-
Notifications
You must be signed in to change notification settings - Fork 13
/
loss.py
350 lines (297 loc) · 13.3 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import pytorch_msssim
from model_utils import sub_mean, InOutPaddings, meanShift, PixelShuffle, ResidualGroup, conv
class MeanShift(nn.Conv2d):
def __init__(self, rgb_mean, rgb_std, sign=-1):
super(MeanShift, self).__init__(3, 3, kernel_size=1)
std = torch.Tensor(rgb_std)
self.weight.data = torch.eye(3).view(3, 3, 1, 1)
self.weight.data.div_(std.view(3, 1, 1, 1))
self.bias.data = sign * torch.Tensor(rgb_mean)
self.bias.data.div_(std)
self.requires_grad = False
class VGG(nn.Module):
def __init__(self, loss_type):
super(VGG, self).__init__()
vgg_features = models.vgg19(pretrained=True).features
modules = [m for m in vgg_features]
conv_index = loss_type[-2:]
if conv_index == '22':
self.vgg = nn.Sequential(*modules[:8])
elif conv_index == '33':
self.vgg = nn.Sequential(*modules[:16])
elif conv_index == '44':
self.vgg = nn.Sequential(*modules[:26])
elif conv_index == '54':
self.vgg = nn.Sequential(*modules[:35])
elif conv_index == 'P':
self.vgg = nn.ModuleList([
nn.Sequential(*modules[:8]),
nn.Sequential(*modules[8:16]),
nn.Sequential(*modules[16:26]),
nn.Sequential(*modules[26:35])
])
self.vgg = nn.DataParallel(self.vgg).cuda()
vgg_mean = (0.485, 0.456, 0.406)
vgg_std = (0.229, 0.224, 0.225)
self.sub_mean = MeanShift(vgg_mean, vgg_std)
self.vgg.requires_grad = False
# self.criterion = nn.L1Loss()
self.conv_index = conv_index
def forward(self, sr, hr):
def _forward(x):
x = self.sub_mean(x)
x = self.vgg(x)
return x
def _forward_all(x):
feats = []
x = self.sub_mean(x)
for module in self.vgg.module:
x = module(x)
feats.append(x)
return feats
if self.conv_index == 'P':
vgg_sr_feats = _forward_all(sr)
with torch.no_grad():
vgg_hr_feats = _forward_all(hr.detach())
loss = 0
for i in range(len(vgg_sr_feats)):
loss_f = F.mse_loss(vgg_sr_feats[i], vgg_hr_feats[i])
#print(loss_f)
loss += loss_f
#print()
else:
vgg_sr = _forward(sr)
with torch.no_grad():
vgg_hr = _forward(hr.detach())
loss = F.mse_loss(vgg_sr, vgg_hr)
return loss
# For Adversarial loss
class BasicBlock(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=False, bn=True, act=nn.ReLU(True)):
m = [nn.Conv2d(in_channels, out_channels, kernel_size, padding=(kernel_size//2), stride=stride, bias=bias)]
if bn: m.append(nn.BatchNorm2d(out_channels))
if act is not None: m.append(act)
super(BasicBlock, self).__init__(*m)
class Discriminator(nn.Module):
def __init__(self, args, gan_type='GAN'):
super(Discriminator, self).__init__()
in_channels = 3
out_channels = 64
depth = 7
#bn = not gan_type == 'WGAN_GP'
bn = True
act = nn.LeakyReLU(negative_slope=0.2, inplace=True)
m_features = [
BasicBlock(in_channels, out_channels, 3, bn=bn, act=act)
]
for i in range(depth):
in_channels = out_channels
if i % 2 == 1:
stride = 1
out_channels *= 2
else:
stride = 2
m_features.append(BasicBlock(
in_channels, out_channels, 3, stride=stride, bn=bn, act=act
))
self.features = nn.Sequential(*m_features)
self.patch_size = args.patch_size
feature_patch_size = self.patch_size // (2**((depth + 1) // 2))
#patch_size = 256 // (2**((depth + 1) // 2))
m_classifier = [
nn.Linear(out_channels * feature_patch_size**2, 1024),
act,
nn.Linear(1024, 1)
]
self.classifier = nn.Sequential(*m_classifier)
def forward(self, x):
if x.size(2) != self.patch_size or x.size(3) != self.patch_size:
midH, midW = x.size(2) // 2, x.size(3) // 2
p = self.patch_size // 2
x = x[:, :, (midH - p):(midH - p + self.patch_size), (midW - p):(midW - p + self.patch_size)]
features = self.features(x)
output = self.classifier(features.view(features.size(0), -1))
return output
import torch.optim as optim
class Adversarial(nn.Module):
def __init__(self, args, gan_type):
super(Adversarial, self).__init__()
self.gan_type = gan_type
self.gan_k = 1 #args.gan_k
self.discriminator = torch.nn.DataParallel(Discriminator(args, gan_type))
if gan_type != 'WGAN_GP':
self.optimizer = optim.Adam(
self.discriminator.parameters(),
betas=(0.9, 0.99), eps=1e-8, lr=1e-4
)
else:
self.optimizer = optim.Adam(
self.discriminator.parameters(),
betas=(0, 0.9), eps=1e-8, lr=1e-5
)
# self.scheduler = utility.make_scheduler(args, self.optimizer)
self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer, mode='min', factor=0.5, patience=3, verbose=True)
def forward(self, fake, real, fake_input0=None, fake_input1=None, fake_input_mean=None):
# def forward(self, fake, real):
fake_detach = fake.detach()
if fake_input0 is not None:
fake0, fake1 = fake_input0.detach(), fake_input1.detach()
if fake_input_mean is not None:
fake_m = fake_input_mean.detach()
# print(fake.size(), fake_input0.size(), fake_input1.size(), fake_input_mean.size())
self.loss = 0
for _ in range(self.gan_k):
self.optimizer.zero_grad()
d_fake = self.discriminator(fake_detach)
if fake_input0 is not None and fake_input1 is not None:
d_fake0 = self.discriminator(fake0)
d_fake1 = self.discriminator(fake1)
if fake_input_mean is not None:
d_fake_m = self.discriminator(fake_m)
# print(d_fake.size(), d_fake0.size(), d_fake1.size(), d_fake_m.size())
d_real = self.discriminator(real)
if self.gan_type == 'GAN':
label_fake = torch.zeros_like(d_fake)
label_real = torch.ones_like(d_real)
loss_d \
= F.binary_cross_entropy_with_logits(d_fake, label_fake) \
+ F.binary_cross_entropy_with_logits(d_real, label_real)
if fake_input0 is not None and fake_input1 is not None:
loss_d += F.binary_cross_entropy_with_logits(d_fake0, label_fake) \
+ F.binary_cross_entropy_with_logits(d_fake1, label_fake)
if fake_input_mean is not None:
loss_d += F.binary_cross_entropy_with_logits(d_fake_m, label_fake)
elif self.gan_type.find('WGAN') >= 0:
loss_d = (d_fake - d_real).mean()
if self.gan_type.find('GP') >= 0:
epsilon = torch.rand_like(fake).view(-1, 1, 1, 1)
hat = fake_detach.mul(1 - epsilon) + real.mul(epsilon)
hat.requires_grad = True
d_hat = self.discriminator(hat)
gradients = torch.autograd.grad(
outputs=d_hat.sum(), inputs=hat,
retain_graph=True, create_graph=True, only_inputs=True
)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_norm = gradients.norm(2, dim=1)
gradient_penalty = 10 * gradient_norm.sub(1).pow(2).mean()
loss_d += gradient_penalty
# Discriminator update
self.loss += loss_d.item()
if self.training:
loss_d.backward()
self.optimizer.step()
if self.gan_type == 'WGAN':
for p in self.discriminator.parameters():
p.data.clamp_(-1, 1)
self.loss /= self.gan_k
d_fake_for_g = self.discriminator(fake)
if self.gan_type == 'GAN':
loss_g = F.binary_cross_entropy_with_logits(
d_fake_for_g, label_real
)
elif self.gan_type.find('WGAN') >= 0:
loss_g = -d_fake_for_g.mean()
# Generator loss
return loss_g
def state_dict(self, *args, **kwargs):
state_discriminator = self.discriminator.state_dict(*args, **kwargs)
state_optimizer = self.optimizer.state_dict()
return dict(**state_discriminator, **state_optimizer)
# Some references
# https://github.com/kuc2477/pytorch-wgan-gp/blob/master/model.py
# OR
# https://github.com/caogang/wgan-gp/blob/master/gan_cifar10.py
class SuperSloMoLoss(nn.Module):
def __init__(self):
super(SuperSloMoLoss, self).__init__()
vgg16 = models.vgg16(pretrained=True)
vgg16_conv_4_3 = nn.Sequential(*list(vgg16.children())[0][:22])
for param in vgg16_conv_4_3.parameters():
param.requires_grad = False
self.vgg = vgg16_conv_4_3.cuda()
self.L1Loss = nn.L1Loss()
self.MSELoss = nn.MSELoss()
def forward(self, sr, hr, **kwargs):
# (F_0_1, F_1_0), (I_0_t, I_1_t), (I_0_1, I_1_0)
F_0_1, F_1_0 = kwargs['bidirectional_flow']
I_0_t, I_1_t = kwargs['warped_intermediate_frames']
I_0_1, I_1_0 = kwargs['warped_input_frames']
I0, I1 = kwargs['I0'], kwargs['I1']
recnLoss = self.L1Loss(sr, hr)
prcpLoss = self.MSELoss(self.vgg(sr), self.vgg(hr))
warpLoss = self.L1Loss(I_0_t, hr) + self.L1Loss(I_1_t, hr) + self.L1Loss(I_0_1, I1) + self.L1Loss(I_1_0, I0)
loss_smooth_1_0 = torch.mean(torch.abs(F_1_0[:, :, :, :-1] - F_1_0[:, :, :, 1:])) + torch.mean(torch.abs(F_1_0[:, :, :-1, :] - F_1_0[:, :, 1:, :]))
loss_smooth_0_1 = torch.mean(torch.abs(F_0_1[:, :, :, :-1] - F_0_1[:, :, :, 1:])) + torch.mean(torch.abs(F_0_1[:, :, :-1, :] - F_0_1[:, :, 1:, :]))
loss_smooth = loss_smooth_1_0 + loss_smooth_0_1
loss = 204 * recnLoss + 102 * warpLoss + 0.005 * prcpLoss + loss_smooth
return loss
# Wrapper of loss functions
class Loss(nn.modules.loss._Loss):
def __init__(self, args):
super(Loss, self).__init__()
print('Preparing loss function:')
self.loss = []
self.loss_module = nn.ModuleList()
for loss in args.loss.split('+'):
weight, loss_type = loss.split('*')
if loss_type == 'MSE':
loss_function = nn.MSELoss()
elif loss_type == 'L1':
loss_function = nn.L1Loss()
elif loss_type.find('VGG') >= 0:
loss_function = VGG(loss_type[3:])
elif loss_type == 'SSIM':
loss_function = pytorch_msssim.SSIM(val_range=1.)
elif loss_type.find('GAN') >= 0:
loss_function = Adversarial(args, loss_type)
elif loss_type.find('Super') >= 0:
loss_function = SuperSloMoLoss()
self.loss.append({
'type': loss_type,
'weight': float(weight),
'function': loss_function}
)
if loss_type.find('GAN') >= 0 >= 0:
self.loss.append({'type': 'DIS', 'weight': 1, 'function': None})
if len(self.loss) > 1:
self.loss.append({'type': 'Total', 'weight': 0, 'function': None})
for l in self.loss:
if l['function'] is not None:
print('{:.3f} * {}'.format(l['weight'], l['type']))
self.loss_module.append(l['function'])
device = torch.device('cuda' if args.cuda else 'cpu')
self.loss_module.to(device)
#if args.precision == 'half': self.loss_module.half()
# if args.cuda:# and args.n_GPUs > 1:
# self.loss_module = nn.DataParallel(self.loss_module)
# def forward(self, sr, hr, model_enc=None, feats=None, fake_imgs=None):
def forward(self, sr, hr, **kwargs):
loss = 0
losses = {}
for i, l in enumerate(self.loss):
if l['function'] is not None:
if l['type'] == 'GAN':
if fake_imgs is None:
fake_imgs = [None, None, None]
_loss = l['function'](sr, hr, fake_imgs[0], fake_imgs[1], fake_imgs[2])
elif l['type'] == 'Super':
_loss = l['function'](sr, hr.clone(), **kwargs)
else:
_loss = l['function'](sr, hr.clone())
effective_loss = l['weight'] * _loss
losses[l['type']] = effective_loss
loss += effective_loss
elif l['type'] == 'DIS':
losses[l['type']] = self.loss[i - 1]['function'].loss
#loss_sum = sum(losses)
#if len(self.loss) > 1:
# self.log[-1, -1] += loss_sum.item()
# return loss, losses
losses['total'] = loss
return losses