generated from nabenabe0928/repo-template
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.py
301 lines (260 loc) · 10.8 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import os
import sys
from argparse import ArgumentParser, Namespace
from typing import Any, Dict, List, Optional, Tuple, Type, Union
import numpy as np
from optimizers import (
MetaLearnGPSampler,
RankingWeightedGaussianProcessEnsemble,
TPEOptimizer,
TwoStageTransferWithRanking,
)
from optimizers.convert_config_space import convert
from optimizers.warm_start_config_selector import (
collect_metadata,
get_result_file_path,
save_observations,
select_warm_start_configs,
)
from targets.base_tabularbench_api import BaseTabularBenchAPI
from targets.hpobench.api import DatasetChoices as HPOBenchChoices
from targets.hpobench.api import HPOBench
from targets.hpolib.api import DatasetChoices as HPOLibChoices
from targets.hpolib.api import HPOLib
from targets.nmt_bench.api import DatasetChoices as NMTChoices
from targets.nmt_bench.api import NMTBench
N_METADATA = 100
MAX_EVALS = 100
N_INIT = MAX_EVALS * 5 // 100 # From the TPE 2013 paper
bench_names = ["nmt", "hpolib", "hpobench"]
dataset_choices_dict = {
bench_names[0]: NMTChoices,
bench_names[1]: HPOLibChoices,
bench_names[2]: HPOBenchChoices,
}
bench_dict = {
bench_names[0]: NMTBench,
bench_names[1]: HPOLib,
bench_names[2]: HPOBench,
}
def get_metadata_and_warm_start_configs(
warmstart: bool,
metalearn: bool,
bench: BaseTabularBenchAPI,
bench_cls: Type[BaseTabularBenchAPI],
dataset_choices: Union[HPOLibChoices, NMTChoices, HPOBenchChoices],
dataset_name: str,
seed: int,
n_init: int,
) -> Tuple[Optional[Dict[str, Dict[str, np.ndarray]]], Optional[Dict[str, np.ndarray]]]:
if not metalearn:
if not warmstart:
return None, None
else:
raise ValueError("no warmstart for non meta-learning methods")
metadata = collect_metadata(
benchmark=bench_cls,
dataset_choices=dataset_choices,
max_evals=N_METADATA,
seed=seed,
exclude=dataset_name,
)
if warmstart:
warmstart_configs = select_warm_start_configs(
metadata=metadata,
n_configs=n_init,
hp_names=bench.hp_names,
obj_names=bench.obj_names,
seed=seed,
larger_is_better_objectives=[
idx for idx, obj_name in enumerate(bench.obj_names) if not bench.minimize[obj_name]
],
)
else:
random_configs = metadata[list(metadata.keys())[0]]
# Just for Meta-learn BO methods (this is actualy random config, but not warm-starting)
warmstart_configs = {hp_name: random_configs[hp_name][:n_init] for hp_name in bench.hp_names}
return metadata, warmstart_configs
def format_configs(
configs: Dict[str, np.ndarray],
bench: BaseTabularBenchAPI,
) -> Dict[str, np.ndarray]:
type_dict = {int: np.int32, float: np.float64}
configs = {
hp_name: configs[hp_name].astype(type_dict[type(bench._search_space[hp_name][0])])
if np.issubdtype(configs[hp_name].dtype, np.number)
else configs[hp_name]
for hp_name in bench.hp_names
}
return configs
def evaluate_warmstart_configs(
bench: BaseTabularBenchAPI,
warmstart_configs: Dict[str, np.ndarray],
) -> Dict[str, np.ndarray]:
hp_names, obj_names = bench.hp_names, bench.obj_names
n_warmstart = warmstart_configs[hp_names[0]].size
warmstart_configs = format_configs(configs=warmstart_configs, bench=bench)
warmstart_configs.update({obj_name: np.zeros(n_warmstart, dtype=np.float64) for obj_name in obj_names})
for i in range(n_warmstart):
config = {hp_name: warmstart_configs[hp_name][i] for hp_name in hp_names}
results = obj_func(config)
for obj_name, val in results.items():
warmstart_configs[obj_name][i] = val
return warmstart_configs
def optimize_by_only_warmstart(
args: Namespace,
bench: BaseTabularBenchAPI,
metadata: Dict[str, Dict[str, np.ndarray]],
warmstart_configs: Dict[str, np.ndarray],
):
warmstart_configs = format_configs(configs=warmstart_configs, bench=bench)
n_warmstart_configs = [warmstart_configs[key].size for key in warmstart_configs][0]
opt = TPEOptimizer(
obj_func=bench.objective_func,
config_space=bench.config_space,
objective_names=bench.obj_names,
max_evals=n_warmstart_configs,
minimize=bench.minimize,
metadata=metadata,
warmstart_configs=warmstart_configs,
seed=args.exp_id,
)
opt.optimize()
observations = opt.fetch_observations()
n_repeats = (MAX_EVALS + n_warmstart_configs - 1) // n_warmstart_configs
observations = {k: np.tile(v, n_repeats)[:MAX_EVALS] for k, v in observations.items()}
return observations
def optimize_by_tpe(
args: Namespace,
bench: BaseTabularBenchAPI,
metadata: Optional[Dict[str, Dict[str, np.ndarray]]],
warmstart_configs: Optional[Dict[str, np.ndarray]],
) -> Dict[str, np.ndarray]:
if warmstart_configs is not None:
warmstart_configs = format_configs(configs=warmstart_configs, bench=bench)
opt = TPEOptimizer(
obj_func=bench.objective_func,
config_space=bench.config_space,
objective_names=bench.obj_names,
max_evals=MAX_EVALS,
minimize=bench.minimize,
metadata=metadata,
warmstart_configs=warmstart_configs,
seed=args.exp_id,
n_init=5,
quantile=args.quantile,
uniform_transform=args.uniform_transform,
dim_reduction_factor=args.dim_reduction_factor,
)
opt.optimize()
return opt.fetch_observations()
def convert_to_index_config(
data: Dict[str, np.ndarray],
search_space: Dict[str, List[Any]],
hp_names: List[str],
) -> Dict[str, np.ndarray]:
return {
hp_name: np.asarray([search_space[hp_name].index(v) for v in vs])
if np.issubdtype(vs.dtype, np.number) and hp_name in hp_names
else vs
for hp_name, vs in data.items()
}
def convert_to_original_config(
data: Dict[str, np.ndarray],
search_space: Dict[str, List[Any]],
hp_names: List[str],
) -> Dict[str, np.ndarray]:
return {
hp_name: np.asarray([search_space[hp_name][v] for v in vs])
if np.issubdtype(vs.dtype, np.number) and hp_name in hp_names
else vs
for hp_name, vs in data.items()
}
def optimize_by_bo(
opt_name: str,
bench: BaseTabularBenchAPI,
metadata: Dict[str, Dict[str, np.ndarray]],
warmstart_configs: Dict[str, np.ndarray],
) -> Dict[str, np.ndarray]:
metalearn_name, acq_name = opt_name.split("-")
kwargs = convert(bench.config_space)
kwargs.update(minimize=bench.minimize)
hp_names = bench.hp_names
gp_cls = RankingWeightedGaussianProcessEnsemble if metalearn_name == "rgpe" else TwoStageTransferWithRanking
obj_func = bench.objective_func
warmstart_configs = evaluate_warmstart_configs(bench, warmstart_configs)
search_space = bench._search_space
metadata = {tn: convert_to_index_config(data, search_space, hp_names) for tn, data in metadata.items()}
warmstart_configs = convert_to_index_config(warmstart_configs, search_space, hp_names)
gp_model = gp_cls(
init_data=warmstart_configs, # Need obj
metadata=metadata,
acq_fn_type=acq_name,
**kwargs,
)
def _wrapper_func(config):
eval_config = {k: v if isinstance(v, str) else search_space[k][v] for k, v in config.items()}
return obj_func(eval_config)
opt = MetaLearnGPSampler(max_evals=95, obj_func=_wrapper_func, model=gp_model, **kwargs)
opt.optimize()
return convert_to_original_config(data=opt.observations, search_space=search_space, hp_names=hp_names)
def get_opt_name(args: Namespace) -> str:
opt_name = args.opt_name
prefix = "" if args.warmstart else "no-warmstart-"
if opt_name != "tpe":
return prefix + opt_name
if not args.metalearn:
return f"normal_tpe_q={args.quantile:.2f}"
if args.uniform_transform:
return f"{prefix}naive_metalearn_tpe_q={args.quantile:.2f}"
return f"{prefix}tpe_q={args.quantile:.2f}_df={args.dim_reduction_factor:.1f}"
if __name__ == "__main__":
opt_names = ["tpe", "rgpe-parego", "rgpe-ehvi", "tstr-parego", "tstr-ehvi", "only-warmstart"]
parser = ArgumentParser()
parser.add_argument("--warmstart", type=str, choices=["True", "False"], required=True)
parser.add_argument("--metalearn", type=str, choices=["True", "False"], required=True)
parser.add_argument("--bench_name", type=str, choices=bench_names, required=True)
dataset_choices = [c.name for c in HPOLibChoices] + [c.name for c in NMTChoices] + [c.name for c in HPOBenchChoices]
parser.add_argument("--dataset_name", type=str, choices=dataset_choices, required=True)
parser.add_argument("--opt_name", choices=opt_names, required=True)
parser.add_argument("--exp_id", type=int, required=True)
parser.add_argument("--uniform_transform", type=str, choices=["True", "False"], default="False")
# Only for ablation study
parser.add_argument("--quantile", type=float, default=0.1)
parser.add_argument("--dim_reduction_factor", type=float, default=2.5)
args = parser.parse_args()
args.uniform_transform = eval(args.uniform_transform)
args.warmstart, args.metalearn = eval(args.warmstart), eval(args.metalearn)
warmstart, metalearn, bench_name, dataset_name = args.warmstart, args.metalearn, args.bench_name, args.dataset_name
opt_name = get_opt_name(args)
file_path = get_result_file_path(dataset_name=dataset_name, opt_name=opt_name, seed=args.exp_id)
if os.path.exists(file_path):
print(f"Skip: Results already exist in {file_path}\n")
sys.exit()
dataset_choices = dataset_choices_dict[bench_name]
bench_cls = bench_dict[bench_name]
bench = bench_cls(dataset=getattr(dataset_choices, dataset_name), seed=args.exp_id)
obj_func = bench.objective_func
config_space = bench.config_space
only_warmstart = bool(args.opt_name == "only-warmstart")
metadata, warmstart_configs = get_metadata_and_warm_start_configs(
warmstart=warmstart,
metalearn=metalearn,
bench=bench,
seed=args.exp_id,
bench_cls=bench_cls,
dataset_choices=dataset_choices,
dataset_name=dataset_name,
n_init=int(args.quantile * N_METADATA) * (len(dataset_choices) - 1) if only_warmstart else N_INIT,
)
if args.opt_name == "tpe":
results = optimize_by_tpe(args=args, bench=bench, metadata=metadata, warmstart_configs=warmstart_configs)
elif only_warmstart:
results = optimize_by_only_warmstart(
args=args, bench=bench, metadata=metadata, warmstart_configs=warmstart_configs
)
else:
results = optimize_by_bo(
opt_name=args.opt_name, bench=bench, metadata=metadata, warmstart_configs=warmstart_configs
)
save_observations(file_path=file_path, observations=results, include=bench.obj_names)