-
Notifications
You must be signed in to change notification settings - Fork 9
/
ppo_64.py
435 lines (312 loc) · 15 KB
/
ppo_64.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# -*- coding: utf-8 -*-
############################### Import libraries ###############################
"""
Script to train PPO with 64 hidden units
PPO code from https://github.com/nikhilbarhate99/PPO-PyTorch
misc{pytorch_minimal_ppo,
author = {Barhate, Nikhil},
title = {Minimal PyTorch Implementation of Proximal Policy Optimization},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {url{https://github.com/nikhilbarhate99/PPO-PyTorch}},
}
"""
import os
from datetime import datetime
import torch
import torch.nn as nn
from torch.distributions import Categorical
import numpy as np
from env import Env
from argparser import args
from time import sleep
################################## set device to cpu or cuda ##################################
print("============================================================================================")
# set device to cpu or cuda
device = torch.device('cpu')
if(torch.cuda.is_available()):
device = torch.device('cuda:0')
torch.cuda.empty_cache()
print("Device set to : " + str(torch.cuda.get_device_name(device)))
else:
print("Device set to : cpu")
print("============================================================================================")
################################## Define PPO Policy ##################################
class RolloutBuffer:
def __init__(self):
self.actions = []
self.states = []
self.logprobs = []
self.rewards = []
self.is_terminals = []
def clear(self):
del self.actions[:]
del self.states[:]
del self.logprobs[:]
del self.rewards[:]
del self.is_terminals[:]
class ActorCritic(nn.Module):
def __init__(self, state_dim, action_dim, action_std_init):
super(ActorCritic, self).__init__()
# actor
self.actor = nn.Sequential(
nn.Linear(state_dim, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, action_dim),
nn.Softmax(dim=-1)
)
# critic
self.critic = nn.Sequential(
nn.Linear(state_dim, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, 1)
)
def act(self, state):
action_probs = self.actor(state)
dist = Categorical(action_probs)
action = dist.sample()
action_logprob = dist.log_prob(action)
return action.detach(), action_logprob.detach()
def evaluate(self, state, action):
action_probs = self.actor(state)
dist = Categorical(action_probs)
action_logprobs = dist.log_prob(action)
dist_entropy = dist.entropy()
state_values = self.critic(state)
return action_logprobs, state_values, dist_entropy
class PPO:
def __init__(self, state_dim, action_dim, lr_actor, lr_critic, gamma, K_epochs, eps_clip, action_std_init=0.6):
self.gamma = gamma
self.eps_clip = eps_clip
self.K_epochs = K_epochs
self.buffer = RolloutBuffer()
self.policy = ActorCritic(state_dim, action_dim, action_std_init).to(device)
self.optimizer = torch.optim.Adam([
{'params': self.policy.actor.parameters(), 'lr': lr_actor},
{'params': self.policy.critic.parameters(), 'lr': lr_critic}
])
self.policy_old = ActorCritic(state_dim, action_dim, action_std_init).to(device)
self.policy_old.load_state_dict(self.policy.state_dict())
self.MseLoss = nn.MSELoss()
def select_action(self, state):
with torch.no_grad():
state = torch.FloatTensor(state).to(device)
action, action_logprob = self.policy_old.act(state)
self.buffer.states.append(state)
self.buffer.actions.append(action)
self.buffer.logprobs.append(action_logprob)
return action.item()
def update(self):
# Monte Carlo estimate of returns
rewards = []
discounted_reward = 0
for reward, is_terminal in zip(reversed(self.buffer.rewards), reversed(self.buffer.is_terminals)):
if is_terminal:
discounted_reward = 0
discounted_reward = reward + (self.gamma * discounted_reward)
rewards.insert(0, discounted_reward)
# Normalizing the rewards
rewards = torch.tensor(rewards, dtype=torch.float32).to(device)
rewards = (rewards - rewards.mean()) / (rewards.std() + 1e-7)
# convert list to tensor
old_states = torch.squeeze(torch.stack(self.buffer.states, dim=0)).detach().to(device)
old_actions = torch.squeeze(torch.stack(self.buffer.actions, dim=0)).detach().to(device)
old_logprobs = torch.squeeze(torch.stack(self.buffer.logprobs, dim=0)).detach().to(device)
# Optimize policy for K epochs
for _ in range(self.K_epochs):
# Evaluating old actions and values
logprobs, state_values, dist_entropy = self.policy.evaluate(old_states, old_actions)
# match state_values tensor dimensions with rewards tensor
state_values = torch.squeeze(state_values)
# Finding the ratio (pi_theta / pi_theta__old)
ratios = torch.exp(logprobs - old_logprobs.detach())
# Finding Surrogate Loss
advantages = rewards - state_values.detach()
surr1 = ratios * advantages
surr2 = torch.clamp(ratios, 1-self.eps_clip, 1+self.eps_clip) * advantages
# final loss of clipped objective PPO
loss = -torch.min(surr1, surr2) + 0.5*self.MseLoss(state_values, rewards) - 0.01*dist_entropy
# take gradient step
self.optimizer.zero_grad()
loss.mean().backward()
self.optimizer.step()
# Copy new weights into old policy
self.policy_old.load_state_dict(self.policy.state_dict())
# clear buffer
self.buffer.clear()
def save(self, checkpoint_path):
torch.save(self.policy_old.state_dict(), checkpoint_path)
def load(self, checkpoint_path):
self.policy_old.load_state_dict(torch.load(checkpoint_path, map_location=lambda storage, loc: storage))
self.policy.load_state_dict(torch.load(checkpoint_path, map_location=lambda storage, loc: storage))
################################# End of Part I ################################
print("============================================================================================")
################################### Training ###################################
################ initialize environment hyperparameters and PPO hyperparameters ################
print("setting training environment : ")
max_ep_len = 200 # max timesteps in one episode
update_timestep = max_ep_len * 4 # update policy every n timesteps
K_epochs = 40 # update policy for K epochs
eps_clip = 0.2 # clip parameter for PPO
gamma = 0.99 # discount factor
lr_actor = 0.0003 # learning rate for actor network
lr_critic = 0.001 # learning rate for critic network
random_seed = 0 # set random seed
max_training_timesteps = int(1e5) # break training loop if timeteps > max_training_timesteps
print_freq = max_ep_len * 4 # print avg reward in the interval (in num timesteps)
log_freq = max_ep_len * 2 # log avg reward in the interval (in num timesteps)
save_model_freq = max_ep_len * 4 # save model frequency (in num timesteps)
action_std = None
env=Env()
# state space dimension
state_dim = args.n_servers * args.n_resources + args.n_resources + 1
# action space dimension
action_dim = args.n_servers
## Note : print/log frequencies should be > than max_ep_len
###################### logging ######################
#### log files for multiple runs are NOT overwritten
log_dir = "PPO_files"
if not os.path.exists(log_dir):
os.makedirs(log_dir)
log_dir_1 = log_dir + '/' + 'resource_allocation' + '/' + 'stability' + '/'
if not os.path.exists(log_dir_1):
os.makedirs(log_dir_1)
log_dir_2 = log_dir + '/' + 'resource_allocation' + '/' + 'reward' + '/'
if not os.path.exists(log_dir_2):
os.makedirs(log_dir_2)
#### get number of log files in log directory
run_num = 0
current_num_files1 = next(os.walk(log_dir_1))[2]
run_num1 = len(current_num_files1)
current_num_files2 = next(os.walk(log_dir_2))[2]
run_num2 = len(current_num_files2)
#### create new saving file for each run
log_f_name = log_dir_1 + '/PPO_' + 'resource_allocation' + "_log_" + str(run_num1) + ".csv"
log_f_name2 = log_dir_2 + '/PPO_' + 'resource_allocation' + "_log_" + str(run_num2) + ".csv"
print("current logging run number for " + 'resource_allocation' + " : ", run_num1)
print("logging at : " + log_f_name)
#####################################################
################### checkpointing ###################
run_num_pretrained = 0 #### change this to prevent overwriting weights in same env_name folder
directory = "PPO_preTrained"
if not os.path.exists(directory):
os.makedirs(directory)
directory = directory + '/' + 'resource_allocation' + '/'
if not os.path.exists(directory):
os.makedirs(directory)
checkpoint_path = directory + "PPO64_{}_{}_{}.pth".format('resource_allocation', random_seed, run_num_pretrained)
print("save checkpoint path : " + checkpoint_path)
#####################################################
############# print all hyperparameters #############
print("--------------------------------------------------------------------------------------------")
print("max training timesteps : ", max_training_timesteps)
print("max timesteps per episode : ", max_ep_len)
print("model saving frequency : " + str(save_model_freq) + " timesteps")
print("log frequency : " + str(log_freq) + " timesteps")
print("printing average reward over episodes in last : " + str(print_freq) + " timesteps")
print("--------------------------------------------------------------------------------------------")
print("state space dimension : ", state_dim)
print("action space dimension : ", action_dim)
print("--------------------------------------------------------------------------------------------")
print("PPO update frequency : " + str(update_timestep) + " timesteps")
print("PPO K epochs : ", K_epochs)
print("PPO epsilon clip : ", eps_clip)
print("discount factor (gamma) : ", gamma)
print("--------------------------------------------------------------------------------------------")
print("optimizer learning rate actor : ", lr_actor)
print("optimizer learning rate critic : ", lr_critic)
print("--------------------------------------------------------------------------------------------")
print("setting random seed to ", random_seed)
torch.manual_seed(random_seed)
np.random.seed(random_seed)
#####################################################
print("============================================================================================")
################# training procedure ################
# initialize a PPO agent
ppo_agent = PPO(state_dim, action_dim, lr_actor, lr_critic, gamma, K_epochs, eps_clip, action_std)
start_time = datetime.now().replace(microsecond=0)
print("Started training at (GMT) : ", start_time)
print("============================================================================================")
# logging file
log_f = open(log_f_name,"w+")
log_f.write('episode,timestep,reward\n')
log_f2 = open(log_f_name2,"w+")
log_f2.write('episode,timestep,reward\n')
# printing and logging variables
print_running_reward = 0
print_running_episodes = 0
log_running_reward = 0
log_running_episodes = 0
time_step = 0
i_episode = 0
rewards = []
# start training loop
while time_step <= max_training_timesteps:
print("New training episode:")
sleep(0.1) # we sleep to read the reward in console
state = env.reset()
current_ep_reward = 0
for t in range(1, max_ep_len+1):
# select action with policy
action = ppo_agent.select_action(state)
state, reward, done, _ = env.step(action)
# saving reward and is_terminals
ppo_agent.buffer.rewards.append(reward)
ppo_agent.buffer.is_terminals.append(done)
time_step +=1
current_ep_reward += reward
print("The current total episodic reward at timestep:", time_step, "is:", current_ep_reward)
sleep(0.1) # we sleep to read the reward in console
# update PPO agent
if time_step % update_timestep == 0:
ppo_agent.update()
print("Update PPO policy at timestep:", time_step)
sleep(0.1) # we sleep to read the reward in console
# log in logging file
if time_step % log_freq == 0:
# log average reward till last episode
log_avg_reward = log_running_reward / log_running_episodes
log_avg_reward = round(log_avg_reward, 4)
print("Saving reward to csv file")
sleep(0.1) # we sleep to read the reward in console
log_f.write('{},{},{}\n'.format(i_episode, time_step, log_avg_reward))
log_f.flush()
log_f2.write('{},{},{}\n'.format(i_episode, time_step, log_avg_reward))
log_f2.flush()
log_running_reward = 0
log_running_episodes = 0
# printing average reward
if time_step % print_freq == 0:
# print average reward till last episode
print_avg_reward = print_running_reward / print_running_episodes
print_avg_reward = round(print_avg_reward, 2)
rewards.append(print_avg_reward)
print("Episode : {} \t\t Timestep : {} \t\t Average Reward : {}".format(i_episode, time_step, print_avg_reward))
sleep(0.1) # we sleep to read the reward in console
print_running_reward = 0
print_running_episodes = 0
# save model weights
if time_step % save_model_freq == 0:
print("--------------------------------------------------------------------------------------------")
print("saving model at : " + checkpoint_path)
sleep(0.1) # we sleep to read the reward in console
ppo_agent.save(checkpoint_path)
print("model saved")
print("--------------------------------------------------------------------------------------------")
# break; if the episode is over
if done:
break
print_running_reward += current_ep_reward
print_running_episodes += 1
log_running_reward += current_ep_reward
log_running_episodes += 1
i_episode += 1
log_f.close()
log_f2.close()
print("============================================================================================")
################################ End of Part II ################################