-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgrammar.py
274 lines (229 loc) · 9.18 KB
/
grammar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import re
from lark import Lark
import random
#random.seed(0)
def elem_fixup(elem: str):
"""
>>> elem_fixup('"-""')
'"-\""'
>>> elem_fixup('"="="')
'"=\"="'
"""
if len(elem) >= 3 and elem.startswith('"') and elem.endswith('"'):
for i in reversed(range(1, len(elem) - 1)):
term_char = elem[i]
if term_char == '"':
elem = elem[:i] + '\\"' + elem[i + 1:]
elif term_char == '\\':
elem = elem[:i] + '\\\\' + elem[i + 1:]
elif term_char == '\n':
elem = elem[:i] + '\\n' + elem[i + 1:]
return elem
class Grammar():
"""
Object representing a string-representation of a context-free grammar.
This class is intended to be used with the Lark module.
"""
def __init__(self, start):
"""
Requires that terminals be wrapped in double quotes.
Rules is a mapping of rule start name to Rule object.
"""
# Add the first rule pointing a dummy start nonterminal to start
start_rule = Rule('start')
start_rule.add_body([start])
self.start_symbol = start
self.rules = {'start':start_rule}
# Define cacheable values and their valid bits
self.cached_str = ""
self.cached_parser = None
self.str_cache_hash = self._rule_hash()
self.parser_cache_hash = self._rule_hash()
def copy(self):
new_grammar = Grammar(self.start_symbol)
for rule in self.rules.values():
new_rule = rule.copy()
new_grammar.add_rule(new_rule)
return new_grammar
def _rule_hash(self):
return hash(tuple([(start, rule._body_hash()) for start, rule in self.rules.items()]))
def str_cache_valid(self):
return self.str_cache_hash == self._rule_hash()
def parser_cache_valid(self):
return self.parser_cache_hash == self._rule_hash()
def add_rule(self, rule):
if rule.start in self.rules:
saved_rule = self.rules[rule.start]
for rule_body in rule.bodies:
saved_rule.add_body(rule_body)
else:
self.rules[rule.start] = rule
self.cache_hash = self._rule_hash()
def parser(self):
if self.parser_cache_valid():
return self.cached_parser
self.cached_parser = Lark(str(self).replace('\u03B5', ''))
self.parser_cache_hash = self._rule_hash()
return self.cached_parser
def sample_negatives(self, n, terminals, max_size):
"""
Samples n random strings that do not belong to the grammar.
Returns the unique subset of these.
"""
samples = set()
attempts = 0
while len(samples) < n and attempts < 10*n:
samples.add(self.generate_negative_example(terminals, max_size))
attempts += 1
return samples
def generate_negative_example(self, terminals, max_size):
# Generate the negative example by choosing randomly from the set of terminals
negative_example = ""
n_chars = random.randint(1, max_size)
for _ in range(n_chars):
rindex = random.randint(0, len(terminals) - 1)
term = terminals[rindex]
assert(term[0]== '"' and term[-1] == '"')
term = term[1:-1]
negative_example += term
# Check if the negative example is in the grammar. Try again if so.
try:
self.parser().parse(negative_example)
return self.generate_negative_example(terminals, max_size)
except:
return negative_example
def sample_positives(self, n, max_depth):
"""
Samples n random strings that do not belong to the grammar.
Returns the unique subset of these.
"""
samples = set()
attempts = 0
while len(samples) < n and attempts < 10*n:
attempts += 1
try:
sample = self.generate_positive_example(max_depth)
if len(sample) > 300:
continue
samples.add(sample)
except RecursionError:
continue
return samples
def generate_positive_example(self, max_depth, start_nonterminal='start', cur_depth=0):
"""
Samples a random positive example from the grammar, with max_depth as much as possible.
"""
# Helper function: gets all the nonterminals for a body
def body_nonterminals(grammar, body):
nonterminals = []
for item in body:
if item in grammar.rules:
nonterminals.append(item)
return nonterminals
bodies = self.rules[start_nonterminal].bodies
# If we've reached the max depth, try to choose a non-recursive rule.
if cur_depth >= max_depth:
terminal_bodies = [body for body in bodies if len(body_nonterminals(self, body)) == 0]
if len(terminal_bodies) > 0:
terminal_body = terminal_bodies[random.randint(0, len(terminal_bodies)-1)]
return "".join([elem.replace('"', '') for elem in terminal_body])
# Otherwise... guess we'll have to try to stop later.
body_to_expand = bodies[random.randint(0, len(bodies) -1)]
nonterminals_to_expand = body_nonterminals(self, body_to_expand)
expanded_body = [self.generate_positive_example(max_depth, elem, cur_depth + 1)
if elem in nonterminals_to_expand
else elem[1:-1] # really just wanna non-clean up the terminals
for elem in body_to_expand]
return "".join(expanded_body)
def __str__(self):
if self.str_cache_valid():
return self.cached_str
self.cached_str = '\n'.join([str(rule) for rule in self.rules.values()])
self.str_cache_hash = self._rule_hash()
return self.cached_str
def pretty_print(self):
ret = '\n'.join([rule.pretty_print() for rule in self.rules.values()])
return ret
def size(self):
return sum([rule.size() for rule in self.rules.values()])
class Rule():
"""
Object representing the string-represenation of a rule of a CFG.
There is always an associated grammar with every rule.
This class is intended to be used with the Lark module.
"""
def __init__(self, start):
"""
Start must be a nonterminal.
Each body is a sequence of terminals and nonterminals.
If there are multiple bodies, they will be connected via the | op.
The epsilon terminal is represented under the hood as an empty string,
but is displayed to the user as the epsilon character.
"""
self.start = start
self.bodies = []
self.cached_str = ""
self.cache_hash = 0
def copy(self):
new_rule = Rule(self.start)
for body in self.bodies:
new_rule.add_body(body[:])
return new_rule
def add_body(self, body):
self.cache_valid = False
if body not in self.bodies:
self.bodies.append(body)
return self
def _cache_valid(self):
return self.cache_hash == self._body_hash()
def _body_hash(self):
return hash(tuple([tuple(body) for body in self.bodies]))
def __str__(self):
if self._cache_valid():
return self.cached_str
self.cached_str = '%s: %s' % (self.start, self._body_str(self.bodies[0]))
for i in range(1, len(self.bodies)):
self.cached_str += '\n | %s' % (self._body_str(self.bodies[i]))
self.cache_hash = self._body_hash()
return self.cached_str
def _body_str(self, body):
return ' '.join([elem_fixup(b) if len(b) > 0 else '\u03B5' for b in body])
def size(self):
return 1 + sum([len(body) for body in self.bodies])
def pretty_print(self):
ret = '%s: %s' % (self.start, self.pretty_body(self.bodies[0]))
for i in range(1, len(self.bodies)):
ret += '\n | %s' % (self.pretty_body(self.bodies[i]))
return ret
def pretty_body(self, body):
ret = ""
built_up_terminals = ""
is_first = True
for child in body:
if re.match("t[0-9]+", child):
if not is_first:
ret += " "
if len(built_up_terminals) > 0:
ret += '"' +built_up_terminals + '"'
built_up_terminals = ""
ret += " "
ret += child
elif child == '':
if not is_first:
ret += " "
ret += '\u03B5'
else:
built_up_terminals += child.strip('"')
is_first = False
if len(built_up_terminals) > 0:
if len(ret) > 0:
ret += " "
if len(built_up_terminals) > 0:
ret += '"' + built_up_terminals + '"'
return ret
# Example grammar with nonterminals n1, n2 and terminals a, b
# grammar = Grammar('n1')
# grammar.add_rule(Rule('n1').add_body(['n2', '"a"']).add_body(['']))
# grammar.add_rule(Rule('n2').add_body(['', 'n1', '']))
# parser = grammar.parser()
# print(parser.parse("aa").pretty())