-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathmy_bricks.py
192 lines (159 loc) · 6.81 KB
/
my_bricks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import operator
import theano.tensor as T
from blocks.bricks.base import application, lazy
from blocks.roles import add_role, WEIGHT, BIAS
from blocks.utils import shared_floatx_nans
import blocks_bricks as bricks
import initialization
class NormalizedActivation(bricks.Initializable, bricks.Feedforward):
@lazy(allocation="shape broadcastable".split())
def __init__(self, shape, broadcastable, activation=None, batch_normalize=False, **kwargs):
super(NormalizedActivation, self).__init__(**kwargs)
self.shape = shape
self.broadcastable = broadcastable
self.activation = activation or bricks.Rectifier()
self.batch_normalize = batch_normalize
@property
def broadcastable(self):
return self._broadcastable or [False]*len(self.shape)
@broadcastable.setter
def broadcastable(self, broadcastable):
self._broadcastable = broadcastable
def _allocate(self):
arghs = dict(shape=self.shape,
broadcastable=self.broadcastable)
sequence = []
if self.batch_normalize:
sequence.append(Standardization(**arghs))
sequence.append(SharedScale(
weights_init=initialization.Constant(1),
**arghs))
sequence.append(SharedShift(
biases_init=initialization.Constant(0),
**arghs))
sequence.append(self.activation)
self.sequence = bricks.FeedforwardSequence([
brick.apply for brick in sequence
], name="ffs")
self.children = [self.sequence]
@application(inputs=["input_"], outputs=["output"])
def apply(self, input_):
return self.sequence.apply(input_)
def get_dim(self, name):
try:
return dict(input_=self.shape,
output=self.shape)
except:
return super(NormalizedActivation, self).get_dim(name)
class FeedforwardFlattener(bricks.Flattener, bricks.Feedforward):
def __init__(self, input_shape, **kwargs):
super(FeedforwardFlattener, self).__init__(**kwargs)
self.input_shape = input_shape
@property
def input_dim(self):
return reduce(operator.mul, self.input_shape)
@property
def output_dim(self):
return reduce(operator.mul, self.input_shape)
class FeedforwardIdentity(bricks.Feedforward):
def __init__(self, dim, **kwargs):
super(FeedforwardIdentity, self).__init__(**kwargs)
self.dim = dim
@property
def input_dim(self):
return self.dim
@property
def output_dim(self):
return self.dim
@application(inputs=["x"], outputs=["x"])
def apply(self, x):
return x
class SharedScale(bricks.Initializable, bricks.Feedforward):
"""
Element-wise scaling with optional parameter-sharing across axes.
"""
@lazy(allocation="shape broadcastable".split())
def __init__(self, shape, broadcastable, **kwargs):
super(SharedScale, self).__init__(**kwargs)
self.shape = shape
self.broadcastable = broadcastable
def _allocate(self):
parameter_shape = [1 if broadcast else dim
for dim, broadcast in zip(self.shape, self.broadcastable)]
self.gamma = shared_floatx_nans(parameter_shape, name='gamma')
add_role(self.gamma, WEIGHT)
self.parameters.append(self.gamma)
self.add_auxiliary_variable(self.gamma.norm(2), name='gamma_norm')
def _initialize(self):
self.weights_init.initialize(self.gamma, self.rng)
@application(inputs=['input_'], outputs=['output'])
def apply(self, input_):
return input_ * T.patternbroadcast(self.gamma, self.broadcastable)
def get_dim(self, name):
if name == 'input_':
return self.shape
if name == 'output':
return self.shape
return super(SharedScale, self).get_dim(name)
class SharedShift(bricks.Initializable, bricks.Feedforward):
"""
Element-wise bias with optional parameter-sharing across axes.
"""
@lazy(allocation="shape broadcastable".split())
def __init__(self, shape, broadcastable, **kwargs):
super(SharedShift, self).__init__(**kwargs)
self.shape = shape
self.broadcastable = broadcastable
def _allocate(self):
parameter_shape = [1 if broadcast else dim
for dim, broadcast in zip(self.shape, self.broadcastable)]
self.beta = shared_floatx_nans(parameter_shape, name='beta')
add_role(self.beta, BIAS)
self.parameters.append(self.beta)
self.add_auxiliary_variable(self.beta.norm(2), name='beta_norm')
def _initialize(self):
self.biases_init.initialize(self.beta, self.rng)
@application(inputs=['input_'], outputs=['output'])
def apply(self, input_):
return input_ + T.patternbroadcast(self.beta, self.broadcastable)
def get_dim(self, name):
if name == 'input_':
return self.shape
if name == 'output':
return self.shape
return super(SharedShift, self).get_dim(name)
# TODO: replacement of batch/population statistics by annotations
# TODO: depends on replacements inside scan
class Standardization(bricks.Initializable, bricks.Feedforward):
stats = "mean var".split()
def __init__(self, shape, broadcastable, alpha=1e-2, **kwargs):
super(Standardization, self).__init__(**kwargs)
self.shape = shape
self.broadcastable = broadcastable
self.alpha = alpha
def _allocate(self):
parameter_shape = [1 if broadcast else dim
for dim, broadcast in zip(self.shape, self.broadcastable)]
self.population_stats = dict(
(stat, shared_floatx_nans(parameter_shape,
name="population_%s" % stat))
for stat in self.stats)
def _initialize(self):
for stat, initializer in (("mean", 0), ("var", 1)):
self.population_stats[stat].get_value().fill(initializer)
@application(inputs=["input_"], outputs=["output"])
def apply(self, input_):
aggregate_axes = [0] + [1 + i for i, b in enumerate(self.broadcastable) if b]
self.batch_stats = dict(
(stat, getattr(input_, stat)(axis=aggregate_axes,
keepdims=True)[0])
for stat in self.stats)
# NOTE: these are unused for now
self._updates = [(self.population_stats[stat],
(1 - self.alpha)*self.population_stats[stat]
+ self.alpha*self.batch_stats[stat])
for stat in self.stats]
self._replacements = [(self.batch_stats[stat], self.population_stats[stat])
for stat in self.stats]
return ((input_ - self.batch_stats["mean"])
/ (T.sqrt(self.batch_stats["var"] + 1e-8)))