorflow as tf
tf.Session(config=tf.ConfigProto(intra_op_parallelism_threads=args.nCpu))
print('restrict CPU count to ',args.nCpu)
dropFrac=args.dropFrac
sh1=self.data['train']['X'].shape
print('build_model inp1:',sh1,'design=',self.modelDesign)
if self.modelDesign=='cnn1d': # . . . . . . . . . . . . . . .
xa = Input(shape=(sh1[1],),name='inp1d')
h=Reshape((sh1[1],1))(xa)
kernel = 5
pool_len = 3 # how much time_bins get reduced per pooling
cnnDim=[2]; numCnn=len(cnnDim)
print(' cnn1Dim:',cnnDim)
for i in range(numCnn):
dim=cnnDim[i]
h= Conv1D(dim,kernel,activation='relu', padding='valid',name='cnn%d_d%d_k%d'%(i,dim,kernel))(h)
h= MaxPool1D(pool_length=pool_len, name='pool_%d'%(i))(h)
print('cnn 1d',i,h.get_shape())
h=Flatten(name='to_1d')(h)
if self.modelDesign=='cnn2d': # . . . . . . . . . . . . . . .
xa = Input(shape=(sh1[1],sh1[2],),name='inp2d')
h=Reshape((sh1[1],sh1[2],1))(xa)
kernel = 3
pool_len = 2 # how much time_bins get reduced per pooling
cnnDim=[4,8]; numCnn=len(cnnDim)
print(' cnn2Dim:',cnnDim)
for i in range(numCnn):
dim=cnnDim[i]
h= Conv2D(dim,kernel,activation='relu', padding='valid',name='cnn%d_d%d_k%d'%(i,dim,kernel))(h)
h= MaxPool2D(pool_size=pool_len, name='pool_%d'%(i))(h)
print('cnn 2d',i,h.get_shape())
h=Flatten(name='to_1d')(h)
if self.modelDesign=='lstm': # . . . . . . . . . . . . . . .
lstmDim=10
recDropFrac=0.5*dropFrac
print(' lstmDim:',lstmDim)
h= LSTM(lstmDim, activation='tanh',recurrent_dropout=recDropFrac,dropout=dropFrac,name='lstmA_%d'%lstmDim,return_sequences=True) (h)
h= LSTM(lstmDim, activation='tanh',recurrent_dropout=recDropFrac,dropout=dropFrac,name='lstmB_%d'%lstmDim,return_sequences=False) (h)
print('pre FC=>',h.get_shape())
h = Dropout(dropFrac,name='dropFC')(h)
# .... FC layers COMMON
fcDim=[10,5]; numFC=len(fcDim)
for i in range(numFC):
dim = fcDim[i]
h = Dense(dim,activation='relu',name='fc%d'%i)(h)
h = Dropout(dropFrac,name='drop%d'%i)(h)
print('fc',i,h.get_shape())
y= Dense(1, activation='sigmoid',name='sigmoid')(h)
lossName='binary_crossentropy'
optimizerName='adam'
print('build_model: loss=',lossName,' optName=',optimizerName,' out:',y.get_shape())
# full model
model = Model(inputs=xa, outputs=y)
model.compile(optimizer=optimizerName, loss=lossName, metrics=['accuracy'])
self.model=model
model.summary() # will print
print('model size=%.1fK compiled elaT=%.1f sec'%(model.count_params()/1000.,time.time() - start))
#............................
def train_model(self,args):
X=self.data['train']['X']
Y=self.data['train']['Y']
X_val=self.data['val']['X']
Y_val=self.data['val']['Y']
print('train Xshape',X.shape)
callbacks_list = []
lrCb=MyLearningTracker()
callbacks_list.append(lrCb)
if args.earlyStopOn:
earlyStop=EarlyStopping(monitor='val_loss', patience=10, verbose=1, mode='auto',min_delta=0.001)
callbacks_list.append(earlyStop)
print('enabled EarlyStopping')
if args.checkPtOn:
#outFw='weights.{epoch:02d}-{val_loss:.2f}.h5'
outF5w=self.prjName+'.weights_best.h5'
ckpt=ModelCheckpoint(outF5w, monitor='val_loss', save_best_only=True, save_weights_only=True, verbose=1,period=4)
callbacks_list.append(ckpt)
print('enabled ModelCheckpoint')
if args.reduceLearn:
redu_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=5, min_lr=0.0, verbose=1,epsilon=0.01)
callbacks_list.append(redu_lr)
print('enabled ReduceLROnPlateau')
print('\nTrain_model X:',X.shape, ' earlyStop=',args.earlyStopOn,' epochs=',args.epochs,' batch=',args.batch_size,)
startTm = time.time()
hir=self.model.fit(X,Y, callbacks=callbacks_list,
validation_data=(X_val,Y_val),
shuffle=True,
batch_size=args.batch_size, nb_epoch=args.epochs,
verbose=1)
self.train_hirD=hir.history
self.train_hirD['lr']=lrCb.hir
#evaluate performance for the last epoch
acc=self.train_hirD['val_acc'][-1]
loss=self.train_hirD['val_loss'][-1]
fitTime=time.time() - start
print('\n End Validation Accuracy:%.3f'%acc, ', Loss:%.3f'%loss,', fit time=%.1f sec'%(fitTime))
self.train_sec=fitTime
#............................
def make_prediction(self,dom):
X=self.data[dom]['X']
Yhot=self.data[dom]['Y']
print('make_prediction, dom=',dom,' shape=',X.shape)
Yprob = self.model.predict(X).flatten()
print('Yprob',Yprob.shape)
return X,Yhot,Yprob
#............................
def save_model_full(self):
outF=self.outPath+'/'+self.prjName+'.'+self.modelDesign+'.model_full.h5'
print('save model full to',outF)
self.model.save(outF)
xx=os.path.getsize(outF)/1048576
print('closed hdf5:',outF,' size=%.2f MB'%xx)
#............................
def load_model_full(self):
try:
del self.model
print('delte old model')
except:
a=1
start = time.time()
outF5m=self.outPath+'/'+self.prjName+'.'+self.modelDesign+'.model_full.h5'
print('load model and weights from',outF5m,' ... ')
self.model=load_model(outF5m) # creates mode from HDF5
self.model.summary()
print(' model loaded, elaT=%.1f sec'%(time.time() - start))
#............................
def load_weights(self,name):
start = time.time()
outF5m=self.prjName+'.%s.h5'%name
# print('load weights from',outF5m,end='... ')
self.model.load_weights(outF5m) # creates mode from HDF5
print('loaded, elaT=%.2f sec'%(time.time() - start))