Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

HI! how to train the hopenet? the loss can not convergence #105

Open
wqz960 opened this issue Dec 14, 2020 · 6 comments
Open

HI! how to train the hopenet? the loss can not convergence #105

wqz960 opened this issue Dec 14, 2020 · 6 comments

Comments

@wqz960
Copy link

wqz960 commented Dec 14, 2020

  1. how to get the image list?

  2. I rewrite the dataset preprocess which is based on yours, but it can not convergen, this is the dataset and log
    `class Face_300W_LP(Dataset):
    def init(self, data_dir, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
    self.data_dir = data_dir
    self.transform = transform
    self.img_ext = img_ext
    self.annot_ext = annot_ext
    self.transform = transform
    self.folders = ["AFW", "HELEN", "IBUG", "LFPW"]
    self.img_list = []
    for folder in self.folders:
    self.img_list += glob(os.path.join(data_dir, folder, "*"+img_ext))

    def getitem(self, idx):
    img = Image.open(self.img_list[idx]).convert("RGB")
    meta = self.img_list[idx][:-4]+".mat"
    meta = sio.loadmat(meta)

     pt2d = meta['pt2d']
     x_min = min(pt2d[0,:])
     y_min = min(pt2d[1,:])
     x_max = max(pt2d[0,:])
     y_max = max(pt2d[1,:])
    
     # k = 0.2 to 0.40
     k = np.random.random_sample() * 0.2 + 0.2
     x_min -= 0.6 * k * abs(x_max - x_min)
     y_min -= 2 * k * abs(y_max - y_min)
     x_max += 0.6 * k * abs(x_max - x_min)
     y_max += 0.6 * k * abs(y_max - y_min)
     img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
    
     # We get the pose in radians
     pose = meta['Pose_Para'][0][:3]
     pitch = pose[0] * 180 / np.pi
     yaw = pose[1] * 180 / np.pi
     roll = pose[2] * 180 / np.pi
    
     #ds = 1 + np.random.randint(0,4) * 5
     #original_size = img.size
     #img = img.resize((img.size[0] // ds, img.size[1] // ds), resample=Image.NEAREST)
     #img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
    
     # Flip?
     rnd = np.random.random_sample()
     if rnd < 0.5:
         yaw = -yaw
         roll = -roll
         img = img.transpose(Image.FLIP_LEFT_RIGHT)
    
     # Blur?
     rnd = np.random.random_sample()
     if rnd < 0.05:
         img = img.filter(ImageFilter.BLUR)
    
     # Bin values
     bins = np.array(range(-99, 102, 3))
     binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
    
     # Get target tensors
     labels = binned_pose
     cont_labels = torch.FloatTensor([yaw, pitch, roll])
    
     if self.transform is not None:
         img = self.transform(img)
    
     return img, labels, cont_labels, self.img_list[idx]
    

    def len(self):
    return len(self.img_list)`

Epoch [1/5], Iter [100/3826] Losses: Yaw 6.9623, Pitch 3.3666, Roll 3.3280 Epoch [1/5], Iter [200/3826] Losses: Yaw 7.0173, Pitch 3.7913, Roll 4.0655 Epoch [1/5], Iter [300/3826] Losses: Yaw 7.0390, Pitch 3.4928, Roll 3.3288 Epoch [1/5], Iter [400/3826] Losses: Yaw 6.6685, Pitch 3.4066, Roll 3.3632 Epoch [1/5], Iter [500/3826] Losses: Yaw 6.0093, Pitch 2.7562, Roll 2.8081 Epoch [1/5], Iter [600/3826] Losses: Yaw 7.0399, Pitch 3.5185, Roll 2.9296 Epoch [1/5], Iter [700/3826] Losses: Yaw 6.9090, Pitch 3.0738, Roll 2.7689 Epoch [1/5], Iter [800/3826] Losses: Yaw 7.5161, Pitch 3.4587, Roll 3.0765 Epoch [1/5], Iter [900/3826] Losses: Yaw 7.7006, Pitch 2.9306, Roll 2.8257 Epoch [1/5], Iter [1000/3826] Losses: Yaw 7.7306, Pitch 2.6414, Roll 2.8222 Epoch [1/5], Iter [1100/3826] Losses: Yaw 7.0110, Pitch 2.9134, Roll 3.1434 Epoch [1/5], Iter [1200/3826] Losses: Yaw 7.8895, Pitch 2.7056, Roll 2.9635 Epoch [1/5], Iter [1300/3826] Losses: Yaw 7.8618, Pitch 3.0785, Roll 2.8754 Epoch [1/5], Iter [1400/3826] Losses: Yaw 6.9509, Pitch 3.1440, Roll 2.3867 Epoch [1/5], Iter [1500/3826] Losses: Yaw 7.2655, Pitch 3.5011, Roll 2.7198 Epoch [1/5], Iter [1600/3826] Losses: Yaw 6.9521, Pitch 2.5396, Roll 3.0407 Epoch [1/5], Iter [1700/3826] Losses: Yaw 6.1507, Pitch 3.1033, Roll 2.3047 Epoch [1/5], Iter [1800/3826] Losses: Yaw 8.0398, Pitch 3.2253, Roll 3.1032 Epoch [1/5], Iter [1900/3826] Losses: Yaw 6.5448, Pitch 2.6368, Roll 2.5555 Epoch [1/5], Iter [2000/3826] Losses: Yaw 7.5095, Pitch 3.2314, Roll 3.2987 Epoch [1/5], Iter [2100/3826] Losses: Yaw 6.4053, Pitch 2.8100, Roll 2.7238 Epoch [1/5], Iter [2200/3826] Losses: Yaw 7.3014, Pitch 3.2478, Roll 2.8233 Epoch [1/5], Iter [2300/3826] Losses: Yaw 7.7167, Pitch 2.5214, Roll 2.9376 Epoch [1/5], Iter [2400/3826] Losses: Yaw 7.1232, Pitch 2.5696, Roll 2.3332 Epoch [1/5], Iter [2500/3826] Losses: Yaw 6.5463, Pitch 2.9003, Roll 2.8601 Epoch [1/5], Iter [2600/3826] Losses: Yaw 7.1496, Pitch 3.1998, Roll 3.0408 Epoch [1/5], Iter [2700/3826] Losses: Yaw 8.3173, Pitch 2.7032, Roll 2.5530 Epoch [1/5], Iter [2800/3826] Losses: Yaw 7.1783, Pitch 2.6990, Roll 2.5785 Epoch [1/5], Iter [2900/3826] Losses: Yaw 7.8416, Pitch 2.8020, Roll 3.3089

@wqz960
Copy link
Author

wqz960 commented Dec 14, 2020

hello can you tell me the lowest losses for yaw pitch and roll? Thanks @natanielruiz

@dfzsgjshzfj
Copy link

Hi, I met the same problem as well, have you solved it?

@wqz960
Copy link
Author

wqz960 commented Dec 18, 2020

@dfzsgjshzfj Using the original datapreprocessing code, the loss will drop to +-1.5, but the result on AFLW2000 is bad, I have given it up, turning to another repo.

@dfzsgjshzfj
Copy link

Emmm. My loss is about yaw 4.0, pitch 2.8, roll 2.7. What is the original datapreprocessing code you mentioned, I did not find it in the repo

@kellen5l
Copy link

Hi,I got similar results with you by using 300W-LP data set.Is this result correct?
In the paper, I saw the Multi-Loss ResNet50 results of using the AFWL2000 data set.Is this Multi-Loss ResNet50 result the same as the training loss result?
你好,我使用300W-LP数据集得到了与你相似的结果,这个结果正常吗?
我在论文中看到Multi-Loss ResNet50的结果,论文中所给的Multi-Loss与训练所得的这个loss是同一个loss吗?
image

@GKG1312
Copy link

GKG1312 commented Mar 6, 2024

@dfzsgjshzfj Using the original datapreprocessing code, the loss will drop to +-1.5, but the result on AFLW2000 is bad, I have given it up, turning to another repo.

Can you mention the repo here?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants