-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbader_bond_order.py
executable file
·215 lines (171 loc) · 7.58 KB
/
bader_bond_order.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/env python
import argparse
import os
import sys
import time
import numpy as np
ang_2_bohr = 1.0 / 0.52917721067
hart_2_ev = 27.21138602
from mpi4py import MPI
import cp2k_spm_tools.cp2k_grid_orbitals as cgo
from cp2k_spm_tools import common, cube
comm = MPI.COMM_WORLD
mpi_rank = comm.Get_rank()
mpi_size = comm.Get_size()
parser = argparse.ArgumentParser(description="Runs bond order analysis based on Bader basins.")
parser.add_argument("--cp2k_input_file", metavar="FILENAME", required=True, help="CP2K input of the SCF calculation.")
parser.add_argument("--basis_set_file", metavar="FILENAME", required=True, help="File containing the used basis sets.")
parser.add_argument("--xyz_file", metavar="FILENAME", required=True, help=".xyz file containing the geometry.")
parser.add_argument(
"--wfn_file", metavar="FILENAME", required=True, help="cp2k restart file containing the wavefunction."
)
### -----------------------------------------------------------
parser.add_argument("--output_file", metavar="FILENAME", required=True, help="Output file containing the bond orders.")
parser.add_argument(
"--bader_basins_dir", metavar="DIR", required=True, help="directory containing the Bader basin .cube files."
)
### -----------------------------------------------------------
parser.add_argument("--dx", type=float, metavar="DX", default=0.2, help="Spatial step for the grid (angstroms).")
parser.add_argument(
"--eval_cutoff",
type=float,
metavar="D",
default=14.0,
help=("Size of the region around the atom where each orbital is evaluated (only used for 'G' region)."),
)
parser.add_argument(
"--eval_region",
type=str,
nargs=6,
metavar="X",
required=False,
default=["G", "G", "G", "G", "G", "G"],
help=common.eval_region_description,
)
### -----------------------------------------------------------
time0 = time.time()
### ------------------------------------------------------
### Parse args for only one rank to suppress duplicate stdio
### ------------------------------------------------------
args = None
args_success = False
try:
if mpi_rank == 0:
args = parser.parse_args()
args_success = True
finally:
args_success = comm.bcast(args_success, root=0)
if not args_success:
print(mpi_rank, "exiting")
exit(0)
args = comm.bcast(args, root=0)
### ------------------------------------------------------
### Load the Bader basins
### ------------------------------------------------------
bader_atoms = []
bader_masks = []
for f in sorted(os.listdir(args.bader_basins_dir)):
if f.startswith("BvAt"):
num = int(f.split(".")[0][4:]) - 1
bader_atoms.append(num)
c = cube.Cube()
c.read_cube_file(args.bader_basins_dir + "/" + f)
if np.abs(c.dv[0, 0] - args.dx) > 1e-3:
print("ERROR: Basin cube dx doesn't match specified dx!")
print(c.dv[0, 0], args.dx)
exit(0)
bader_masks.append(c.data > 1e-10)
print("R%d/%d: loaded Bader basins, time: %.2fs" % (mpi_rank, mpi_size, (time.time() - time0)))
sys.stdout.flush()
time1 = time.time()
### ------------------------------------------------------
### Evaluate orbitals on the real-space grid
### ------------------------------------------------------
mol_grid_orb = cgo.Cp2kGridOrbitals(mpi_rank, mpi_size, comm, single_precision=False)
mol_grid_orb.read_cp2k_input(args.cp2k_input_file)
mol_grid_orb.read_xyz(args.xyz_file)
mol_grid_orb.center_atoms_to_cell()
mol_grid_orb.read_basis_functions(args.basis_set_file)
mol_grid_orb.load_restart_wfn_file(args.wfn_file, n_occ=None, n_virt=0)
print("R%d/%d: loaded eval files, time: %.2fs" % (mpi_rank, mpi_size, (time.time() - time1)))
sys.stdout.flush()
time1 = time.time()
eval_reg = common.parse_eval_region_input(args.eval_region, mol_grid_orb.ase_atoms, mol_grid_orb.cell)
mol_grid_orb.calc_morbs_in_region(
args.dx,
x_eval_region=eval_reg[0],
y_eval_region=eval_reg[1],
z_eval_region=eval_reg[2],
reserve_extrap=0.0,
eval_cutoff=args.eval_cutoff,
)
print("R%d/%d: evaluated grids, time: %.2fs" % (mpi_rank, mpi_size, (time.time() - time1)))
sys.stdout.flush()
time1 = time.time()
### ------------------------------------------------------
### Calculate Bond orders
### ------------------------------------------------------
bond_order_matrix = np.zeros((len(bader_atoms), len(bader_atoms)))
n_orb_per_rank = []
for i_spin in range(mol_grid_orb.nspin):
n_orb_per_rank.append(comm.allgather(len(mol_grid_orb.morb_energies[i_spin])))
cell_n = mol_grid_orb.eval_cell_n
vol_elem = np.prod(mol_grid_orb.dv)
if any(cell_n != bader_masks[0].shape):
print("Error: Basin and evaluation size mismatch.")
exit(0)
for i_rank in range(mpi_size):
if mpi_rank == i_rank:
print("R%d/%d: distributing grids and evaluating products..." % (mpi_rank, mpi_size))
sys.stdout.flush()
time1 = time.time()
for i_spin in range(mol_grid_orb.nspin):
bcast_buffer = np.empty(np.prod(cell_n) * n_orb_per_rank[i_spin][i_rank])
if mpi_rank == i_rank:
bcast_buffer = mol_grid_orb.morb_grids[i_spin].flatten()
# Broadcast the current rank grids to all
comm.Bcast([bcast_buffer, MPI.DOUBLE], root=i_rank)
received_grids = np.reshape(bcast_buffer, (n_orb_per_rank[i_spin][i_rank], cell_n[0], cell_n[1], cell_n[2]))
# for i_mo in range(received_grids.shape[0]):
#
# i_grid = received_grids[i_mo]
#
# for j_mo in range(mol_grid_orb.morb_grids[i_spin].shape[0]):
#
# j_grid = mol_grid_orb.morb_grids[i_spin][j_mo]
#
# for at_a in range(len(bader_atoms)):
# for at_b in range(at_a):
#
# i_grid_a = i_grid*bader_masks[at_a]
# i_grid_b = i_grid*bader_masks[at_b]
#
# scalar_a = np.dot(i_grid_a.flatten(), j_grid.flatten())*vol_elem
# scalar_b = np.dot(i_grid_b.flatten(), j_grid.flatten())*vol_elem
#
# bond_order_matrix[at_a, at_b] += 4*scalar_a*scalar_b
# bond_order_matrix[at_b, at_a] += 4*scalar_a*scalar_b
n_i = received_grids.shape[0]
n_j = mol_grid_orb.morb_grids[i_spin].shape[0]
for at_a in range(len(bader_atoms)):
for at_b in range(at_a):
i_grid_a = received_grids[:, bader_masks[at_a]].reshape(n_i, -1)
i_grid_b = received_grids[:, bader_masks[at_b]].reshape(n_i, -1)
j_grid_a = mol_grid_orb.morb_grids[i_spin][:, bader_masks[at_a]].reshape(n_j, -1)
j_grid_b = mol_grid_orb.morb_grids[i_spin][:, bader_masks[at_b]].reshape(n_j, -1)
bo = np.sum(np.einsum("ij,kj", i_grid_a, j_grid_a) * np.einsum("ij,kj", i_grid_b, j_grid_b))
bond_order_matrix[at_a, at_b] += 4 * bo * vol_elem**2
bond_order_matrix[at_b, at_a] += 4 * bo * vol_elem**2
if mpi_rank == i_rank:
print("R%d/%d: ... time: %.2fs" % ((mpi_rank, mpi_size, time.time() - time1)))
sys.stdout.flush()
# collect all contributions
final_bond_order_mat = np.zeros((len(bader_atoms), len(bader_atoms)))
comm.Reduce(bond_order_matrix, final_bond_order_mat, op=MPI.SUM)
if mpi_rank == 0:
header = ""
for b_at in bader_atoms:
header += "%10d" % b_at
header = header[3:]
np.savetxt(args.output_file, final_bond_order_mat, fmt="%9.6f", header=header)
print("R%d/%d finished, total time: %.2fs" % (mpi_rank, mpi_size, (time.time() - time0)))