diff --git a/details/faqs/index.html b/details/faqs/index.html index bbe3994cd9b..d135aad8ea3 100644 --- a/details/faqs/index.html +++ b/details/faqs/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsFAQs
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Details
FAQs

FAQs

General Product FAQs

What is Neural Magic?

Founded by a team of award-winning MIT computer scientists and funded by Amdocs, Andreessen Horowitz, Comcast Ventures, NEA, Pillar VC, and -Ridgeline Partners, Neural Magic is the creator and maintainer of the Deep Sparse Platform. It has several components, including the -DeepSparse Engine, a CPU runtime that runs sparse models at GPU speeds. To enable companies the ability to use -ubiquitous and unconstrained CPU resources, Neural Magic includes SparseML and the SparseZoo, -open-sourced model optimization technologies that allow users to achieve performance breakthroughs, at scale, with all the flexibility of software.

What is the DeepSparse Engine?

The DeepSparse Engine, created by Neural Magic, is a general purpose engine for machine learning, enabling machine learning to be practically -run in new places, on new kinds of workloads. It delivers state of art, GPU-class performance for the deep learning applications running on x86 -CPUs. The DeepSparse Engine achieves its performance using breakthrough algorithms that reduce the computation needed for neural network execution -and accelerate the resulting memory-bound computation.

Why Neural Magic?

Learn more about Neural Magic and the DeepSparse Engine (formerly known as the Neural Magic Inference Engine). +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Details
FAQs

FAQs

General Product FAQs

What is Neural Magic?

Neural Magic was founded by a team of award-winning MIT computer scientists and is funded by Amdocs, Andreessen Horowitz, Comcast Ventures, NEA, Pillar +VC, and Ridgeline Partners. The Neural Magic Platform includes several components, including DeepSparse, SparseML, and SparseZoo. +DeepSparse is an inference runtime offering GPU-class performance on CPUs and tooling to +integrate ML into your application. SparseML and SparseZoo, are and open-source tooling and model repository +combination that enable you to create an inference-optimized sparse-model for deployment with DeepSparse.

Together, these components remove the tradeoff between performance and the simplicity and scalability of software-delivered deployments.

What is DeepSparse?

DeepSparse, created by Neural Magic, is an inference runtime for deep learning models. It delivers state of art, GPU-class performance on commodity CPUs +as well as tooling for integrating a model into an application and monitoring models in production.

Why Neural Magic?

Learn more about Neural Magic and DeepSparse (formerly known as the Neural Magic Inference Engine). Watch the Why Neural Magic video

How does Neural Magic make it work?

This is an older webinar (50m) where we went through the process of optimizing and deploying a model; we’ve enhanced our software since the recording went out but this will give you some background: Watch the How does it Work video

Does Neural Magic support training of learning models on CPUs?

Neural Magic does not support training of deep learning models at this time. We do see value in providing a consistent CPU environment -for our end users to train and infer on for their deep learning needs, and have added this to our engineering backlog.

Do you have version compatibility on TensorFlow?

Our inference engine supports all versions of TensorFlow <= 2.0; support for the Keras API is through TensorFlow 2.0.

Do you run on AMD hardware?

The DeepSparse Engine is validated to work on x86 Intel (Haswell generation and later) and AMD CPUs running Linux, with +for our end users to train and infer on for their deep learning needs, and have added this to our engineering backlog.

Do you have version compatibility on TensorFlow?

Our inference engine supports all versions of TensorFlow <= 2.0; support for the Keras API is through TensorFlow 2.0.

Do you run on AMD hardware?

DeepSparse is validated to work on x86 Intel (Haswell generation and later) and AMD CPUs running Linux, with support for AVX2, AVX-512, and VNNI instruction sets. Specific support details for some algorithms over different microarchitectures is available.

We are open to opportunities to expand our support footprint for different CPU-based processor architectures, based on market adoption and deep learning use cases.

Do you run on ARM architecture?

We are actively working on ARM support and it’s slated for release late-2022. We would like to hear your use cases and keep you in the -loop! Contact us to continue the conversation.

To what use cases is the Deep Sparse Platform best suited?

We focus on the models and use cases related to computer vision and NLP due to cost sensitivity and both real time and throughput constraints. +loop! Contact us to continue the conversation.

To what use cases is the Neural Magic Platform best suited?

We focus on the models and use cases related to computer vision and NLP due to cost sensitivity and both real time and throughput constraints. The belief now is GPUs are required for deployment.

What types of models does Neural Magic support?

Today, we offer support for CNN-based computer vision models, specifically classification and object detection model types. NLP models like BERT are also available. We are continuously adding models to our supported model list and SparseZoo. Additionally, we are investigating model architectures beyond computer vision.

Is dynamic shape supported?

Dynamic shape is currently not supported; be sure to use models with fixed inputs and compile the model for a particular batch size. @@ -30,22 +28,22 @@ on the engine execution strategy.


Benchmarking FAQs

Do you have benchmarks to compare and contrast?

Yes. Check out our benchmark demo video or contact us to discuss your particular performance requirements. If you’d rather observe performance for yourself, head over to the Neural Magic GitHub repo -to check out our tools and generate your own benchmarks in your environment.

Do you publish ML Perf inference benchmarks?

Checkout ZDNet's coverage of our results at ML Perf!


Infrastructure FAQs

Which instruction sets are supported and do we have to enable certain settings?

AVX2, AVX-512, and VNNI. The DeepSparse Engine will automatically utilize the most effective available +to check out our tools and generate your own benchmarks in your environment.

Do you publish ML Perf inference benchmarks?

Checkout ZDNet's coverage of our results at ML Perf!


Infrastructure FAQs

Which instruction sets are supported and do we have to enable certain settings?

AVX2, AVX-512, and VNNI. DeepSparse will automatically utilize the most effective available instructions for the task. Depending on your goals and hardware priorities, optimal performance can be found. Neural Magic is happy to discuss your use cases and offer recommendations.

Are you suitable for edge deployments (i.e., in-store devices, cameras)?

Yes, absolutely. We can run anywhere you have a CPU with x86 instructions, including on bare metal, in the cloud, on-prem, or at the edge. Additionally, our model optimization tools are able to reduce the footprint of models -across all architectures. We only guarantee performance in the DeepSparse Engine.

We’d love to hear from users highly interested in ML performance. If you want to chat about your use cases -or how others are leveraging the Deep Sparse Platform, please contact us. +across all architectures. We only guarantee performance in DeepSparse.

We’d love to hear from users highly interested in ML performance. If you want to chat about your use cases +or how others are leveraging the Neural Magic Platform, please contact us. Or simply head over to the Neural Magic GitHub repo and check out our tools.

Do you have available solutions or applications on the Microsoft/Azure platform?

We deploy extremely easily. We are completely infrastructure-agnostic. As long as it has the “right” CPUs -(e.g., AVX2 or AVX-512) we can run on any cloud platform, including Azure!

Can the inference engine run on Kubernetes? How do you containerize and take advantage of underlying infrastructure?

The DeepSparse Engine becomes a component of your model serving solution. As a result, it can +(e.g., AVX2 or AVX-512) we can run on any cloud platform, including Azure!

Can the inference engine run on Kubernetes? How do you containerize and take advantage of underlying infrastructure?

DeepSparse becomes a component of your model serving solution. As a result, it can simply plug into an existing CI/CD deployment pipeline. How you deploy, where you deploy, and what you deploy on -becomes abstracted to the DeepSparse Engine so you can tailor your experiences. For example, you can run the -DeepSparse Engine on a CPU VM environment, deployed via a Docker file and managed through a Kubernetes environment.


Model Compression FAQs

Can you comment on how you do pruning and effects on accuracy?

Neural networks are extremely over-parameterized, allowing most weights to be iteratively removed from the network +becomes abstracted to DeepSparse so you can tailor your experiences. For example, you can run the +DeepSparse on a CPU VM environment, deployed via a Docker file and managed through a Kubernetes environment.


Model Compression FAQs

Can you comment on how you do pruning and effects on accuracy?

Neural networks are extremely over-parameterized, allowing most weights to be iteratively removed from the network without effect on accuracy. Eventually, though, pruning will begin affecting the overall capacity of the network, the degree of which varies based on the use case. However, this is something entirely under the data scientist control to choose whether to recover fully or to prune more for even better performance.

For example, Neural Magic has been successful in removing 95% of ResNet-50 weights with no loss in accuracy. For more background on techniques that have informed our methodologies, check out this paper co-written by -Neural Magic, WoodFisher: Efficient Second-Order Approximation for Neural Network Compression.

When does sparsification actually happen?

In a scenario in which you want to sparsify and then run your own model in the DeepSparse Engine, you would first +Neural Magic, WoodFisher: Efficient Second-Order Approximation for Neural Network Compression.

When does sparsification actually happen?

In a scenario in which you want to sparsify and then run your own model with DeepSparse, you would first sparsify your model to achieve the desired level of performance and accuracy using Neural Magic’s SparseML tooling.

What does the sparsification process look like?

Neural Magic’s Sparsify and SparseML tooling, at its core, uses well-established state-of-the-art research principles such as Gradual Magnitude Pruning (GMP) to sparsify models. This is an iterative process in which groups of important weights are pruned away and then the network is allowed to recover. To significantly simplify the process, @@ -54,18 +52,18 @@ to get started!

How does sparsification work in relation to TensorFlow?

Today, we are able to sparsify models trained in popular deep learning libraries like TensorFlow. Our unique approach works with the output supplied by the model library and provides layer sparsification techniques that then can be compiled in the existing library framework, within the user environment.

When using your software to transfer learn, what about other hyperparameters? Are you just freezing other layers?

For transfer learning, our tooling allows you to save the sparse architecture learned from larger datasets. Other -hyperparameters are fully under your control and allow you the flexibility to easily freeze layers as well.

Do you support INT8 and INT16 (quantized) operations?

The DeepSparse Engine runs at FP32 and has support for INT8. With Intel Cascade Lake generation chips and later, +hyperparameters are fully under your control and allow you the flexibility to easily freeze layers as well.

Do you support INT8 and INT16 (quantized) operations?

DeepSparse runs at FP32 and has support for INT8. With Intel Cascade Lake generation chips and later, Intel CPUs include VNNI instructions and support both INT8 and INT16 operations. On these machines, performance improvements -from quantization will be greater. The DeepSparse Engine has INT8 support for the ONNX operators QLinearConv, QuantizeLinear, -DequantizeLinear, QLinearMatMul, and MatMulInteger. Our engine also supports 8-bit QLinearAdd, an ONNX Runtime custom operator.

Do you support FP16 (half precision) and BF16 operations?

Neural Magic is looking to include both FP16 and BF16 on our roadmap in the near future.


Runtime FAQs

Do users have to do any model conversion before using the DeepSparse Engine?

DeepSparse Engine executes on an ONNX (Open Neural Network Exchange) representation of a deep learning model. +from quantization will be greater. DeepSparse has INT8 support for the ONNX operators QLinearConv, QuantizeLinear, +DequantizeLinear, QLinearMatMul, and MatMulInteger. Our engine also supports 8-bit QLinearAdd, an ONNX Runtime custom operator.

Do you support FP16 (half precision) and BF16 operations?

Neural Magic is looking to include both FP16 and BF16 on our roadmap in the near future.


Runtime FAQs

Do users have to do any model conversion before using DeepSparse?

DeepSparse executes on an ONNX (Open Neural Network Exchange) representation of a deep learning model. Our software allows you to produce an ONNX representation. If working with PyTorch, we use the built-in ONNX export and for TensorFlow, we convert from a standard exported protobuf file to ONNX. Outside of those frameworks, -you would need to convert your model to ONNX first before passing it to the DeepSparse Engine.

Why is ONNX the file format used by Neural Magic?

ONNX (Open Neural Network Exchange) is emerging as a standard, open-source format for model representation. +you would need to convert your model to ONNX first before passing it to DeepSparse.

Why is ONNX the file format used by Neural Magic?

ONNX (Open Neural Network Exchange) is emerging as a standard, open-source format for model representation. Based on the breadth of vendors supporting ONNX as well as the health of open-source community contributions, we believe ONNX offers a compelling solution for the market.

Are your users using ONNX runtime already?

End users are using a wide variety of runtimes, both open source and proprietary. Neural Magic is focused on ensuring we are open and flexible, to allow our users to achieve deep learning performance regardless of how they choose to build, deploy, and run their models.

What is the accuracy loss, if any, on the numbers Neural Magic demonstrates?

Results will depend on your use case and specific requirements. We are capable of maintaining 100% baseline accuracy. In cases where accuracy is not as important as performance, you can use our model optimization tools to further speed -up the model at the expense of accuracy and weigh the tradeoffs.

If you need sparsification, we provide the tooling for tradeoffs between accuracy and performance based on your specific requirements.

For the runtime engine, is Neural Magic modifying the architecture in any way or just optimizing the instruction set at that level?

Specifically for sparsification, our software keeps the architecture intact and changes the weights. For running dense, we do not change anything about the model.

For a CPU are you using all the cores?

The DeepSparse Engine optimizes how the model is run on the infrastructure resources applied to it. But, the Neural +up the model at the expense of accuracy and weigh the tradeoffs.

If you need sparsification, we provide the tooling for tradeoffs between accuracy and performance based on your specific requirements.

For the runtime engine, is Neural Magic modifying the architecture in any way or just optimizing the instruction set at that level?

Specifically for sparsification, our software keeps the architecture intact and changes the weights. For running dense, we do not change anything about the model.

For a CPU are you using all the cores?

DeepSparse optimizes how the model is run on the infrastructure resources applied to it. But, Neural Magic does not optimize for the number of cores. You are in control to specify how much of the system Neural Magic will use and run on. -Depending on your goals (latency, throughput, and cost constraints), you can optimize your pipeline for maximum efficiency.

SparseML Python API
Glossary
\ No newline at end of file +Depending on your goals (latency, throughput, and cost constraints), you can optimize your pipeline for maximum efficiency.

\ No newline at end of file diff --git a/details/glossary/index.html b/details/glossary/index.html index ff7c3a4266d..f66340d0fff 100644 --- a/details/glossary/index.html +++ b/details/glossary/index.html @@ -8,4 +8,4 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Details
Glossary

Glossary

The machine learning community includes a vast array of terminology that can have variations in meaning depending on context. This glossary is not intended as a comprehensive list, but rather a clarification of terms you may encounter with Neural Magic and machine learning.

AutoMLAutomated Machine Learning. Platform that aims to reduce or eliminate the need for skilled data scientists to build ML and deep learning models. Google AutoML, for example, is a suite of cloud-based ML products.
AVX2Advanced Vector Extensions 2. Instruction set used for applications on an Intel CPU.
AVX-512Advanced Vector Extensions. Instruction set on Intel CPUs that impacts compute, storage, and network instructions. AVX-512 yields higher performance for demanding computational tasks.
Cascade Lake ChipsIntel CPU chips up to 28 cores that are improved for machine learning and added VNNI instructions. Cascade Lake Chips support FP16 and INT8 floating point operations.
Convolutional Neural Network (CNN)Artificial neural network used in image recognition and object detection as well as processing that is specifically designed to process pixel data.
Deep Learning (DL)Subset of machine learning in which artificial neural networks (algorithms inspired by the human brain) learn from large amounts of data.
Deep Learning FrameworksInterface, library, or tool that allows one to build deep learning models more easily and quickly without getting into details of underlying algorithms.
DLRMOpen-source Deep Learning Recommendation Model from Facebook.
Fully Connected NetworkNetwork in which every node in a layer (except the input and output layer) is connected to every node in the previous layer and following layer.
Image ClassificationSupervised learning problem to define a set of target classes (objects to identify in images) and train a model to recognize them using labeled example photos.
Image SegmentationIn computer vision, the process of partitioning a digital image into multiple segments to simplify and/or change the representation of an image into something more meaningful and easier to analyze.
InferenceProcess of using a trained machine learning algorithm to make predictions (done by machine learning engineers).
MobileNetsA family of mobile-first computer vision models for TensorFlow, designed to effectively maximize accuracy while being mindful of the restricted resources for an on-device or embedded application.
Model pipelinesIn machine learning deployment, multiple models chained together to achieve business goals (such as a detection model to select regions from an image for a later visual search model).
Model servingIn machine learning deployment, makes serving of models less expensive and faster to run by better using resources on the machine.
Multilayer Perceptron (MLP)A feedforward artificial neural network (ANN) model, composed of more than one perceptron, that maps sets of input data onto a set of appropriate outputs.
Neural NetworkSystem of hardware and/or software patterned after the operation of neurons in the human brain.
Object DetectionCategorization of an image based on the number of objects in the image and/or the location of the objects.
ONNXOpen Neural Network Exchange. Open-source inference engine that is a performance-focused complete scoring engine for ONNX models.
QuantizationThe process of approximating a neural network that uses floating-point numbers by a neural network of low bit width numbers. Quantization dramatically reduces the memory requirement and computational cost of using neural networks.
RecommendationsCategorization of an image based on relevant suggestions. This class of machine learning algorithms finds similarity between different images.
ResNetImage classification model that is structurally dense.
SparsificationA model optimization technique used to improve performance by reducing the number of nonperformance critical elements, vectors, and matrices.
SSDSingle Shot Detector. Convolutional neural network (CNN) algorithm for object detection that provides better balance between swiftness and precision. SSD runs CNN on an input image only one time and computes a feature map.
Structured pruningA method for compressing a neural network. Structured pruning alternates between removing channel connections and fine-tuning to reduce overall width of the network. Structured pruning severely limits the maximum sparsity that can be imposed on a network when compared with unstructured pruning.
TensorThe input to a convolutional layer. Tensor is a 3 or 4 dimensional representation of a 2D image.
TrainingThe process of feeding an ML algorithm with data to help identify and learn good values for all attributes involved.
U-NetFully convolutional network that does image segmentation (originally designed for medical image segmentation). The U-Net goal is to predict each pixel class.
Unstructured pruningA method for compressing a neural network. Unstructured pruning removes individual weight connections from a trained network. Software like Neural Magic's DeepSparse Engine runs these pruned networks faster.
VNNIVector Neural Network Instructions. New versions of Intel's CPU chips are optimized with VNNI, making them faster and more efficient for certain types of machine learning applications.
YOLOYou Only Look Once. Open-source type of CNN method of object detection that can recognize objects in images and videos swiftly.
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Details
Glossary

Glossary

The machine learning community includes a vast array of terminology that can have variations in meaning depending on context. This glossary is not intended as a comprehensive list, but rather a clarification of terms you may encounter with Neural Magic and machine learning.

AutoMLAutomated Machine Learning. Platform that aims to reduce or eliminate the need for skilled data scientists to build ML and deep learning models. Google AutoML, for example, is a suite of cloud-based ML products.
AVX2Advanced Vector Extensions 2. Instruction set used for applications on an Intel CPU.
AVX-512Advanced Vector Extensions. Instruction set on Intel CPUs that impacts compute, storage, and network instructions. AVX-512 yields higher performance for demanding computational tasks.
Cascade Lake ChipsIntel CPU chips up to 28 cores that are improved for machine learning and added VNNI instructions. Cascade Lake Chips support FP16 and INT8 floating point operations.
Convolutional Neural Network (CNN)Artificial neural network used in image recognition and object detection as well as processing that is specifically designed to process pixel data.
Deep Learning (DL)Subset of machine learning in which artificial neural networks (algorithms inspired by the human brain) learn from large amounts of data.
Deep Learning FrameworksInterface, library, or tool that allows one to build deep learning models more easily and quickly without getting into details of underlying algorithms.
DLRMOpen-source Deep Learning Recommendation Model from Facebook.
Fully Connected NetworkNetwork in which every node in a layer (except the input and output layer) is connected to every node in the previous layer and following layer.
Image ClassificationSupervised learning problem to define a set of target classes (objects to identify in images) and train a model to recognize them using labeled example photos.
Image SegmentationIn computer vision, the process of partitioning a digital image into multiple segments to simplify and/or change the representation of an image into something more meaningful and easier to analyze.
InferenceProcess of using a trained machine learning algorithm to make predictions (done by machine learning engineers).
MobileNetsA family of mobile-first computer vision models for TensorFlow, designed to effectively maximize accuracy while being mindful of the restricted resources for an on-device or embedded application.
Model pipelinesIn machine learning deployment, multiple models chained together to achieve business goals (such as a detection model to select regions from an image for a later visual search model).
Model servingIn machine learning deployment, makes serving of models less expensive and faster to run by better using resources on the machine.
Multilayer Perceptron (MLP)A feedforward artificial neural network (ANN) model, composed of more than one perceptron, that maps sets of input data onto a set of appropriate outputs.
Neural NetworkSystem of hardware and/or software patterned after the operation of neurons in the human brain.
Object DetectionCategorization of an image based on the number of objects in the image and/or the location of the objects.
ONNXOpen Neural Network Exchange. Open-source inference engine that is a performance-focused complete scoring engine for ONNX models.
QuantizationThe process of approximating a neural network that uses floating-point numbers by a neural network of low bit width numbers. Quantization dramatically reduces the memory requirement and computational cost of using neural networks.
RecommendationsCategorization of an image based on relevant suggestions. This class of machine learning algorithms finds similarity between different images.
ResNetImage classification model that is structurally dense.
SparsificationA model optimization technique used to improve performance by reducing the number of nonperformance critical elements, vectors, and matrices.
SSDSingle Shot Detector. Convolutional neural network (CNN) algorithm for object detection that provides better balance between swiftness and precision. SSD runs CNN on an input image only one time and computes a feature map.
Structured pruningA method for compressing a neural network. Structured pruning alternates between removing channel connections and fine-tuning to reduce overall width of the network. Structured pruning severely limits the maximum sparsity that can be imposed on a network when compared with unstructured pruning.
TensorThe input to a convolutional layer. Tensor is a 3 or 4 dimensional representation of a 2D image.
TrainingThe process of feeding an ML algorithm with data to help identify and learn good values for all attributes involved.
U-NetFully convolutional network that does image segmentation (originally designed for medical image segmentation). The U-Net goal is to predict each pixel class.
Unstructured pruningA method for compressing a neural network. Unstructured pruning removes individual weight connections from a trained network. Software like Neural Magic's DeepSparse runs these pruned networks faster.
VNNIVector Neural Network Instructions. New versions of Intel's CPU chips are optimized with VNNI, making them faster and more efficient for certain types of machine learning applications.
YOLOYou Only Look Once. Open-source type of CNN method of object detection that can recognize objects in images and videos swiftly.
SparseML Python API
FAQs
\ No newline at end of file diff --git a/details/index.html b/details/index.html index e9724bd9362..2056b9b0e5e 100644 --- a/details/index.html +++ b/details/index.html @@ -8,4 +8,4 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Details

Details

Neural Magic Documentation
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Details

Details

Neural Magic Documentation
\ No newline at end of file diff --git a/details/research-papers/index.html b/details/research-papers/index.html index d1d705c08db..bdf70d4bef2 100644 --- a/details/research-papers/index.html +++ b/details/research-papers/index.html @@ -8,4 +8,4 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Details
Research Papers

Research Papers

Neural Magic Documentation
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Details
Research Papers

Research Papers

Neural Magic Documentation
\ No newline at end of file diff --git a/get-started/deploy-a-model/cv-object-detection/index.html b/get-started/deploy-a-model/cv-object-detection/index.html index 24adb1e8081..ec24a0a63c8 100644 --- a/get-started/deploy-a-model/cv-object-detection/index.html +++ b/get-started/deploy-a-model/cv-object-detection/index.html @@ -8,11 +8,11 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Deploy a Model
CV Object Detection

Deploy an Object Detection Model

This page walks through an example of deploying an object detection model with DeepSparse Server.

The DeepSparse Server is a server wrapper around Pipelines, including the object detection pipeline. As such, +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Deploy a Model
CV Object Detection

Deploy an Object Detection Model

This page walks through an example of deploying an object detection model with DeepSparse Server.

DeepSparse Server is a server wrapper around Pipelines, including the object detection pipeline. As such, the server provides and HTTP interface that accepts images and image files as inputs and outputs the labeled predictions. -With all of this built on top of the DeepSparse Engine, the simplicity of servable pipelines is combined with GPU-class performance on CPUs for sparse models.

Install Requirements

This example requires DeepSparse Server+YOLO Install.

Start the Server

Before starting the server, the model must be set up in the format expected for DeepSparse Pipelines. -See an example of how to setup Pipelines in the Try a Model section.

Once the Pipelines are set up, the deepsparse.server command launches a server with the model at --model_path inside. The model_path can either -be a SparseZoo stub or a path to a local model.onnx file.

The command below shows how to start up the DeepSparse Server for a sparsified YOLOv5l model trained on the COCO dataset from the SparseZoo. +In this way, DeepSparse combines the simplicity of servable pipelines with GPU-class performance on CPUs for sparse models.

Install Requirements

This example requires DeepSparse Server+YOLO Install.

Start the Server

Before starting the server, the model must be set up in the format expected for DeepSparse Pipelines. +See an example of how to setup Pipelines in the Use a Model section.

Once the Pipelines are set up, the deepsparse.server command launches a server with the model at --model_path inside. The model_path can either +be a SparseZoo stub or a path to a local model.onnx file.

The command below shows how to start up DeepSparse Server for a sparsified YOLOv5l model trained on the COCO dataset from the SparseZoo. The output confirms the server was started on port :5543 with a /docs route for general info and a /predict/from_files route for inference.

$deepsparse.server \
--task "yolo" \
--model_path "zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95"
>deepsparse.server.main INFO created FastAPI app for inference serving
>deepsparse.server.main INFO created general routes, visit `/docs` to view available
>DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.1.0 COMMUNITY EDITION (a436ca67) (release) (optimized) (system=avx512_vnni, binary=avx512)
>deepsparse.server.main INFO created route /predict
>deepsparse.server.main INFO created route /predict/from_files
>INFO:uvicorn.error:Started server process [31382]
>INFO:uvicorn.error:Waiting for application startup.
>INFO:uvicorn.error:Application startup complete.
>INFO:uvicorn.error:Uvicorn running on http://0.0.0.0:5543 (Press CTRL+C to quit)

View the Request Specs

As noted in the startup command, a /docs route was created; it contains OpenAPI specs and definitions for the expected inputs and responses. Visiting the http://localhost:5543/docs in a browser shows the available routes on the server. The important one for object detection is the /predict/from_files POST route which takes the form of a standard files argument. diff --git a/get-started/deploy-a-model/index.html b/get-started/deploy-a-model/index.html index 099cdbc3cf3..90fde8232f2 100644 --- a/get-started/deploy-a-model/index.html +++ b/get-started/deploy-a-model/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsDeploy a Model

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Deploy a Model

Deploy a Model

The DeepSparse package comes pre-installed with a server to enable easy and performant model deployments. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Deploy a Model

Deploy a Model

DeepSparse comes pre-installed with a server to enable easy and performant model deployments. The server provides an HTTP interface to communicate and run inferences on the deployed model rather than the Python APIs or CLIs. It is a production-ready model serving solution built on Neural Magic's sparsification solutions resulting in faster and cheaper deployments.

The inference server is built with performance and flexibility in mind, with support for multiple models and multiple simultaneous streams. It is also designed to be a plug-and-play solution for many ML Ops deployment solutions, including Kubernetes and AWS SageMaker.

Example Use Cases

The docs below walk through use cases leveraging DeepSparse Server for deployment.

Other Use Cases

More documentation, models, use cases, and examples are continually being added. diff --git a/get-started/deploy-a-model/nlp-text-classification/index.html b/get-started/deploy-a-model/nlp-text-classification/index.html index d58b7b6cc0f..526f7b99482 100644 --- a/get-started/deploy-a-model/nlp-text-classification/index.html +++ b/get-started/deploy-a-model/nlp-text-classification/index.html @@ -8,11 +8,11 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Deploy a Model
NLP Text Classification

Deploy a Text Classification Model

This page walks through an example of deploying a text-classification model with DeepSparse Server.

The DeepSparse Server is a server wrapper around Pipelines, including the sentiment analysis pipeline. As such, +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Deploy a Model
NLP Text Classification

Deploy a Text Classification Model

This page walks through an example of deploying a text-classification model with DeepSparse Server.

DeepSparse Server is a server wrapper around Pipelines, including the sentiment analysis pipeline. As such, the server provides an HTTP interface that accepts raw text sequences as inputs and responds with the labeled predictions. -With all of this built on top of the DeepSparse Engine, the simplicity of servable pipelines is combined with GPU-class performance on CPUs for sparse models.

Install Requirements

This example requires DeepSparse Server Install.

Start the Server

Before starting the server, the model must be set up in the format expected for DeepSparse Pipelines. -See an example of how to set up Pipelines in the Try a Model section.

Once the Pipelines are set up, the deepsparse.server command launches a server with the model at --model_path inside. The model_path can either -be a SparseZoo stub or a local model path.

The command below starts up the DeepSparse Server for a sparsified DistilBERT model (from the SparseZoo) trained on the SST2 dataset for sentiment analysis. +In this way, DeepSparse combines the simplicity of servable pipelines with GPU-class performance on CPUs for sparse models.

Install Requirements

This example requires DeepSparse Server Install.

Start the Server

Before starting the server, the model must be set up in the format expected for DeepSparse Pipelines. +See an example of how to set up Pipelines in the Use a Model section.

Once the Pipelines are set up, the deepsparse.server command launches a server with the model at --model_path inside. The model_path can either +be a SparseZoo stub or a local model path.

The command below starts up DeepSparse Server for a sparsified DistilBERT model (from the SparseZoo) trained on the SST2 dataset for sentiment analysis. The output confirms the server was started on port :5543 with a /docs route for general info and a /predict route for inference.

$deepsparse.server \
--task "sentiment-analysis" \
--model_path "zoo:nlp/sentiment_analysis/distilbert-none/pytorch/huggingface/sst2/pruned80_quant-none-vnni"
>deepsparse.server.main INFO created FastAPI app for inference serving
>deepsparse.server.main INFO created general routes, visit `/docs` to view available
>DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.1.0 COMMUNITY EDITION (a436ca67) (release) (optimized) (system=avx512_vnni, binary=avx512)
>deepsparse.server.main INFO created route /predict
>INFO:deepsparse.server.main:created route /predict
>INFO:uvicorn.error:Started server process [23146]
>INFO:uvicorn.error:Waiting for application startup.
>INFO:uvicorn.error:Application startup complete.
>INFO:uvicorn.error:Uvicorn running on http://0.0.0.0:5543 (Press CTRL+C to quit)

View the Request Specs

As noted in the startup command, a /docs route was created; it contains OpenAPI specs and definitions for the expected inputs and responses. Visiting the http://localhost:5543/docs in a browser shows the available routes on the server. For the /predict route specifically, it shows the following as the expected input schema:

1TextClassificationInput{
2 description: Schema for inputs to text_classification pipelines
3 sequences* Sequences{
4 description: A string or List of strings representing input totext_classification task
5 anyOf ->
6 [[string]]
7 [string]
8 string
9 }
10}

Utilizing the request spec, a valid input for the sentiment analysis would be:

1{
2 "sequences": [
3 "Snorlax loves my Tesla!"
4 ]
5}

Make a Request

With the expected input payload and method type defined, any HTTP request package can be used to make the request. diff --git a/get-started/index.html b/get-started/index.html index 9f6ce11bc0b..3e26d3c948a 100644 --- a/get-started/index.html +++ b/get-started/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsGet Started

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started

Get Started

Neural Magic Documentation
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started

Get Started

Neural Magic Documentation
\ No newline at end of file diff --git a/get-started/install/deepsparse-ent/index.html b/get-started/install/deepsparse-ent/index.html index 3cedbffc7e4..0a298f9af08 100644 --- a/get-started/install/deepsparse-ent/index.html +++ b/get-started/install/deepsparse-ent/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsDeepSparse Enterprise Installation
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Installation
DeepSparse Enterprise

DeepSparse Enterprise Edition Installation

The DeepSparse Engine enables GPU-class performance on CPUs, leveraging sparsity within models to reduce FLOPs and the unique cache hierarchy on CPUs to reduce memory movement. -The engine accepts models in the open-source ONNX format, which are easily created from PyTorch and TensorFlow models.

Currently, DeepSparse is tested on Python 3.7-3.10, ONNX 1.5.0-1.10.1, ONNX opset version 11+ and is manylinux compliant. -It is limited to Linux systems running on x86 CPU architectures.

The DeepSparse Engine is available in two editions:

  1. The Community Edition is open-source and free for evaluation, research, and non-production use with our Engine Community License.
  2. The Enterprise Edition requires a Trial License or can be fully licensed for production, commercial applications.

General Install

Use the following command to install with pip:

pip install deepsparse-ent

Server Install

The DeepSparse Server allows you to serve models and pipelines through an HTTP interface using the deepsparse.server CLI. -To install, use the following extra option:

pip install deepsparse-ent[server]

YOLO Install

The Ultralytics YOLOv5 models require extra dependencies for deployment. -To use YOLO models, install with the following extra option:

1pip install deepsparse-ent[yolo] # just yolo requirements
2pip install deepsparse-ent[yolo,server] # both yolo + server requirements
DeepSparse Installation
SparseML Installation
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Installation
DeepSparse Enterprise

DeepSparse Enterprise Installation

DeepSparse Enterprise enables GPU-class performance on CPUs.

Currently, DeepSparse is tested on Python 3.7-3.10, ONNX 1.5.0-1.10.1, ONNX opset version 11+, and manylinux compliant systems.

We currently support x86 CPU architectures.

DeepSparse is available in two versions:

  1. DeepSparse Community is free for evaluation, research, and non-production use with our DeepSparse Community License.
  2. DeepSparse Enterprise requires a Trial License or can be fully licensed for production, commercial applications.

Installing DeepSparse Enterprise

Use the following command to install with pip:

pip install deepsparse-ent

Installing the Server

DeepSparse Server allows you to serve models and pipelines through an HTTP interface using the deepsparse.server CLI. +To install, use the following extra option:

pip install deepsparse-ent[server]

Installing YOLO

The Ultralytics YOLOv5 models require extra dependencies for deployment. +To use YOLO models, install with the following extra option:

1pip install deepsparse-ent[yolo] # just yolo requirements
2pip install deepsparse-ent[yolo,server] # both yolo + server requirements
DeepSparse Community Installation
SparseML Installation
\ No newline at end of file diff --git a/get-started/install/deepsparse/index.html b/get-started/install/deepsparse/index.html index 3ac34b97a85..95b6273453d 100644 --- a/get-started/install/deepsparse/index.html +++ b/get-started/install/deepsparse/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsDeepSparse Installation
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Installation
DeepSparse

DeepSparse Community Edition Installation

The DeepSparse Engine enables GPU-class performance on CPUs, leveraging sparsity within models to reduce FLOPs and the unique cache hierarchy on CPUs to reduce memory movement. -The engine accepts models in the open-source ONNX format, which are easily created from PyTorch and TensorFlow models.

Currently, DeepSparse is tested on Python 3.7-3.10, ONNX 1.5.0-1.10.1, ONNX opset version 11+ and is manylinux compliant. -It is limited to Linux systems running on x86 CPU architectures.

The DeepSparse Engine is available in two editions:

  1. The Community Edition is open-source and free for evaluation, research, and non-production use with our Engine Community License.
  2. The Enterprise Edition requires a Trial License or can be fully licensed for production, commercial applications.

General Installation

Use the following command to install the Community Edition with pip:

pip install deepsparse

Server Install

The DeepSparse Server allows you to serve models and pipelines through an HTTP interface using the deepsparse.server CLI. -To install, use the following extra option:

pip install deepsparse[server]

YOLO Install

The Ultralytics YOLOv5 models require extra dependencies for deployment. -To use YOLO models, install with the following extra option:

1pip install deepsparse[yolo] # just yolo requirements
2pip install deepsparse[yolo,server] # both yolo + server requirements
Install Deep Sparse Platform
DeepSparse Enterprise Installation
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Installation
DeepSparse Community

DeepSparse Community Installation

DeepSparse Community enables GPU-class performance on commodity CPUs.

Currently, DeepSparse is tested on Python 3.7-3.10, ONNX 1.5.0-1.10.1, ONNX opset version 11+ and is manylinux compliant.

We currently support x86 CPU architectures.

DeepSparse is available in two versions:

  1. DeepSparse Community is free for evaluation, research, and non-production use with our DeepSparse Community License.
  2. DeepSparse Enterprise requires a Trial License or can be fully licensed for production, commercial applications.

General Install

Use the following command to install DeepSparse Community with pip:

pip install deepsparse

Installing the Server

DeepSparse Server allows you to serve models and pipelines through an HTTP interface using the deepsparse.server CLI. +To install, use the following extra option:

pip install deepsparse[server]

Installing YOLO

The Ultralytics YOLOv5 models require extra dependencies for deployment. +To use YOLO models, install with the following extra option:

1pip install deepsparse[yolo] # just yolo requirements
2pip install deepsparse[yolo,server] # both yolo + server requirements
Install Neural Magic Platform
DeepSparse Enterprise Installation
\ No newline at end of file diff --git a/get-started/install/index.html b/get-started/install/index.html index c38e2d5ae37..d4c9dc59170 100644 --- a/get-started/install/index.html +++ b/get-started/install/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsInstall Deep Sparse Platform
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Installation

Installation

The Deep Sparse Platform is made up of core libraries that are available as Python APIs and CLIs. -All Python APIs and CLIs are installed through pip utilizing PyPI. -It is recommended to install in a virtual environment to encapsulate your local environment.

Quick Start

To begin using the Deep Sparse Platform, run the following commands which install standard setups for deployment with the DeepSparse Engine and model training/optimization with SparseML:

pip install deepsparse[server] sparseml[torch,torchvision]

Package Installations

Neural Magic Documentation
DeepSparse Installation
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Installation

Installation

The Neural Magic Platform contains several products: DeepSparse (available in two editions, Community and Enterprise), SparseML, and SparseZoo.

Each package is installed with PyPI. It is recommended to install in +a virtual environment to encapsulate your local environment.

Installing the Neural Magic Platform

To begin using the Neural Magic Platform, run the following command, which installs standard setups for deployment with DeepSparse and model training/optimization with SparseML:

pip install deepsparse[server] sparseml[torch,torchvision]

Now, you are ready to install one of the Neural Magic products.

Installing Products

Quick Tour
DeepSparse Community Installation
\ No newline at end of file diff --git a/get-started/install/sparseml/index.html b/get-started/install/sparseml/index.html index 223d273fc46..5b46e3209fc 100644 --- a/get-started/install/sparseml/index.html +++ b/get-started/install/sparseml/index.html @@ -8,7 +8,7 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Installation
SparseML

SparseML Installation

SparseML enables you to create sparse models trained on your data. It supports transfer learning from sparse models to new data and sparsifying dense models from scratch with state-of-the-art algorithms for pruning and quantization.

Currently, SparseML is tested on Python 3.7-3.9 and is limited to Linux and MacOS systems.

General Install

Use the following command to install with pip:

pip install sparseml

PyTorch Install

SparseML supports integrations with PyTorch versions >=1.1.0 and <=1.9.0. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Installation
SparseML

SparseML Installation

SparseML enables you to create sparse models trained on your data. It supports transfer learning from sparse models to new data and sparsifying dense models from scratch with state-of-the-art algorithms for pruning and quantization.

Currently, SparseML is tested on Python 3.7-3.9 and is limited to Linux and MacOS systems.

General Install

Use the following command to install with pip:

pip install sparseml

PyTorch Install

SparseML supports integrations with PyTorch versions >=1.1.0 and <=1.9.0. Later PyTorch versions are untested and have a known issue for exporting quantized models to ONNX graphs. To install, use the following extra option:

pip install sparseml[torch]

To install torchvision, use the following extra options:

pip install sparseml[torch,torchvision]

Keras Install

SparseML supports integrations with Keras versions ~=2.2.0. Later Keras versions are untested and have known issues with exporting to ONNX. diff --git a/get-started/install/sparsezoo/index.html b/get-started/install/sparsezoo/index.html index d2d9b76862f..4ab81cdace4 100644 --- a/get-started/install/sparsezoo/index.html +++ b/get-started/install/sparsezoo/index.html @@ -8,5 +8,5 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Installation
SparseZoo

SparseZoo Installation

The SparseZoo stores presparsified models and sparsification recipes so you can easily apply them to your data. -This installs the Python API and CLIs for downloading models and recipes from the SparseZoo UI.

Note that the SparseZoo package is automatically installed with both SparseML and DeepSparse.

Currently, the SparseZoo Python APIs and CLIs are tested on Python 3.7-3.10 and are limited to Linux and MacOS systems.

General Install

Use the following command to install with pip:

pip install sparsezoo
SparseML Installation
Try a Model
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Installation
SparseZoo

SparseZoo Installation

The SparseZoo stores presparsified models and sparsification recipes so you can easily apply them to your data. +This installs the Python API and CLIs for downloading models and recipes from the SparseZoo UI.

Note that the SparseZoo package is automatically installed with both SparseML and DeepSparse.

Currently, the SparseZoo Python APIs and CLIs are tested on Python 3.7-3.10 and are limited to Linux and MacOS systems.

General Install

Use the following command to install with pip:

pip install sparsezoo
SparseML Installation
Use a Model
\ No newline at end of file diff --git a/get-started/sparsify-a-model/custom-integrations/index.html b/get-started/sparsify-a-model/custom-integrations/index.html index e983ee29899..a9be51842ed 100644 --- a/get-started/sparsify-a-model/custom-integrations/index.html +++ b/get-started/sparsify-a-model/custom-integrations/index.html @@ -8,7 +8,7 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Sparsify a Model
Custom Integrations

Creating a Custom Integration for Sparsifying Models

This page explains how to apply a recipe to a custom model. For more details on the concepts of pruning/quantization +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Sparsify a Model
Custom Integrations

Creating a Custom Integration for Sparsifying Models

This page explains how to apply a recipe to a custom model. For more details on the concepts of pruning/quantization as well as how to create recipes, see Sparsifying a Model for SparseML Integrations.

In addition to supported integrations described on the prior page, SparseML is set to enable easy integration in custom training pipelines. This flexibility enables easy sparsification for any neural network architecture for custom models and use cases. Once SparseML is installed, the necessary code can be plugged into most PyTorch/Keras training pipelines with only a few lines of code.

Install Requirements

This section requires SparseML Torchvision Install to run the Apply the Recipe section.

Integrate SparseML

To enable sparsification of models with recipes, a few edits to the training pipeline code need to be made. diff --git a/get-started/sparsify-a-model/index.html b/get-started/sparsify-a-model/index.html index 783aa51b229..05ef5d5b9dd 100644 --- a/get-started/sparsify-a-model/index.html +++ b/get-started/sparsify-a-model/index.html @@ -8,7 +8,7 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Sparsify a Model

Sparsify a Model

SparseML enables you to create a sparse model from scratch. The library contains state-of-the-art sparsification algorithms, including pruning, distillation, and quantization techniques.

These algorithms are built on top of sparsification recipes, enabling easy integration into custom ML training pipelines to sparsify most neural networks. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Sparsify a Model

Sparsify a Model

SparseML enables you to create a sparse model from scratch. The library contains state-of-the-art sparsification algorithms, including pruning, distillation, and quantization techniques.

These algorithms are built on top of sparsification recipes, enabling easy integration into custom ML training pipelines to sparsify most neural networks. Additionally, SparseML integrates with popular ML repositories like Hugging Face Transformers and Ultralytics YOLO. With these integrations, creating a recipe and passing it to a CLI is all you need to sparsify a model.

Aside from sparsification algorithms, SparseML contains generic export pathways for performant deployments. These export pathways ensure the model saves in the correct format and rewrites the inference graphs for performance, such as quantized operator folding. The results are simple to export CLIs and APIs that guarantee performance for sparsified models in their given deployment environment.

Example Use Cases

The docs below walk through use cases leveraging SparseML to sparsify models with recipes and exporting for performant inference.

Other Use Cases

More documentation, models, use cases, and examples are continually being added. diff --git a/get-started/sparsify-a-model/supported-integrations/index.html b/get-started/sparsify-a-model/supported-integrations/index.html index 4b4aa655a2c..802de011dd0 100644 --- a/get-started/sparsify-a-model/supported-integrations/index.html +++ b/get-started/sparsify-a-model/supported-integrations/index.html @@ -8,7 +8,7 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Sparsify a Model
Supported Integrations

Sparsifying a Model for SparseML Integrations

This page walks through an example of creating a sparsification recipe to prune a dense model from scratch and applying a recipe to a supported integration.

SparseML has pre-made integrations with many popular model repositories, such as with Hugging Face Transformers and Ultralytics YOLOv5. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Sparsify a Model
Supported Integrations

Sparsifying a Model for SparseML Integrations

This page walks through an example of creating a sparsification recipe to prune a dense model from scratch and applying a recipe to a supported integration.

SparseML has pre-made integrations with many popular model repositories, such as with Hugging Face Transformers and Ultralytics YOLOv5. For these integrations, a sparsification recipe is all you need, and you can apply state-of-the-art sparsification algorithms, including pruning, distillation, and quantization, with a single command line call.

Install Requirements

This section requires SparseML Torchvision Install to run the Apply the Recipe section.

Pruning and Pruning Recipes

Pruning is a systematic way of removing redundant weights and connections within a neural network. An applied pruning algorithm must determine which weights are redundant and will not affect the accuracy.

A standard algorithm for pruning is gradual magnitude pruning, or GMP for short. diff --git a/get-started/transfer-a-sparsified-model/cv-object-detection/index.html b/get-started/transfer-a-sparsified-model/cv-object-detection/index.html index 0f0dbfa5d7b..397f809a45a 100644 --- a/get-started/transfer-a-sparsified-model/cv-object-detection/index.html +++ b/get-started/transfer-a-sparsified-model/cv-object-detection/index.html @@ -8,9 +8,9 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Transfer a Sparsified Model
CV Object Detection

Transfer a Sparsified Model for Object Detection

This page walks through an example of fine-tuning a pre-sparsified model from the SparseZoo onto a new dataset for object detection.

We will use SparseZoo to pull down a pre-sparsified YOLOv5l and will use SparseML to fine-tune onto the VOC dataset while preserving sparsity.

Install Requirements

This example requires SparseML Torchvision Install.

Transfer Learning

The SparseZoo contains several sparsified object detection models and transfer learning recipes, including YOLOv5l, which is used in this example. The SparseZoo stub is below:

zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95

The sparseml.yolov5.train CLI command kicks off a run to fine-tune the sparsified YOLOv5 model onto the VOC dataset for object detection. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Transfer a Sparsified Model
CV Object Detection

Transfer a Sparsified Model for Object Detection

This page walks through an example of fine-tuning a pre-sparsified model from the SparseZoo onto a new dataset for object detection.

We will use SparseZoo to pull down a pre-sparsified YOLOv5l and will use SparseML to fine-tune onto the VOC dataset while preserving sparsity.

Install Requirements

This example requires SparseML Torchvision Install.

Transfer Learning

The SparseZoo contains several sparsified object detection models and transfer learning recipes, including YOLOv5l, which is used in this example. The SparseZoo stub is below:

zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95

The sparseml.yolov5.train CLI command kicks off a run to fine-tune the sparsified YOLOv5 model onto the VOC dataset for object detection. After the command completes, the trained model will reamin sparse, achieve an mAP@0.5 of around 0.80 on VOC, and will be stored in the local models/sparsified directory.

$sparseml.yolov5.train \
--weights zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95?recipe_type=transfer_learn \
--recipe zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95?recipe_type=transfer_learn \
--cfg models_v5.0/yolov5l.yaml \
--hyp data/hyps/hyp.finetune.yaml \
--data VOC.yaml \
--project yolov5l \
--name sparsified

The most important arguments are --data, --weights, and --recipe:

  • --data specifies the dataset onto which the model will be fine-tuned
  • --weights specifies the base model used to start the transfer learning process (can be a SparseZoo stub or local custom model path)
  • --recipe specifies the hyperparameters of the fine-tuning process (can be a SparseZoo stub or a local custom recipe)

To utilize your own dataset, set up the appropriate image dataset structure and pass the path as the --data argument. An example for VOC is on GitHub.

The --cfg and --hyp are configuration files. You can checkout the examples on GitHub.

There are many additional command line arguments that can be passed to tweak your fine-tuning process. Run the following to see the full list of options:

$ sparseml.yolov5.train -h

Exporting for Inference

With the sparsified model successfully trained, it is time to export it for inference. The sparseml.yolov5.export_onnx command is used to export the training graph to a performant inference one. After the command completes, a model.onnx file is created in yolov5/sparsified folder. -It is now ready for deployment with the DeepSparse Engine utilizing its pipelines.

$sparseml.yolov5.export_onnx \
--weights yolov5l/sparsified/weights/best.pt \
--dynamic
Transfer a Sparsified Model for Text Classification
Sparsify a Model
\ No newline at end of file +It is now ready for deployment with DeepSparse utilizing pipelines.

$sparseml.yolov5.export_onnx \
--weights yolov5l/sparsified/weights/best.pt \
--dynamic
Transfer a Sparsified Model for Text Classification
Sparsify a Model
\ No newline at end of file diff --git a/get-started/transfer-a-sparsified-model/index.html b/get-started/transfer-a-sparsified-model/index.html index 60c233ab1d5..0057d19568a 100644 --- a/get-started/transfer-a-sparsified-model/index.html +++ b/get-started/transfer-a-sparsified-model/index.html @@ -8,7 +8,7 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Transfer a Sparsified Model

Transfer a Sparsified Model

Sparse transfer learning is the easiest pathway for creating a sparse model fine-tuned on your datasets.

Sparse transfer learning works by taking a sparse model pre-trained on a large dataset and fine-tuning it onto a smaller downstream dataset. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Transfer a Sparsified Model

Transfer a Sparsified Model

Sparse transfer learning is the easiest pathway for creating a sparse model fine-tuned on your datasets.

Sparse transfer learning works by taking a sparse model pre-trained on a large dataset and fine-tuning it onto a smaller downstream dataset. SparseZoo and SparseML work together to accomplish this goal:

  • SparseZoo is a growing repository of sparse models pre-trained on large datasets ready for fine-tuning
  • SparseML contains convenient training CLIs that run transfer-learn while preserving the same level of sparsity as the starting model

By fine-tuning pre-sparsified models onto your dataset, you can avoid the time, money, and hyperparameter tuning involved with sparsifying a dense model from scratch. -Once trained, deploy your model on the DeepSparse Engine for GPU-level performance on CPUs.

Example Use Cases

The docs below walk through example use cases leveraging SparseML for sparse transfer learning.

Other Use Cases

More documentation, models, use cases, and examples are continually being added. -If you don't see one you're interested in, search the DeepSparse Github repo, the SparseML Github repo, the SparseZoo website, or ask in the Neural Magic Slack.

Try a Custom Use Case
Transfer a Sparsified Model for Text Classification
\ No newline at end of file +Once trained, deploy your model with DeepSparse for GPU-level performance on CPUs.

Example Use Cases

The docs below walk through example use cases leveraging SparseML for sparse transfer learning.

Other Use Cases

More documentation, models, use cases, and examples are continually being added. +If you don't see one you're interested in, search the DeepSparse Github repo, the SparseML Github repo, the SparseZoo website, or ask in the Neural Magic Slack.

Use a Custom Use Case
Transfer a Sparsified Model for Text Classification
\ No newline at end of file diff --git a/get-started/transfer-a-sparsified-model/nlp-text-classification/index.html b/get-started/transfer-a-sparsified-model/nlp-text-classification/index.html index 16c63007a01..40964c473ef 100644 --- a/get-started/transfer-a-sparsified-model/nlp-text-classification/index.html +++ b/get-started/transfer-a-sparsified-model/nlp-text-classification/index.html @@ -8,7 +8,7 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Transfer a Sparsified Model
NLP Text Classification

Transfer a Sparsified Model for Text Classification

This page walks through an example of fine-tuning a pre-sparsified model onto a new dataset for sentiment analysis.

For NLP tasks, model distillation from a dense teacher to a sparse student model is helpful to achieve higher sparsity and accuracy. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Transfer a Sparsified Model
NLP Text Classification

Transfer a Sparsified Model for Text Classification

This page walks through an example of fine-tuning a pre-sparsified model onto a new dataset for sentiment analysis.

For NLP tasks, model distillation from a dense teacher to a sparse student model is helpful to achieve higher sparsity and accuracy. We will follow two steps using SparseML:

  1. Fine-tune a dense teacher model (BERT) onto a new dataset (SST2)
  2. Transfer learn a pre-sparsified model (DistilBERT) from the SparseZoo onto SST2, distilling from the dense teacher model trained in step 1

If you already have a trained teacher model ready to go, you can skip step 1.

An example of transfer learning without model distillation is in the Use Cases Page.

Install Requirements

This example requires SparseML General Install.

Train a Teacher

To create a teacher for the desired text classification dataset, we will fine-tune a dense BERT model from the SparseZoo, the stub of which is below:

zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none

The following script fine-tunes the dense teacher onto the SST2 dataset for sentiment analysis. After the command completes, the trained model will be around 92.7% accurate on SST-2 and stored in the local models/teacher directory.

$sparseml.transformers.text_classification \
--output_dir models/teacher \
--model_name_or_path "zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none" \
--recipe "zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none?recipe_type=transfer-text_classification" \
--recipe_args '{"init_lr":0.00003}' \
--task_name sst2 \
--max_seq_length 128 \
--per_device_train_batch_size 32 --per_device_eval_batch_size 32 \
--do_train --do_eval --evaluation_strategy epoch --fp16 \
--save_strategy epoch --save_total_limit 1

The SparseML train script is a wrapper around a HuggingFace script, and usage for most arguments follows the HuggingFace. The most important arguments for SparseML are:

\ No newline at end of file +It is now ready for deployment with DeepSparse.

$sparseml.transformers.export_onnx \
--model_path models/sparsified \
--task 'text-classification' --finetuning_task sst2 \
--sequence_length 128
Transfer a Sparsified Model
Transfer a Sparsified Model for Object Detection
\ No newline at end of file diff --git a/get-started/try-a-model/custom-use-case/index.html b/get-started/use-a-model/custom-use-case/index.html similarity index 60% rename from get-started/try-a-model/custom-use-case/index.html rename to get-started/use-a-model/custom-use-case/index.html index b1d3e344411..7341bfcfd2b 100644 --- a/get-started/try-a-model/custom-use-case/index.html +++ b/get-started/use-a-model/custom-use-case/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsTry a Custom Use Case
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Try a Model
Custom Use Case

Try a Custom Use Case

This page explains how to run a model on the DeepSparse Engine for a custom task inside a Python API called Pipelines.

Pipelines wrap key utilities around the DeepSparse Engine for easy testing and deployment.

The DeepSparse Engine supports many operators within ONNX, enabling performance for most models and use cases outside of the ones available on the SparseZoo. -The CustomTaskPipeline enables you to wrap your model with custom pre and post-processing functions for simple deployment and benchmarking. -In this way, the simplicity of Pipelines is combined with the performance of DeepSparse for arbitrary use cases.

Install Requirements

This example requires DeepSparse General Install and SparseML Torchvision Install.

Model Setup

For custom model deployment, first export your model to the ONNX model format (create a model.onnx file). +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Use a Model
Custom Use Case

Use a Custom Use Case

This page explains how to run a model on DeepSparse for a custom task inside a Python API called Pipelines.

Pipelines wrap key utilities around DeepSparse for easy testing and deployment.

DeepSparse supports many operators within ONNX, enabling performance for most models and use cases outside of the ones available on the SparseZoo. +The CustomTaskPipeline enables you to wrap your model with custom pre-processing and post-processing functions for simple deployment and benchmarking. +In this way, DeepSparse combines the simplicity of Pipelines with GPU-class performance for any use case.

Installation Requirements

This example requires DeepSparse General Installation and SparseML Torchvision Installation.

Model Setup

For custom model deployment, export your model to the ONNX model format (create a model.onnx file). SparseML has available wrappers for ONNX export classes and APIs for a more straightforward export process. A sample export utilizing this API for a MobileNetV2 TorchVision model is given below.

1import torch
2from torchvision.models.mobilenetv2 import mobilenet_v2
3from sparseml.pytorch.utils import export_onnx
4
5model = mobilenet_v2(pretrained=True)
6sample_batch = torch.randn((1, 3, 224, 224))
7export_path = "custom_model.onnx"
8export_onnx(model, sample_batch, export_path)

Once the model is in an ONNX format, it is ready for inclusion in a CustomTaskPipeline or benchmarking. -Examples for both are given below.

Inference Pipelines

The model.onnx file can be passed into a DeepSparse CustomTaskPipeline utilizing the model_path argument alongside optional pre and post-processing functions.

A sample image is downloaded that will be run through the example to test the Pipeline.

wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg

Next, the pre and post-processing functions are defined, and the pipeline enabling the classification of the image file is instantiated:

1from deepsparse.pipelines.custom_pipeline import CustomTaskPipeline
2import torch
3from torchvision import transforms
4from PIL import Image
5 +Examples for both are given below.

Inference Pipelines

The model.onnx file can be passed into a DeepSparse CustomTaskPipeline utilizing the model_path argument alongside optional pre-processing and post-processing functions.

A sample image is downloaded that will be run through the example to test the Pipeline.

wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg

Next, the pre-processing and post-processing functions are defined, and the pipeline enabling the classification of the image file is instantiated:

1from deepsparse.pipelines.custom_pipeline import CustomTaskPipeline
2import torch
3from torchvision import transforms
4from PIL import Image
5
6IMAGENET_RGB_MEANS = [0.485, 0.456, 0.406]
7IMAGENET_RGB_STDS = [0.229, 0.224, 0.225]
8preprocess_transforms = transforms.Compose([
9 transforms.Resize(256),
10 transforms.CenterCrop(224),
11 transforms.ToTensor(),
12 transforms.Normalize(mean=IMAGENET_RGB_MEANS, std=IMAGENET_RGB_STDS),
13])
14
15def preprocess(inputs):
16 with open(inputs, "rb") as img_file:
17 img = Image.open(img_file)
18 img = img.convert("RGB")
19 img = preprocess_transforms(img)
20 batch = torch.stack([img])
21 return [batch.numpy()] # deepsparse requires a list of numpy array inputs
22
23def postprocess(outputs):
24 return outputs # list of numpy array outputs
25 -
26custom_pipeline = CustomTaskPipeline(
27 model_path="custom_model.onnx",
28 process_inputs_fn=preprocess,
29 process_outputs_fn=postprocess,
30)
31inference = custom_pipeline("basilica.jpg")
32print(inference)
>[array([[-5.64189434e+00, -2.78636312e+00, -2.62499309e+00, ...

Benchmarking

The DeepSparse install includes a benchmark CLI for convenient and easy inference performance benchmarking: deepsparse.benchmark. +

26custom_pipeline = CustomTaskPipeline(
27 model_path="custom_model.onnx",
28 process_inputs_fn=preprocess,
29 process_outputs_fn=postprocess,
30)
31inference = custom_pipeline("basilica.jpg")
32print(inference)
>[array([[-5.64189434e+00, -2.78636312e+00, -2.62499309e+00, ...

Benchmarking

The DeepSparse installation includes a benchmark CLI for convenient and easy inference performance benchmarking: deepsparse.benchmark. The CLI takes in both SparseZoo stubs or paths to a local model.onnx file.

The code below provides an example for benchmarking the previously exported MobileNetV2 model. -The output shows that the model achieved 441 items per second on a 4-core CPU.

$deepsparse.benchmark custom_model.onnx
>DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.2 (7dc5fa34) (release) (optimized) (system=avx512, binary=avx512)
>Original Model Path: custom_model.onnx
>Batch Size: 1
>Scenario: async
>Throughput (items/sec): 441.2780
>Latency Mean (ms/batch): 4.5244
>Latency Median (ms/batch): 4.5054
>Latency Std (ms/batch): 0.0774
>Iterations: 4414
Try an Object Detection Model
Transfer a Sparsified Model
\ No newline at end of file +The output shows that the model achieved 441 items per second on a 4-core CPU.

$deepsparse.benchmark custom_model.onnx
>DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.2 (7dc5fa34) (release) (optimized) (system=avx512, binary=avx512)
>Original Model Path: custom_model.onnx
>Batch Size: 1
>Scenario: async
>Throughput (items/sec): 441.2780
>Latency Mean (ms/batch): 4.5244
>Latency Median (ms/batch): 4.5054
>Latency Std (ms/batch): 0.0774
>Iterations: 4414
Use an Object Detection Model
Transfer a Sparsified Model
\ No newline at end of file diff --git a/get-started/try-a-model/cv-object-detection/index.html b/get-started/use-a-model/cv-object-detection/index.html similarity index 59% rename from get-started/try-a-model/cv-object-detection/index.html rename to get-started/use-a-model/cv-object-detection/index.html index a316585bf00..aa6fb93ddef 100644 --- a/get-started/try-a-model/cv-object-detection/index.html +++ b/get-started/use-a-model/cv-object-detection/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsTry an Object Detection Model
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Try a Model
CV Object Detection

Try an Object Detection Model

This page explains how to run a trained model on the DeepSparse Engine for Object Detection inside a Python API called Pipelines.

Pipelines wrap key utilities around the DeepSparse Engine for easy testing and deployment.

The object detection Pipeline, for example, wraps a trained model with the proper preprocessing and postprocessing pipelines such as NMS. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Use a Model
CV Object Detection

Use an Object Detection Model

This page explains how to run a trained model on DeepSparse for Object Detection inside a Python API called Pipelines.

Pipelines wraps key utilities around DeepSparse for easy testing and deployment.

The object detection Pipeline, for example, wraps a trained model with the proper pre-processing and post-processing pipelines such as NMS. This enables the passing of raw images and receiving the bounding boxes from the DeepSparse Engine without any extra effort. -With all of this built on top of the DeepSparse Engine, the simplicity of Pipelines is combined with GPU-class performance on CPUs for sparse models.

Install Requirements

This example requires DeepSparse YOLO Install.

Model Setup

The object detection Pipeline uses Ultralytics YOLOv5 standards and configurations for model setup. -The possible files/variables that can be passed in are the following:

  • model.onnx - The exported YOLOv5 model in the ONNX format.
  • model.yaml - The Ultralytics model config file containing configuration information about the model and its post-processing.
  • class_names - A list, dictionary, or file containing the index to class name mappings for the trained model.

model.onnx is the only required file. -The pipeline will default to a standard setup for the COCO dataset if the model config file or class names are not provided.

There are two options for passing these files to DeepSparse:

1) Using The SparseZoo

This pathway is relevant if you want to use a pre-sparsified state-of-the-art model off the shelpf.

SparseZoo is a repository of pre-trained and pre-sparsified models. DeepSparse supports SparseZoo stubs as inputs for automatic download and inclusion into easy testing and deployment. +With all of this built on top of the DeepSparse Engine, the simplicity of Pipelines is combined with GPU-class performance on CPUs for sparse models.

Installation Requirements

This example requires DeepSparse YOLO Installation.

Model Setup

The object detection Pipeline uses Ultralytics YOLOv5 standards and configurations for model setup. +The possible files/variables that can be passed in are:

  • model.onnx - Exported YOLOv5 model in the ONNX format.
  • model.yaml - Ultralytics model configuration file containing configuration information about the model and its post-processing.
  • class_names - A list, dictionary, or file containing the index to class name mappings for the trained model.

model.onnx is the only required file. +The pipeline will default to a standard setup for the COCO dataset if the model configuration file or class names are not provided.

There are two options for passing these files to DeepSparse:

1) Using the SparseZoo

This pathway is relevant if you want to use a pre-sparsified state-of-the-art model off the shelf.

SparseZoo is a repository of pre-trained and pre-sparsified models. DeepSparse supports SparseZoo stubs as inputs for automatic download and inclusion into easy testing and deployment. These models include dense and sparsified versions of YOLOv5 trained on the COCO dataset for performant and general detection, among others. -The SparseZoo stubs can be found on SparseZoo model pages, and YOLOv5l examples are provided below:

zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95
zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/base-none

These SparseZoo stubs can be passed as arguments to the Pipeline constructor in the examples below.

2) Using a Custom Local Model

This pathway is relevant if you want to use a model fine-tuned on your data with SparseML or a custom model.

There are three steps to using a local model with Pipelines:

  1. Create the model.onnx file (if you trained with SparseML, use the ONNX export script)
  2. Collect the model.yaml file and class_names listed above.
  3. Pass the local paths of the files in place of the SparseZoo stubs.

The examples below use the SparseZoo stubs. Pass the path to the local model in place of the stubs if you want to use a custom model.

Inference Pipelines

With the object detection model setup, it can then be passed into a DeepSparse Pipeline utilizing the model_path argument. +The SparseZoo stubs can be found on SparseZoo model pages, and YOLOv5l examples are provided below:

zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95
zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/base-none

These SparseZoo stubs can be passed as arguments to the Pipeline constructor in the examples below.

2) Using a custom local model

This pathway is relevant if you want to use a model fine-tuned on your data with SparseML or a custom model.

There are three steps to using a local model with Pipelines:

  1. Create the model.onnx file (if you trained with SparseML, use the ONNX export script).
  2. Collect the model.yaml file and class_names listed above.
  3. Pass the local paths of the files in place of the SparseZoo stubs.

The examples below use the SparseZoo stubs. Pass the path to the local model in place of the stubs if you want to use a custom model.

Inference Pipelines

With the object detection model set up, the model can be passed into a DeepSparse Pipeline utilizing the model_path argument. The SparseZoo stub for the sparse-quantized YOLOv5l model given at the beginning is used in the sample code below. -It will automatically download the necessary files for the model from the SparseZoo and then compile them on your local machine in the DeepSparse engine. -Once compiled, the model Pipeline is ready for inference with images.

First, a sample image is downloaded that will be run through the example to test the pipeline.

wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg

Next, instantiate the Pipeline and pass the image in using the images argument:

1from deepsparse import Pipeline
2 -
3yolo_pipeline = Pipeline.create(
4 task="yolo",
5 model_path="zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95", # if using custom model, pass in local path to model.onnx
6 class_names=None, # if using custom model, pass in a list of classes the model will clasify or a path to a json file containing them
7 model_config=None, # if using custom model, pass in the path to a local model config file here
8)
9inference = yolo_pipeline(images=['basilica.jpg'], iou_thres=0.6, conf_thres=0.001)
10print(inference)
>predictions=[[[174.3507843017578, 478.4552917480469, 346.09051513671875, 618.4129638671875, ...

Benchmarking

The DeepSparse install includes a CLI for convenient performance benchmarking. -You can pass a SparseZoo stub or a local model.onnx file.

Dense YOLOv5l

The code below provides an example for benchmarking a dense YOLOv5l model in the DeepSparse Engine. +It will automatically download the necessary files for the model from the SparseZoo and then compile them on your local machine with DeepSparse. +Once compiled, the model Pipeline is ready for inference with images.

First, a sample image is downloaded that will be run through the example to test the pipeline.

wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg

Next, instantiate the Pipeline and pass in the image using the images argument:

1from deepsparse import Pipeline
2 +
3yolo_pipeline = Pipeline.create(
4 task="yolo",
5 model_path="zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95", # if using custom model, pass in local path to model.onnx
6 class_names=None, # if using custom model, pass in a list of classes the model will clasify or a path to a json file containing them
7 model_config=None, # if using custom model, pass in the path to a local model config file here
8)
9inference = yolo_pipeline(images=['basilica.jpg'], iou_thres=0.6, conf_thres=0.001)
10print(inference)
>predictions=[[[174.3507843017578, 478.4552917480469, 346.09051513671875, 618.4129638671875, ...

Benchmarking

The DeepSparse installation includes a CLI for convenient performance benchmarking. +You can pass a SparseZoo stub or a local model.onnx file.

Dense YOLOv5l

The code below provides an example for benchmarking a dense YOLOv5l model with DeepSparse. The output shows that the model achieved 5.3 items per second on a 4-core CPU.

$deepsparse.benchmark zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/base-none
>DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.0 (8eaddc24) (release) (optimized) (system=avx512, binary=avx512)
>Original Model Path: zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/base-none
>Batch Size: 1
>Scenario: async
>Throughput (items/sec): 5.2836
>Latency Mean (ms/batch): 378.2448
>Latency Median (ms/batch): 378.1490
>Latency Std (ms/batch): 2.5183
>Iterations: 54

Sparsified YOLOv5l

Running on the same server, the code below shows how the benchmarks change when utilizing a sparsified version of YOLOv5l. -It achieved 19.0 items per second, a 3.6X increase in performance over the dense baseline.

$deepsparse.benchmark zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95
>DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.0 (8eaddc24) (release) (optimized) (system=avx512, binary=avx512)
>Original Model Path: zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95
>Batch Size: 1
>Scenario: async
>Throughput (items/sec): 18.9863
>Latency Mean (ms/batch): 105.2613
>Latency Median (ms/batch): 105.0656
>Latency Std (ms/batch): 1.6043
>Iterations: 190
Try a Text Classification Model
Try a Custom Use Case
\ No newline at end of file +It achieved 19.0 items per second, a 3.6X increase in performance over the dense baseline.

$deepsparse.benchmark zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95
>DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.0 (8eaddc24) (release) (optimized) (system=avx512, binary=avx512)
>Original Model Path: zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95
>Batch Size: 1
>Scenario: async
>Throughput (items/sec): 18.9863
>Latency Mean (ms/batch): 105.2613
>Latency Median (ms/batch): 105.0656
>Latency Std (ms/batch): 1.6043
>Iterations: 190
Use a Text Classification Model
Use a Custom Use Case
\ No newline at end of file diff --git a/get-started/try-a-model/index.html b/get-started/use-a-model/index.html similarity index 54% rename from get-started/try-a-model/index.html rename to get-started/use-a-model/index.html index aa1282046f9..c6b726b1fd2 100644 --- a/get-started/try-a-model/index.html +++ b/get-started/use-a-model/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsTry a Model
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Try a Model

Try a Model

DeepSparse Engine supports fast inference on CPUs for sparse and dense models. For sparse models in particular, it achieves GPU-level performance in many use cases.

Around the engine, the DeepSparse package includes various utilities to simplify benchmarking performance and model deployment. For instance:

  1. Trained models are passed in the open ONNX file format, enabling easy exporting from common packages like PyTorch, Keras, and TensorFlow.
  2. Benchmaking latency and performance is available via a single CLI call, with various arguments to test scenarios.
  3. Pipelines utilities wrap the model execution with input pre-processing and output post-processing, simplifying deployment and adding functionality like multi-stream, bucketing and dynamic shape.

Use Case Examples

The examples below walk through use cases leveraging DeepSparse for testing and benchmarking ONNX models for integrated use cases.

Other Use Cases

More documentation, models, use cases, and examples are continually being added. -If you don't see one you're interested in, search the DeepSparse Github repo, the SparseML Github repo, the SparseZoo website, or ask in the Neural Magic Slack.

SparseZoo Installation
Try a Text Classification Model
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Use a Model

Use a Model

DeepSparse supports fast inference on CPUs for sparse and dense models. For sparse models in particular, it achieves GPU-level performance in many use cases.

Around the engine, the DeepSparse package includes various utilities to simplify benchmarking performance and model deployment. For instance:

  • Trained models are passed in the open ONNX file format, enabling easy exporting from common packages like PyTorch, Keras, and TensorFlow.
  • Benchmaking latency and performance is available via a single CLI call, with various arguments to test scenarios.
  • Pipelines utilities wrap the model execution with input pre-processing and output post-processing, simplifying deployment and adding functionality like multi-stream, bucketing, and dynamic shape.

Use Case Examples

The examples below walk through use cases leveraging DeepSparse for testing and benchmarking ONNX models for integrated use cases.

Other Use Cases

More documentation, models, use cases, and examples are continually being added. +If you don't see one you're interested in, search the DeepSparse Github repo, SparseML Github repo, or SparseZoo website. Or, ask in the Neural Magic Slack.

SparseZoo Installation
Use a Text Classification Model
\ No newline at end of file diff --git a/get-started/try-a-model/nlp-text-classification/index.html b/get-started/use-a-model/nlp-text-classification/index.html similarity index 60% rename from get-started/try-a-model/nlp-text-classification/index.html rename to get-started/use-a-model/nlp-text-classification/index.html index 353449a8403..98864635a38 100644 --- a/get-started/try-a-model/nlp-text-classification/index.html +++ b/get-started/use-a-model/nlp-text-classification/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsTry a Text Classification Model
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Try a Model
NLP Text Classification

Try a Text Classification Model

This page explains how to run a trained model with the DeepSparse Engine for NLP inside a Python API called Pipelines.

Pipelines wrap key utilities around the DeepSparse Engine for easy testing and deployment.

The text classification Pipeline, for example, wraps an NLP model with the proper preprocessing and postprocessing pipelines, such as tokenization. -This enables passing in raw text sequences and receiving the labeled predictions from the DeepSparse Engine without any extra effort. -With all of this built on top of the DeepSparse Engine, the simplicity of Pipelines is combined with GPU-class performance on CPUs for sparse models.

Install Requirements

This example requires DeepSparse General Install.

Model Setup

The first step is collecting an ONNX representaiton of the model and required configuration files. -The text classification Pipeline is integrated with HuggingFace and uses HuggingFace's standards -and configurations for model setup. The following files are required:

  • model.onnx - The exported Transformers model in the ONNX format.
  • tokenizer.json - The HuggingFace tokenizer used with the model.
  • tokenizer_config.json - The HuggingFace tokenizer configuration used with the model.
  • config.json - The HuggingFace configuration file used with the model.

For an example of the config files, checkout BERT's model page on HuggingFace.

There are two options for passing these files to DeepSparse:

1) Using SparseZoo Stubs (Reccomended Starting Point)

SparseZoo contains several pre-sparsified Transformer models, including the config files listed above. DeepSparse is integrated -with SparseZoo, and supports SparseZoo stubs as inputs for automatic download and inclusion into easy testing and deployment.

The SparseZoo stubs can be found on SparseZoo model pages, and DistilBERT examples are provided below:

zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni
zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/base-none

These SparseZoo stubs are passed arguments to the Pipeline constructor in the examples below.

2) Using a Local Model

Alternatively, you can use a custom or fine-tuned model from your local drive.

There are three steps to using a local model with Pipelines:

  1. Export model to model.onnx (if you trained with SparseML, use ONNX export)
  2. Collect the configuration files listed above. These are generally stored with the resulting model files from HuggingFace training pipelines (as is the case with SparseML)
  3. Place the files into a directory

Pass the path the local directory in the --model_path in place of the SparseZoo stubs in the examples below.

Inference Pipelines

With the text classification model setup, it can then be passed into a DeepSparse Pipeline utilizing the model_path argument. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Get Started
Use a Model
NLP Text Classification

Use a Text Classification Model

This page explains how to run a trained model with DeepSparse for NLP inside a Python API called Pipelines.

Pipelines wraps key utilities around DeepSparse for easy testing and deployment.

The text classification Pipeline, for example, wraps an NLP model with the proper pre-processing and post-processing pipelines, such as tokenization. +This enables passing in raw text sequences and receiving the labeled predictions from DeepSparse without any extra effort. +In this way, DeepSparse combines the simplicity of Pipelines with GPU-class performance on CPUs for sparse models.

Installation Requirements

This example requires DeepSparse General Installation.

Model Setup

The first step is collecting an ONNX representaiton of the model and required configuration files. +The text classification Pipeline is integrated with Hugging Face and uses Hugging Face's standards +and configurations for model setup. The following files are required:

  • model.onnx - Exported Transformers model in the ONNX format.
  • tokenizer.json - Hugging Face tokenizer used with the model.
  • tokenizer_config.json - Hugging Face tokenizer configuration used with the model.
  • config.json - Hugging Face configuration file used with the model.

For an example of the configuration files, check out BERT's model page on Hugging Face.

There are two options for passing these files to DeepSparse:

1) Using SparseZoo stubs (recommended starting point)

SparseZoo contains several pre-sparsified Transformer models, including the configuration files listed above. DeepSparse is integrated +with SparseZoo, and supports SparseZoo stubs as inputs for automatic download and inclusion into easy testing and deployment.

The SparseZoo stubs can be found on SparseZoo model pages, and DistilBERT examples are provided below:

zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni
zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/base-none

These SparseZoo stubs are passed arguments to the Pipeline constructor in the examples below.

2) Using a local model

Alternatively, you can use a custom or fine-tuned model from your local drive.

There are three steps to using a local model with Pipelines:

  1. Export the model to model.onnx (if you trained with SparseML, use ONNX export).
  2. Collect the configuration files listed above. These are generally stored with the resulting model files from Hugging Face training pipelines (as is the case with SparseML).
  3. Place the files into a directory.

Pass the path of the local directory in the --model_path in place of the SparseZoo stubs in the examples below.

Inference Pipelines

With the text classification model set up, the model can be passed into a DeepSparse Pipeline utilizing the model_path argument. The SparseZoo stub for the sparse-quantized DistilBERT model given at the beginning is used in the sample code below. -The Pipeline automatically downloads the necessary files for the model from the SparseZoo and compiles them on your local machine in the DeepSparse engine. +The Pipeline automatically downloads the necessary files for the model from the SparseZoo and compiles them on your local machine in DeepSparse. Once compiled, the model Pipeline is ready for inference with text sequences.

1from deepsparse import Pipeline
2
3classification_pipeline = Pipeline.create(
4 task="text-classification",
5 model_path="zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni",
6)
7inference = classification_pipeline(
8 [[
9 "Fun for adults and children.",
10 "Fun for only children.",
11 ]]
12)
13print(inference)
>labels=['contradiction'] scores=[0.9983579516410828]

Because DistilBERT is a language model trained on the MNLI dataset, it can additionally be used to perform zero-shot text classification for any text sequences. The code below gives an example of a zero-shot text classification pipeline.

1from deepsparse import Pipeline
2 -
3zero_shot_pipeline = Pipeline.create(
4 task="zero_shot_text_classification",
5 model_path="zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni",
6 model_scheme="mnli",
7 model_config={"hypothesis_template": "This text is related to {}"},
8)
9inference = zero_shot_pipeline(
10 sequences='Who are you voting for in 2020?',
11 labels=['politics', 'public health', 'Europe'],
12)
13print(inference)
>sequences='Who are you voting for in 2020?' labels=['politics', 'Europe', 'public health'] scores=[0.9345628619194031, 0.039115309715270996, 0.026321841403841972]

Benchmarking

The DeepSparse install includes a benchmark CLI for convenient and easy inference benchmarking: deepsparse.benchmark. -The CLI takes in either a SparseZoo stub or a path to a local model.onnx file.

Dense DistilBERT

The code below provides an example for benchmarking a dense DistilBERT model in the DeepSparse Engine. +

3zero_shot_pipeline = Pipeline.create(
4 task="zero_shot_text_classification",
5 model_path="zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni",
6 model_scheme="mnli",
7 model_config={"hypothesis_template": "This text is related to {}"},
8)
9inference = zero_shot_pipeline(
10 sequences='Who are you voting for in 2020?',
11 labels=['politics', 'public health', 'Europe'],
12)
13print(inference)
>sequences='Who are you voting for in 2020?' labels=['politics', 'Europe', 'public health'] scores=[0.9345628619194031, 0.039115309715270996, 0.026321841403841972]

Benchmarking

The DeepSparse installation includes a benchmark CLI for convenient and easy inference benchmarking: deepsparse.benchmark. +The CLI takes in either a SparseZoo stub or a path to a local model.onnx file.

Dense DistilBERT

The code below provides an example for benchmarking a dense DistilBERT model with DeepSparse. The output shows that the model achieved 32.6 items per second on a 4-core CPU.

$deepsparse.benchmark zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/base-none
>DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.0 (8eaddc24) (release) (optimized) (system=avx512, binary=avx512)
>Original Model Path: zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/base-none
>Batch Size: 1
>Scenario: async
>Throughput (items/sec): 32.2806
>Latency Mean (ms/batch): 61.9034
>Latency Median (ms/batch): 61.7760
>Latency Std (ms/batch): 0.4792
>Iterations: 324

Sparsified DistilBERT

Running on the same server, the code below shows how the benchmarks change when utilizing a sparsified version of DistilBERT. -It achieved 221.0 items per second, a 6.8X increase in performance over the dense baseline.

$deepsparse.benchmark zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni
>DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.0 (8eaddc24) (release) (optimized) (system=avx512, binary=avx512)
>Original Model Path: zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni
>Batch Size: 1
>Scenario: async
>Throughput (items/sec): 220.9794
>Latency Mean (ms/batch): 9.0147
>Latency Median (ms/batch): 9.0085
>Latency Std (ms/batch): 0.1037
>Iterations: 2210
Try a Model
Try an Object Detection Model
\ No newline at end of file +It achieved 221.0 items per second, a 6.8X increase in performance over the dense baseline.

$deepsparse.benchmark zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni
>DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.0 (8eaddc24) (release) (optimized) (system=avx512, binary=avx512)
>Original Model Path: zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni
>Batch Size: 1
>Scenario: async
>Throughput (items/sec): 220.9794
>Latency Mean (ms/batch): 9.0147
>Latency Median (ms/batch): 9.0085
>Latency Std (ms/batch): 0.1037
>Iterations: 2210
Use a Model
Use an Object Detection Model
\ No newline at end of file diff --git a/index.html b/index.html index 8252b446193..7050706ae1f 100644 --- a/index.html +++ b/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsNeural Magic Documentation
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Home

Neural Magic Documentation

Neural Magic's Deep Sparse Platform provides models and tools needed to create sparse models and a CPU-based inference engine that runs sparse models at GPU speeds.

Using the Deep Sparse Platform, you are free to deploy your neural networks anywhere you have a CPU from edge to cloud.

There are three products which accomplish these goals:

  • DeepSparse Engine offers best-in-class CPU performance for dense and sparsified models. -Specifically for sparse models, it offers better than GPU performance in many use cases. -The performance is achieved by leveraging technology around the unique cache hierarchy of CPUs for faster memory access, and sparsification techniques to reduce the number of FLOPs.

  • SparseML provides the tools to easily create sparse models via sparse transfer-learning from pre-sparsified models or state-of-the-art sparsification algorithms that prune dense models from scratch. -The algorithms are built on top of recipes that encode configurations and hyperparamers, enabling easy integration to common frameworks with only a few lines of code.

  • SparseZoo stores dense and presparsified models/recipes ready for deployment, sparsification, and fine-tuning onto your data. -SparseZoo stubs enable you to reference any model on the SparseZoo in a convenient and identifiable way. -They are found throughout the documentation and the model pages on the SparseZoo website.

Starting Points

External Resources

✅ Join our community if you need any help -or subscribe for regular Neural Magic email updates.

✅ Check out our GitHub repositories and give us a ⭐ as we appreciate the community support!

✅ Contribute to our various repos on GitHub or help us improve this documentation.

Install Deep Sparse Platform
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Home

Neural Magic Platform Documentation

Neural Magic enables you to deploy deep learning models on commodity CPUs with GPU-class performance.

Why Deploy on CPUs?

CPU-based deep learning deployments on commodity hardware are flexible and scalable.

Because DeepSparse reaches GPU-class performance with commodity CPUs, users no longer need to tether deployments to +accelerators to reach the performance needed for production. Free from specialized hardware, +deployments can take advantage of the flexibility and scalability of software-defined inference:

  • Deploy the same model and runtime on any hardware from Intel to AMD to ARM and from cloud to data center to edge, including on pre-existing systems
  • Scale vertically from 1 to 192 cores, tailoring the footprint to an app's exact needs
  • Scale horizontally with standard Kubernetes, including using services like EKS/GKE
  • Scale abstractly with serverless instances like GCP Cloud Run and AWS Lambda
  • Integrate easily into "Deploy with code" provisioning systems
  • No wrestling with drivers, operator support, and compatibility issues

Simply put, deep learning deployments no longer need to choose between the performance of GPUs and simplicty of software!

Neural Magic Platform

The Neural Magic Platform enables two major workflows.

1. Optimize a Model for Inference

SparseML and SparseZoo work together to optimize models for inference with +techniques like pruning and quantization (which we call "sparsity").

  • SparseML is an open-source library that extends PyTorch and TensorFlow to simplify the process of +applying sparsity algorithms. Via simple CLI scripts or five lines of code, users can sparsify any model from scratch +or sparse transfer learn from pre-sparsified versions of foundation models like ResNet, YOLOv5, or BERT.

  • SparseZoo is an open-source repository of pre-sparsified models +(for example, sparse ResNet-50 has 95% of weights set to 0 while maintaining 99% of the baseline accuracy). SparseZoo is integrated with +SparseML, making it trival for users to fine-tune from sparse model (which we call "Sparse Transfer Learning") onto their data.

2. Deploy a Model on CPUs

DeepSparse runs inference-optimized sparse models with GPU-class performance on CPUs.

  • DeepSparse is an inference runtime offering GPU class performance on CPUs and +APIs for integrating ML into an application. When running an inference-optimized sparse model, DeepSparse on commodity CPUs +achieves better latency than a NVIDIA T4 (the most common GPU for inference) and an order of magnitude more throughput than +ONNX Runtime. As a result, it offers the best price-performance for deep learning deployments.

Docs Content

The documentation is organized into several sections:

  • GET STARTED provides install instructions and a tour of major functionality
  • USE CASES walks through detailed examples using SparseML and DeepSparse
  • USER GUIDE shows more advanced functionality with specific tasks
  • PRODUCTS provides API-level docs for all classes and functions
  • DETAILS includes research papers and a glossary of terms

Not Sure Where to Start?

External Resources

✅ Join our community if you need any help +or subscribe for regular email updates.

✅ Check out our GitHub repositories and give us a ⭐.

✅ Help us improve this documentation.

Optimize for Inference
\ No newline at end of file diff --git a/index/deploy-workflow/index.html b/index/deploy-workflow/index.html new file mode 100644 index 00000000000..d73c5fb8dd8 --- /dev/null +++ b/index/deploy-workflow/index.html @@ -0,0 +1,35 @@ +Neural Magic DocsNeural Magic DocsDeploy on CPUs
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Home
Deploy on CPUs

Deploy on CPUs

The Neural Magic Platform enables you to deploy models performantly on CPUs.

Benefits of CPU-deployments

Because DeepSparse reaches GPU-class performance with commodity CPUs, you no longer need to tie deployments to +accelerators to reach the performance needed for production.

Free from specialized hardware, deployments can take advantage of the flexibility and scalability of software-defined inference:

  • Deploy the same model and runtime on any hardware from Intel to AMD to ARM and from cloud to data center to edge, including on pre-existing systems
  • Scale vertically from 1 to 192 cores, tailoring the footprint to an app's exact needs
  • Scale horizontally with standard Kubernetes, including using services like EKS/GKE
  • Scale abstractly with serverless instances like GCP Cloud Run and AWS Lambda
  • Integrate easily into "Deploy with code" provisioning systems
  • No wrestling with drivers, operator support, and compatibility issues

Simply put, with DeepSparse on CPUs, you can both simplify your deep learning deployment process and +save on infrastructure costs required to support enterprise-scale workloads.

How DeepSparse Works

DeepSparse achieves its performance using breakthrough algorithms to accelerate the computation. There are two high level ideas +that underpin the system:

  • First, DeepSparse is "sparsity-aware". This means we have implementations of common neural network +operations that take advantage of structured and unstructured sparsity. Because the locations of the 0 weights in a sparse model +are known at compile time, DeepSparse can "skip" the multiply-adds by 0. This reduces the number of instructions significantly +and the computation becomes memory-bound.

  • Second, DeepSparse takes advantage of the large caches in CPUs. DeepSparse identifies and breaks down +the computational graph into into depth-wise chunks called "tensor-columns" that can be executed in parallel across many CPU-cores. +This pattern has much better locality of reference in comparison to traditional layer-by-layer execution. In this way, +DeepSparse minimizes data movement in-and-out of the large caches in a CPU, which is the performance bottleneck in a memory-bound system.

These two ideas sum up to GPU-class performance on commodity CPUs! As far as we know, DeepSparse is the only production-grade +runtime that focuses on speedups from unstructured sparsity. The unstructured sparsity optimizations are hard to +implement but are an important unlock, because, as discussed before, +unstructured pruning allows us to reach the high levels of sparsity needed to +see the performance gains without sacrificing accuracy.

Additional Resources

DeepSparse

Beyond all GPU-class performance and benefits of the scalability of CPU-only deployments, +DeepSparse also wraps the runtime with APIs and utilites that simplify the process of adding inference to +an application and monitoring a model in production.

DeepSparse Pipelines

DeepSparse Pipelines are Python APIs which wrap the runtime with prewritten pre-processing and post-processing utilities that +make it easy to call the invoked model from within an application. For NLP, this means you +can pass strings to DeepSparse and receive back predictions. For Object Detection, this means you +pass a raw image to DeepSparse and get back bounding boxes after NMS has been applied.

DeepSparse supports the following use cases out of the box:

  • CV: Image Classification
  • CV: Object Detection
  • CV: Segmentation
  • NLP: Sentiment Analysis
  • NLP: Text Classification
  • NLP: Token Classification
  • NLP: Document Classification
  • NLP: Extractive Question Answering
  • NLP: HayStack Information Retrieval
  • Embedding Extraction

We are continually adding more use cases. Additonally, DeepSparse offers a CustomTaskPipeline which allows users to +add custom pre-processing and custom post-processing for unsupported use cases in a consistent way.

Want a new use case? Reach out in our Community Slack.

DeepSparse Server

Built on FastAPI and uvicorn, DeepSparse Server is a wrapper around DeepSparse Pipelines that enable you to +invoke inference via REST APIs. This means that you can create a model-serving endpoint running DeepSparse +in the cloud and datacenter with just a single command line call. Additionally, because DeepSparse Server is CPU-only, +a model dervice with DeepSparse can be easily scaled up and down elastically with Kubernetes, can run on Serverless +services like Lambda and CloudRun, and is intergrated with managed service endpoints like SageMaker and Hugging Face Endpoints.

Additional Features

DeepSparse has multiple modes that allow you to tune a deployment. Examples include:

  • Synchronous Scheduling: minimize latency by using all cores on a single input
  • Asynchronous Scheduling: control the number of streams that can be executed simultaenously for handling multiple clients
  • Benchmarking: tools to compare performance and tune configurations

DeepSparse has utilities that make it easy to handle dynamic inputs. Examples include:

  • Dynamic Batch: handle various batch sizes without needing to recomplile the model
  • Bucketing: handle NLP sequences of variable length without padding to max_seq_len

DeepSparse has capabilities to support MLOps related monitoring. Examples include:

  • System Logging: monitor granular request latency data with Prometheus and Grafana
  • Data Logging: log input and output data (and projections thereof) for use with data drift detection or retraining

All this means that DeepSparse is not only fast and CPU-only, but also easy to add to your application. +With DeepSparse, you can spend less time writing scaffolding-code and focus more on building a great system.

We love to hear feature requests in our Community Slack!

Additional Resources

Optimize for Inference
Quick Tour
\ No newline at end of file diff --git a/index/optimize-workflow/index.html b/index/optimize-workflow/index.html new file mode 100644 index 00000000000..a1a7da42cc4 --- /dev/null +++ b/index/optimize-workflow/index.html @@ -0,0 +1,59 @@ +Neural Magic DocsNeural Magic DocsOptimize for Inference
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Home
Optimize for Inference

Optimize a Model for Inference

The Neural Magic Platform enables you to optimize your models for inference with sparsity.

Motivation

There are multiple factors to consider when creating a deep learning model. In training, accuracy on the test-set +is the primary metric. In deployment, however, the performance (latency/throughput) of the model becomes +an important consideration at production scale.

However, as Deep Learning has exploded and state-of-the-art models have grown bigger and bigger, +performance and accuracy have been increasingly at odds.

Sparsity: Improve Performance While Maintaining High Accuracy

SparseML and SparseZoo work together to help users create performance-optimized models +while mimizing accuracy loss, using sparsification techniques called pruning and quantization.

Importantly, they support training-aware pruning and quantization algorithms (as well as post-training). +Training-aware techniques apply the sparsification gradually, allowing the model to adjust by fine-tuning the remaining weights +with the training dataset at each step. This technique is critical to maintain high accuracy at the high +levels of sparsity needed to reach GPU-class performance.

Conceptual Guide

What is Pruning?

Pruning is the process of removing weights from a trained deep learning model by setting them to zero. Pruning can +speed up a model, because inference runtimes implement optimizations that "skip" the multiply-adds by zero, +reducing the needed computation.

There are two types of pruning that can be applied to a model:

  1. Structured Pruning - weights are pruned in groups (e.g. entire channels or nodes)
  2. Unstructured Pruning - weights (or small groups of weights) can be pruned in any pattern

With Structured Pruning, it is easy for an inference runtime to include optimizations that speed-up the model and most +runtimes will benefit from this type of pruning. However, structured pruning can have large negative impacts on accuracy of the model, +especially at the high levels of sparsity needed to see speedups.

With Unstructured Pruning, it is very hard for an inference runtime to include optimizations that speed-up the model +(as far as we know, DeepSparse is the only production-grade runtime focused on speed-ups from unstructured pruning). The +benefit of unstructured pruning, however, is that sparsity can be pushed to very high levels while maintaining high levels of +accuracy. With both CNNs (ResNet-50) and Transformers (BERT-base), Neural Magic has pruned 95% of weights +while maintaining 99% of the accuracy as the baseline models.

What is Quantization?

Quantization is a technique to reduce computation and memory usage by converting the parameters +and activations of a model from a high precision format like FP32 (which is the default +for a deep learning model) to a low precision format like INT8.

By using lower precision, runtimes can reduce memory footprint and perform operations like +matrix multiply faster. Additionally, quantization can be combined with unstructured pruning +to gain additional speedup, a concept we call Compound Sparsity.

Training-Aware Algorithms

Broadly, there are two ways that pruning and quantization can be applied to a model:

  1. Post-Training - this is where sparsity is applied in one-pass with no training data
  2. Training Aware - this is where sparsity is applied gradually and the non-zero weights are adjusted with training data

Post-Training pruning and quantization optimizations are easier to apply to a model. However, these techniques often create +signficant drops in accuracy, as the model does not have a chance to re-adjust to the optimization space.

Training-Aware pruning and quantization, by contrast, require setting up a training pipeline and implementing +complex algorithms. However, applying the pruning and quantization gradually and fine-tuning the non-zero weights +with training data enables accuracy to recover to 99% of the baseline dense model even as sparsity is pushed to very high levels.

SparseML uses Training-Aware Unstructured Pruning and Training-Aware Quantization to create very +sparse models that sacrifice very little accuracy.

How to Create an Inference-Optimized Sparse Model

SparseML and SparseZoo extend PyTorch and TensorFlow with features for +creating sparse models trained on custom data.

Together, they enable two workflows:

  1. Sparse Transfer Learning: fine-tune a pre-sparsified foundation model (like ResNet-50 or BERT) from the SparseZoo +onto a custom dataset
  2. Sparsification From Scratch: apply training-aware pruning and quantization algorithms to any trained +PyTorch, TensorFlow, and Hugging Face model, with fine-grained control of hyperparameters

Sparse Transfer Learning

Sparse Transfer Learning is the easiest path to creating a sparse model trained on custom data +and is preferred for any scenario where a pre-sparsified foundation model exists in SparseZoo.

Neural Magic's research team has invested many hours in creating state-of-the-art pruned and quantized verisons of popular foundation +models trained on large open datasets. These state-of-the-art models (including the hyperparameters of +the sparsification process) are publically available in the SparseZoo.

SparseML enables users to fine-tune the pre-sparsified models in SparseZoo onto custom data while maintaining the same +level of sparsity (which we call "Sparse Transfer Learning"). Under the hood, SparseML extends PyTorch and TensorFlow +to only update non-zero weights during backprogation. Users, then, can Sparse Transfer Learn +with just a single CLI command or five additional lines of code around a custom PyTorch training loop.

This means that any engineer (without deep knowledge of cutting-edge sparsity algorithms) can easily +create accurate, inference-optimized sparse models for their specific use cases.

Additional Resources

Sparsification From Scratch

Sparsification From Scratch can be applied to any model, providing power-users a path to create sparse versions of any model.

As described in the conceptual section above, Training-Aware Unstructured Pruning and +Training-Aware Quantization are the best techniques for creating models with the highest levels of sparsity +without suffering from much accuracy degradation.

Gradual Magnitude Pruning (GMP) is the best algorithm for unstructured pruning:

  • With GMP, pruning occurs gradually over a training run. Over several epochs or training steps the least impactful weights are +iteratively removed. The non-zero weights are then fine-tuned to the objective function. +This iterative process enables the model to adjust to a new optimization space after pathways are removed before pruning again.

Quantization Aware Training (QAT) is the best algorithm for quantization:

  • With QAT, fake quantization operators are injected into the graph before quantizable nodes for activations, +and weights are wrapped with fake quantization operators. The fake quantization operators interpolate the weights and +activations down to INT8 on the forward pass but enable a full update of the weights at FP32 on the backward pass. +The updates to the weights at FP32 throughout the training process allow the model to adapt to the loss of information +from quantization on the forward pass.

Applying these algorithms correctly in an ad-hoc way is challenging. As such, Neural Magic created +SparseML, which implements these algorithms on top of PyTorch and TensorFlow.

Using SparseML, users can apply these algorithms to their trained PyTorch and TensorFlow models +with just five additional lines of code around a training loop. This enables ML Engineers to shift focus +and time from (re)building sparsity algorithms to running experiments and tuning hyperparameters of the +pruning and quantization process.

Ultimately, creating a sparse model from scratch is a form of architecture search. This is an inherently +“research-like” exercise, which requires tuning hyperparameters of GMP and QAT and running experiments to test accuracy +with various changes to the model. SparseML dramatically increases the productivity of developers +running these experiements.

Additional Resources

Neural Magic Documentation
Deploy on CPUs
\ No newline at end of file diff --git a/index/quick-tour/index.html b/index/quick-tour/index.html new file mode 100644 index 00000000000..90d0f13b815 --- /dev/null +++ b/index/quick-tour/index.html @@ -0,0 +1,70 @@ +Neural Magic DocsNeural Magic DocsQuick Tour
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Home
Quick Tour

Quick Tour

The Neural Magic Platform enables you to (1) Optimize a Model for Inference and +(2) Deploy a Model on CPUs with GPU-class performance.

This page walks through the major functionality and provides pointers to more details.

1. Optimize a Model for Inference with SparseML

SparseML and SparseZoo enable users to create models that are optimized for inference. +With an inference-optimized model, users can reach GPU-class performance when deploying with DeepSparse on CPUs.

There are two workflows that allow users to accomplish this goal:

  1. Sparse Transfer Learning: fine-tune pre-sparsified models +onto custom data
  2. Sparsification From Scratch: apply pruning and quantization to any model

Sparse Transfer Learning is recommended for use cases with pre-sparsified models in SparseZoo. +Sparsification From Scratch can be used to optimize any model but requires experimenting with +hyperparameters to reach high levels of sparsity with high accuracy.

Each workflow can be applied via CLI scripts or Python code.

CLI Scripts

For supported use cases, SparseML provides CLI scripts that enable users to kick off Sparse Transfer Learning +or Sparsification From Scratch runs with a single command.

Each use case has slightly different arguments that align to their integrations (the Transformer scripts adhere +to Hugging Face format while the YOLOv5 scripts adhere to Ultralytics format), but they generally look something like +the following:

1sparseml.[use_case].train
2 --model [LOCAL_PATH / SPARSEZOO_STUB]
3 --dataset [LOCAL_PATH]
4 --recipe [LOCAL_PATH / SPARSEZOO_RECIPE_STUB]
5 --other_configs [e.g. BATCH_SIZE, EPOCHS, etc.]

Let's break down each argument:

  • --model points SparseML to a trained model which is the starting point for the training process. In Sparse Transfer Learning, +this is usually a SparseZoo stub that points to the pre-sparsified model of choice. In Sparsification From Scratch, this is usually +a path to a trained PyTorch or TensorFlow model in a local filesystem.

  • --dataset points SparseML to the dataset to be used (both STL and SFS require training data). Datasets must be provided in the form expected +by the underlying integration. For instance, if training YOLOv5, data must be provided in the YOLOv5 format and if training Transformers, +data must be provided in the Hugging Face format.

  • --recipe points SparseML to a YAML file called a recipe. Recipes encode sparsity-related hyperparameters used by SparseML. +For instance, a recipe for Sparsification From Scratch encodes the target sparsity level for each layer while a recipe for Sparse Transfer Learning +instructs SparseML to maintain sparsity as the fine-tuning occurs.

You can now see why SparseML makes Sparse Transfer Learning so easy. All you have to do is point SparseML to a +pre-sparsified model and pre-made transfer learning recipe in SparseZoo and to your own dataset and you are off!

There are also pre-made sparsification from scratch recipes availble in the SparseZoo. For models not yet in SparseZoo, +SparseML's declarative recipes make it easy to specify hyperparameters, allowing you to focus on running experiments rather than writing code.

Additional Resources

Python API

For users needing flexibility for an unsupported use case or a custom training setup, +SparseML provides Python APIs that let you integrate SparseML into any PyTorch or TensorFlow pipeline.

Because of the declarative nature of recipes, users can apply Sparse Transfer Learning and +Sparsification From Scratch with just three additional lines of code around a training pipeline.

The following code illustrates all that is needed:

1from sparseml.pytorch.optim import ScheduledModifierManager
2 +
3model = Model(...) # typical torch model
4optimizer = Optimizer(...) # typical torch optimizer
5manager = ScheduledModifierManager.from_yaml(recipe_path)
6optimizer = manager.modify(model, optimizer, steps_per_epoch)
7 +
8# ...your typical training loop, using model/optimizer as usual
9 +
10manager.finalize(model)

Let's break down this example step-by-step:

  • model and optimizer are the typical PyTorch objects used in every training loop.
  • ScheduledModifierManager.from_yaml(recipe_path) accepts a recipe_path, which points to the location of +a YAML file called a Recipe. The Recipes encode the hyperparameters of the Sparse Transfer Learning or Sparsification From Scratch workflows.
  • manager.modify(...) edits the model and optimizer objects to run the Sparse Transfer Learning or +Sparsification From Scratch algorithms specified in the recipe.
  • The model and optimizer are then used as usual in a training loop. If a Sparsification from Scratch recipe was +given to the manager, then the optimizer will gradually prune weights according to the recipe. If a Sparsification +from Scratch recipe was passed, then pruned weights will remain at zero during gradient updates.

Additional Resources

Want to Learn More?

Checkout our conceptual guide on optimizing for inference with sparsity.

2. Deploy on CPUs with DeepSparse

DeepSparse is a CPU-only deep learning deployment platform. It wraps a sparsity-aware runtime that reaches GPU-class +performance on inference-optimized sparse models with APIs that simplify the process of integrating a model into +an application.

There are three primary interfaces for interacting with DeepSparse:

  1. Pipeline - Python APIs that wrap the runtime with pre-processing and post-processing
  2. Server - REST APIs that allow you to create a model service around a Pipeline
  3. Engine - Python APIs that provide direct access to the runtime

Pipeline and Server are the preferred pathways for interacting with DeepSparse.

Pipelines

DeepSparse Pipelines make it easy to integrate DeepSparse into an application, by wrapping pre and post-processing +around the inference runtime. For example, a DeepSparse Pipeline in the NLP domain handles the tokenization process, +meaning you can pass raw strings and receive answers and a DeepSparse Pipeline in the Object Detection domain handles +input normalization (mean and std transform) as well as the non-max supression of output, meaning you can just pass +raw images and receive the bounding boxes.

For supported use cases, Pipelines are pre-made. For unsupported use cases, you can create a custom Pipeline by +specifying a pre and post-processing function, creating a consistent interface for interacting with DeepSparse.

Pipeline Usage - Python API

For a supported use case, the Pipeline class is workhorse that you will use. Simplify specify a use case via the +task argument and a model in ONNX format via the model_path argument and you are off!

1from deepsparse import Pipeline
2example_pipeline = Pipeline.create(
3 task="example_task", # e.g. image_classification or question_answering
4 model_path="model.onnx", # local model or SparseZoo stub
5)
6 +
7# pass raw, unprocessed input
8pipeline_inputs = ["The quick brown fox jumps over the lazy dog"]
9 +
10# get back post-processed outputs
11pipeline_outputs = example_pipeline(pipeline_inputs)

For an unsupported use case, you will use CustomTaskPipeline to create a Pipeline. Simply specify a +pre-processing and post-processing function and a model in ONNX format.

1from deepsparse.pipelines.custom_pipeline import CustomTaskPipeline
2 +
3def preprocess(inputs):
4 pass # define your function
5def postprocess(outputs):
6 pass # define your function
7 +
8custom_pipeline = CustomTaskPipeline(
9 model_path="custom_model.onnx",
10 process_inputs_fn=preprocess,
11 process_outputs_fn=postprocess,
12)
13 +
14# pass raw, unprocessed input
15pipeline_inputs = ["The quick brown fox jumps over the lazy dog"]
16 +
17# get back post-processed outputs
18pipeline_outputs = custom_pipeline(pipeline_inputs)

Additional Resources

Beyond pre-processing and post-processing, Pipelines also have other useful utilites like Data Logging, +Multi-Stream Inference, and Dynamic Batch. Check out the documentation on the Pipeline Class +or the ad-hoc user guides:

  • Multi-Stream Scheduling Overview
  • Example Using Multi-Stream in Pipelines [Docs Coming Soon]
  • Data Logging in Pipelines [Docs Coming Soon]
  • Dynamic Batch [Docs Coming Soon]

Server

DeepSparse Server wraps Pipelines with REST API using FastAPI web framework and uvicorn web server. +This enables you to spin up a model service around DeepSparse with no code.

Since Server is a wrapper around Pipelines, the Server inherits all of the functionality of Pipelines (including the +pre- and post-processing phases), meaning you can pass raw unprocessed inputs to the Server and receive post-processed +predictions.

Server Usage - Launch From CLI

DeepSparse Server is launched from the CLI, with configuration via either command line arguments or a configuration file.

With the command line argument path, users specify a use case via the task argument (e.g., image_classification or question_answering) as +well as a model (either a local ONNX file or a SparseZoo stub) via the model_path argument:

deepsparse.server --task [use_case_name] --model_path [model_path]

With the config file path, users create a YAML file that specifies the server configuration. A YAML file looks like the following:

1endpoints:
2 - task: task_name # specifiy use case (e.g., image_classification, question_answering)
3 route: /predict # specify the route of the endpoint
4 model: model_path # specify sparsezoo stub or path to local onnx file
5 name: any_name_you_want
6 +
7# - ... add as many endpoints as neeede

The Server is then launched with the following:

deepsparse.server --config_file config.yaml

Clients interact with the Server via HTTP. Because the Server uses Pipelines internally, +users can simply pass raw data to the Server and receive back post-processed predictions.

For example, a user would do the following to query a Question Answering endpoint:

1import requests
2 +
3url = "http://localhost:5543/predict"
4 +
5obj = {
6 "question": "Who is Mark?",
7 "context": "Mark is batman."
8}
9 +
10response = requests.post(url, json=obj)

Additional Resources

The Server also has other useful utilites like Data Logging, Multi-Stream Inference, Multiple Model Inference and Dynamic Batch. +Checkout the documentation on the Server Class or the ad-hoc user guides:

  • Multi-Stream Scheduling Overview
  • Example Using Multi-Stream in Pipelines [Docs Coming Soon]
  • Data Logging in Pipelines [Docs Coming Soon]
  • Dynamic Batch [Docs Coming Soon]

Engine

Engine is the lowest supported level of interaction available with the runtime.

This pathway enables users that want more control over the runtime or want to run pre-processing and post-processing +manually to do so.

Engine Usage - Python API

The Engine class is the workhorse for this pathway. Simply call the constructor with your desired parameters to +create an instance with the runtime. Once the Engine is initialized, just a pass lists of numpy arrays (which are a +batch of input tensors - the same as would be passed to a PyTorch model) and the Engine will return a list of outputs.

For example:

1from deepsparse import Engine
2from deepsparse.utils import generate_random_inputs
3onnx_filepath = "path/to/onnx/model.onnx"
4batch_size = 64
5 +
6# Generate random sample input
7inputs = generate_random_inputs(onnx_filepath, batch_size)
8 +
9# Compile and run
10engine = Engine(onnx_filepath, batch_size)
11outputs = engine.run(inputs)

Additional Resources

There is also a MultiModelEngine available for users who want to interact directly with an Engine running +multiple models (note: if you want to run multiple models on the same CPU, this pathway is strongly preferred.)

We also have a lower-level C++ API. Stay tuned for new documentation on this pathway or reachout +in Community Slack for details of this.

Deploy on CPUs
Install Neural Magic Platform
\ No newline at end of file diff --git a/page-data/details/faqs/page-data.json b/page-data/details/faqs/page-data.json index 3ab02d860c9..5d12b03c3ce 100644 --- a/page-data/details/faqs/page-data.json +++ b/page-data/details/faqs/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/details/faqs","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","title":"FAQs","slug":"/details/faqs","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/details/faqs.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"FAQs\",\n \"metaTitle\": \"FAQs\",\n \"metaDescription\": \"FAQs for the DeepSparse product from Neural Magic\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"FAQs\"), mdx(\"h2\", null, \"General Product FAQs\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"What is Neural Magic?\")), mdx(\"p\", null, \"Founded by a team of award-winning MIT computer scientists and funded by Amdocs, Andreessen Horowitz, Comcast Ventures, NEA, Pillar VC, and\\nRidgeline Partners, Neural Magic is the creator and maintainer of the Deep Sparse Platform. It has several components, including the\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/deepsparse\"\n }, \"DeepSparse Engine,\"), \" a CPU runtime that runs sparse models at GPU speeds. To enable companies the ability to use\\nubiquitous and unconstrained CPU resources, Neural Magic includes \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparseml\"\n }, \"SparseML\"), \" and the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparsezoo\"\n }, \"SparseZoo,\"), \"\\nopen-sourced model optimization technologies that allow users to achieve performance breakthroughs, at scale, with all the flexibility of software.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"What is the DeepSparse Engine?\")), mdx(\"p\", null, \"The DeepSparse Engine, created by Neural Magic, is a general purpose engine for machine learning, enabling machine learning to be practically\\nrun in new places, on new kinds of workloads. It delivers state of art, GPU-class performance for the deep learning applications running on x86\\nCPUs. The DeepSparse Engine achieves its performance using breakthrough algorithms that reduce the computation needed for neural network execution\\nand accelerate the resulting memory-bound computation.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Why Neural Magic?\")), mdx(\"p\", null, \"Learn more about Neural Magic and the DeepSparse Engine (formerly known as the Neural Magic Inference Engine).\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://youtu.be/zJy_8uPZd0o\"\n }, \"Watch the Why Neural Magic video\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"How does Neural Magic make it work?\")), mdx(\"p\", null, \"This is an older webinar (50m) where we went through the process of optimizing and deploying a model; we\\u2019ve enhanced our software since\\nthe recording went out but this will give you some background: \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://youtu.be/UhmmHTsfrzI\"\n }, \"Watch the How does it Work video\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Does Neural Magic support training of learning models on CPUs?\")), mdx(\"p\", null, \"Neural Magic does not support training of deep learning models at this time. We do see value in providing a consistent CPU environment\\nfor our end users to train and infer on for their deep learning needs, and have added this to our engineering backlog.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you have version compatibility on TensorFlow?\")), mdx(\"p\", null, \"Our inference engine supports all versions of TensorFlow <= 2.0; support for the Keras API is through TensorFlow 2.0.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you run on AMD hardware?\")), mdx(\"p\", null, \"The DeepSparse Engine is validated to work on x86 Intel (Haswell generation and later) and AMD CPUs running Linux, with\\nsupport for AVX2, AVX-512, and VNNI instruction sets. Specific support details for some algorithms over different microarchitectures\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deepsparse-engine/hardware-support\"\n }, \"is available.\")), mdx(\"p\", null, \"We are open to opportunities to expand our support footprint for different CPU-based processor architectures, based on\\nmarket adoption and deep learning use cases.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you run on ARM architecture?\")), mdx(\"p\", null, \"We are actively working on ARM support and it\\u2019s slated for release late-2022. We would like to hear your use cases and keep you in the\\nloop! \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/contact/\"\n }, \"Contact us to continue the conversation.\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"To what use cases is the Deep Sparse Platform best suited?\")), mdx(\"p\", null, \"We focus on the models and use cases related to computer vision and NLP due to cost sensitivity and both real time and throughput constraints.\\nThe belief now is GPUs are required for deployment.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"What types of models does Neural Magic support?\")), mdx(\"p\", null, \"Today, we offer support for CNN-based computer vision models, specifically classification and object detection model types.\\nNLP models like BERT are also available. We are continuously adding models to \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparsezoo\"\n }, \"our supported model list and SparseZoo.\"), \"\\nAdditionally, we are investigating model architectures beyond computer vision.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Is dynamic shape supported?\")), mdx(\"p\", null, \"Dynamic shape is currently not supported; be sure to use models with fixed inputs and compile the model for a particular batch size.\\nDynamic shape and dynamic batch sizes are on the Neural Magic roadmap; \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/subscribe/\"\n }, \"subscribe for updates.\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Can multiple model inferences be executed?\")), mdx(\"p\", null, \"Model inferences are executed as a single stream by default; concurrent execution \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deepsparse-engine/scheduler\"\n }, \"can be enabled depending\\non the engine execution strategy.\")), mdx(\"hr\", null), mdx(\"h2\", null, \"Benchmarking FAQs\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you have benchmarks to compare and contrast?\")), mdx(\"p\", null, \"Yes. Check out our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/blog/neural-magic-demo/\"\n }, \"benchmark demo video\"), \" or\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/contact/\"\n }, \"contact us\"), \" to discuss your particular performance requirements.\\nIf you\\u2019d rather observe performance for yourself, \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic\"\n }, \"head over to the Neural Magic GitHub repo\"), \"\\nto check out our tools and generate your own benchmarks in your environment.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you publish ML Perf inference benchmarks?\")), mdx(\"p\", null, \"Checkout ZDNet's coverage of our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.zdnet.com/article/neural-magics-sparsity-nvidias-hopper-and-alibabas-network-among-firsts-in-latest-mlperf-ai-benchmarks/\"\n }, \"results at ML Perf\"), \"!\"), mdx(\"hr\", null), mdx(\"h2\", null, \"Infrastructure FAQs\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Which instruction sets are supported and do we have to enable certain settings?\")), mdx(\"p\", null, \"AVX2, AVX-512, and VNNI. The DeepSparse Engine will automatically utilize the most effective available\\ninstructions for the task. Depending on your goals and hardware priorities, optimal performance can be found.\\nNeural Magic is happy to discuss your use cases and offer recommendations.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Are you suitable for edge deployments (i.e., in-store devices, cameras)?\")), mdx(\"p\", null, \"Yes, absolutely. We can run anywhere you have a CPU with x86 instructions, including on bare metal, in the cloud,\\non-prem, or at the edge. Additionally, our model optimization tools are able to reduce the footprint of models\\nacross all architectures. We only guarantee performance in the DeepSparse Engine.\"), mdx(\"p\", null, \"We\\u2019d love to hear from users highly interested in ML performance. If you want to chat about your use cases\\nor how others are leveraging the Deep Sparse Platform, \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/contact/\"\n }, \"please contact us.\"), \"\\nOr simply head over to the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic\"\n }, \"Neural Magic GitHub repo\"), \" and check out our tools.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you have available solutions or applications on the Microsoft/Azure platform?\")), mdx(\"p\", null, \"We deploy extremely easily. We are completely infrastructure-agnostic. As long as it has the \\u201Cright\\u201D CPUs\\n(e.g., AVX2 or AVX-512) we can run on any cloud platform, including Azure!\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Can the inference engine run on Kubernetes? How do you containerize and take advantage of underlying infrastructure?\")), mdx(\"p\", null, \"The DeepSparse Engine becomes a component of your model serving solution. As a result, it can\\nsimply plug into an existing CI/CD deployment pipeline. How you deploy, where you deploy, and what you deploy on\\nbecomes abstracted to the DeepSparse Engine so you can tailor your experiences. For example, you can run the\\nDeepSparse Engine on a CPU VM environment, deployed via a Docker file and managed through a Kubernetes environment.\"), mdx(\"hr\", null), mdx(\"h2\", null, \"Model Compression FAQs\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Can you comment on how you do pruning and effects on accuracy?\")), mdx(\"p\", null, \"Neural networks are extremely over-parameterized, allowing most weights to be iteratively removed from the network\\nwithout effect on accuracy. Eventually, though, pruning will begin affecting the overall capacity of the network,\\nthe degree of which varies based on the use case. However, this is something entirely under the data scientist\\ncontrol to choose whether to recover fully or to prune more for even better performance.\"), mdx(\"p\", null, \"For example, Neural Magic has been successful in removing 95% of ResNet-50 weights with no loss in accuracy.\\nFor more background on techniques that have informed our methodologies, check out this paper co-written by\\nNeural Magic, \", mdx(\"em\", {\n parentName: \"p\"\n }, mdx(\"a\", {\n parentName: \"em\",\n \"href\": \"https://arxiv.org/abs/2004.14340\"\n }, \"WoodFisher: Efficient Second-Order Approximation for Neural Network Compression.\"))), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"When does sparsification actually happen?\")), mdx(\"p\", null, \"In a scenario in which you want to sparsify and then run your own model in the DeepSparse Engine, you would first\\nsparsify your model to achieve the desired level of performance and accuracy using Neural Magic\\u2019s \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparseml\"\n }, \"SparseML\"), \" tooling.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"What does the sparsification process look like?\")), mdx(\"p\", null, \"Neural Magic\\u2019s Sparsify and SparseML tooling, at its core, uses well-established state-of-the-art research principles such as\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/blog/pruning-gmp/\"\n }, \"Gradual Magnitude Pruning\"), \" (GMP) to sparsify models. This is an iterative process\\nin which groups of important weights are pruned away and then the network is allowed to recover. To significantly simplify the process,\\nwe offer tools and guidance for you to achieve the best performance possible. To peruse research papers contributed by Neural Magic\\nstaff, \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/resources/technical-papers/\"\n }, \"check them out.\"), \" Or head over to the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic\"\n }, \"Neural Magic GitHub repo\"), \"\\nto get started!\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"How does sparsification work in relation to TensorFlow?\")), mdx(\"p\", null, \"Today, we are able to sparsify models trained in popular deep learning libraries like TensorFlow. Our unique approach works with the\\noutput supplied by the model library and provides layer sparsification techniques that then can be compiled in the existing library\\nframework, within the user environment.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"When using your software to transfer learn, what about other hyperparameters? Are you just freezing other layers?\")), mdx(\"p\", null, \"For transfer learning, our tooling allows you to save the sparse architecture learned from larger datasets. Other\\nhyperparameters are fully under your control and allow you the flexibility to easily freeze layers as well.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you support INT8 and INT16 (quantized) operations?\")), mdx(\"p\", null, \"The DeepSparse Engine runs at FP32 and has support for INT8. With Intel Cascade Lake generation chips and later,\\nIntel CPUs include VNNI instructions and support both INT8 and INT16 operations. On these machines, performance improvements\\nfrom quantization will be greater. The DeepSparse Engine has INT8 support for the ONNX operators QLinearConv, QuantizeLinear,\\nDequantizeLinear, QLinearMatMul, and MatMulInteger. Our engine also supports 8-bit QLinearAdd, an ONNX Runtime custom operator.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you support FP16 (half precision) and BF16 operations?\")), mdx(\"p\", null, \"Neural Magic is looking to include both FP16 and BF16 on our roadmap in the near future.\"), mdx(\"hr\", null), mdx(\"h2\", null, \"Runtime FAQs\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do users have to do any model conversion before using the DeepSparse Engine?\")), mdx(\"p\", null, \"DeepSparse Engine executes on an ONNX (Open Neural Network Exchange) representation of a deep learning model.\\nOur software allows you to produce an ONNX representation. If working with PyTorch, we use the built-in ONNX\\nexport and for TensorFlow, we convert from a standard exported protobuf file to ONNX. Outside of those frameworks,\\nyou would need to convert your model to ONNX first before passing it to the DeepSparse Engine.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Why is ONNX the file format used by Neural Magic?\")), mdx(\"p\", null, \"ONNX (Open Neural Network Exchange) is emerging as a standard, open-source format for model representation.\\nBased on the breadth of vendors supporting ONNX as well as the health of open-source community contributions,\\nwe believe ONNX offers a compelling solution for the market.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Are your users using ONNX runtime already?\")), mdx(\"p\", null, \"End users are using a wide variety of runtimes, both open source and proprietary. Neural Magic is focused on\\nensuring we are open and flexible, to allow our users to achieve deep learning performance regardless of how\\nthey choose to build, deploy, and run their models.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"What is the accuracy loss, if any, on the numbers Neural Magic demonstrates?\")), mdx(\"p\", null, \"Results will depend on your use case and specific requirements. We are capable of maintaining 100% baseline accuracy.\\nIn cases where accuracy is not as important as performance, you can use our model optimization tools to further speed\\nup the model at the expense of accuracy and weigh the tradeoffs.\"), mdx(\"p\", null, \"If you need sparsification, we provide the tooling for tradeoffs between accuracy and performance based on your specific requirements.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"For the runtime engine, is Neural Magic modifying the architecture in any way or just optimizing the instruction set at that level?\")), mdx(\"p\", null, \"Specifically for sparsification, our software keeps the architecture intact and changes the weights. For running dense, we do not change anything about the model.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"For a CPU are you using all the cores?\")), mdx(\"p\", null, \"The DeepSparse Engine optimizes \", mdx(\"em\", {\n parentName: \"p\"\n }, \"how\"), \" the model is run on the infrastructure resources applied to it. But, the Neural\\nMagic does not optimize for the number of cores. You are in control to specify how much of the system Neural Magic will use and run on.\\nDepending on your goals (latency, throughput, and cost constraints), you can optimize your pipeline for maximum efficiency.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#faqs","title":"FAQs","items":[{"url":"#general-product-faqs","title":"General Product FAQs"},{"url":"#benchmarking-faqs","title":"Benchmarking FAQs"},{"url":"#infrastructure-faqs","title":"Infrastructure FAQs"},{"url":"#model-compression-faqs","title":"Model Compression FAQs"},{"url":"#runtime-faqs","title":"Runtime FAQs"}]}]},"parent":{"relativePath":"details/faqs.mdx"},"frontmatter":{"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/details/faqs","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","title":"FAQs","slug":"/details/faqs","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/details/faqs.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"FAQs\",\n \"metaTitle\": \"FAQs\",\n \"metaDescription\": \"FAQs for the Neural Magic Platform\",\n \"index\": 4000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"FAQs\"), mdx(\"h2\", null, \"General Product FAQs\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"What is Neural Magic?\")), mdx(\"p\", null, \"Neural Magic was founded by a team of award-winning MIT computer scientists and is funded by Amdocs, Andreessen Horowitz, Comcast Ventures, NEA, Pillar\\nVC, and Ridgeline Partners. The Neural Magic Platform includes several components, including \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/deepsparse\"\n }, \"DeepSparse\"), \", \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparseml\"\n }, \"SparseML\"), \", and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparsezoo\"\n }, \"SparseZoo\"), \".\\nDeepSparse is an inference runtime offering GPU-class performance on CPUs and tooling to\\nintegrate ML into your application. \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparseml\"\n }, \"SparseML\"), \" and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparsezoo\"\n }, \"SparseZoo,\"), \" are and open-source tooling and model repository\\ncombination that enable you to create an inference-optimized sparse-model for deployment with DeepSparse.\"), mdx(\"p\", null, \"Together, these components remove the tradeoff between performance and the simplicity and scalability of software-delivered deployments.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"What is DeepSparse?\")), mdx(\"p\", null, \"DeepSparse, created by Neural Magic, is an inference runtime for deep learning models. It delivers state of art, GPU-class performance on commodity CPUs\\nas well as tooling for integrating a model into an application and monitoring models in production.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Why Neural Magic?\")), mdx(\"p\", null, \"Learn more about Neural Magic and DeepSparse (formerly known as the Neural Magic Inference Engine).\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://youtu.be/zJy_8uPZd0o\"\n }, \"Watch the Why Neural Magic video\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"How does Neural Magic make it work?\")), mdx(\"p\", null, \"This is an older webinar (50m) where we went through the process of optimizing and deploying a model; we\\u2019ve enhanced our software since\\nthe recording went out but this will give you some background: \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://youtu.be/UhmmHTsfrzI\"\n }, \"Watch the How does it Work video\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Does Neural Magic support training of learning models on CPUs?\")), mdx(\"p\", null, \"Neural Magic does not support training of deep learning models at this time. We do see value in providing a consistent CPU environment\\nfor our end users to train and infer on for their deep learning needs, and have added this to our engineering backlog.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you have version compatibility on TensorFlow?\")), mdx(\"p\", null, \"Our inference engine supports all versions of TensorFlow <= 2.0; support for the Keras API is through TensorFlow 2.0.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you run on AMD hardware?\")), mdx(\"p\", null, \"DeepSparse is validated to work on x86 Intel (Haswell generation and later) and AMD CPUs running Linux, with\\nsupport for AVX2, AVX-512, and VNNI instruction sets. Specific support details for some algorithms over different microarchitectures\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deepsparse-engine/hardware-support\"\n }, \"is available.\")), mdx(\"p\", null, \"We are open to opportunities to expand our support footprint for different CPU-based processor architectures, based on\\nmarket adoption and deep learning use cases.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you run on ARM architecture?\")), mdx(\"p\", null, \"We are actively working on ARM support and it\\u2019s slated for release late-2022. We would like to hear your use cases and keep you in the\\nloop! \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/contact/\"\n }, \"Contact us to continue the conversation.\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"To what use cases is the Neural Magic Platform best suited?\")), mdx(\"p\", null, \"We focus on the models and use cases related to computer vision and NLP due to cost sensitivity and both real time and throughput constraints.\\nThe belief now is GPUs are required for deployment.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"What types of models does Neural Magic support?\")), mdx(\"p\", null, \"Today, we offer support for CNN-based computer vision models, specifically classification and object detection model types.\\nNLP models like BERT are also available. We are continuously adding models to \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparsezoo\"\n }, \"our supported model list and SparseZoo.\"), \"\\nAdditionally, we are investigating model architectures beyond computer vision.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Is dynamic shape supported?\")), mdx(\"p\", null, \"Dynamic shape is currently not supported; be sure to use models with fixed inputs and compile the model for a particular batch size.\\nDynamic shape and dynamic batch sizes are on the Neural Magic roadmap; \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/subscribe/\"\n }, \"subscribe for updates.\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Can multiple model inferences be executed?\")), mdx(\"p\", null, \"Model inferences are executed as a single stream by default; concurrent execution \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deepsparse-engine/scheduler\"\n }, \"can be enabled depending\\non the engine execution strategy.\")), mdx(\"hr\", null), mdx(\"h2\", null, \"Benchmarking FAQs\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you have benchmarks to compare and contrast?\")), mdx(\"p\", null, \"Yes. Check out our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/blog/neural-magic-demo/\"\n }, \"benchmark demo video\"), \" or\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/contact/\"\n }, \"contact us\"), \" to discuss your particular performance requirements.\\nIf you\\u2019d rather observe performance for yourself, \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic\"\n }, \"head over to the Neural Magic GitHub repo\"), \"\\nto check out our tools and generate your own benchmarks in your environment.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you publish ML Perf inference benchmarks?\")), mdx(\"p\", null, \"Checkout ZDNet's coverage of our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.zdnet.com/article/neural-magics-sparsity-nvidias-hopper-and-alibabas-network-among-firsts-in-latest-mlperf-ai-benchmarks/\"\n }, \"results at ML Perf\"), \"!\"), mdx(\"hr\", null), mdx(\"h2\", null, \"Infrastructure FAQs\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Which instruction sets are supported and do we have to enable certain settings?\")), mdx(\"p\", null, \"AVX2, AVX-512, and VNNI. DeepSparse will automatically utilize the most effective available\\ninstructions for the task. Depending on your goals and hardware priorities, optimal performance can be found.\\nNeural Magic is happy to discuss your use cases and offer recommendations.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Are you suitable for edge deployments (i.e., in-store devices, cameras)?\")), mdx(\"p\", null, \"Yes, absolutely. We can run anywhere you have a CPU with x86 instructions, including on bare metal, in the cloud,\\non-prem, or at the edge. Additionally, our model optimization tools are able to reduce the footprint of models\\nacross all architectures. We only guarantee performance in DeepSparse.\"), mdx(\"p\", null, \"We\\u2019d love to hear from users highly interested in ML performance. If you want to chat about your use cases\\nor how others are leveraging the Neural Magic Platform, \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/contact/\"\n }, \"please contact us.\"), \"\\nOr simply head over to the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic\"\n }, \"Neural Magic GitHub repo\"), \" and check out our tools.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you have available solutions or applications on the Microsoft/Azure platform?\")), mdx(\"p\", null, \"We deploy extremely easily. We are completely infrastructure-agnostic. As long as it has the \\u201Cright\\u201D CPUs\\n(e.g., AVX2 or AVX-512) we can run on any cloud platform, including Azure!\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Can the inference engine run on Kubernetes? How do you containerize and take advantage of underlying infrastructure?\")), mdx(\"p\", null, \"DeepSparse becomes a component of your model serving solution. As a result, it can\\nsimply plug into an existing CI/CD deployment pipeline. How you deploy, where you deploy, and what you deploy on\\nbecomes abstracted to DeepSparse so you can tailor your experiences. For example, you can run the\\nDeepSparse on a CPU VM environment, deployed via a Docker file and managed through a Kubernetes environment.\"), mdx(\"hr\", null), mdx(\"h2\", null, \"Model Compression FAQs\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Can you comment on how you do pruning and effects on accuracy?\")), mdx(\"p\", null, \"Neural networks are extremely over-parameterized, allowing most weights to be iteratively removed from the network\\nwithout effect on accuracy. Eventually, though, pruning will begin affecting the overall capacity of the network,\\nthe degree of which varies based on the use case. However, this is something entirely under the data scientist\\ncontrol to choose whether to recover fully or to prune more for even better performance.\"), mdx(\"p\", null, \"For example, Neural Magic has been successful in removing 95% of ResNet-50 weights with no loss in accuracy.\\nFor more background on techniques that have informed our methodologies, check out this paper co-written by\\nNeural Magic, \", mdx(\"em\", {\n parentName: \"p\"\n }, mdx(\"a\", {\n parentName: \"em\",\n \"href\": \"https://arxiv.org/abs/2004.14340\"\n }, \"WoodFisher: Efficient Second-Order Approximation for Neural Network Compression.\"))), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"When does sparsification actually happen?\")), mdx(\"p\", null, \"In a scenario in which you want to sparsify and then run your own model with DeepSparse, you would first\\nsparsify your model to achieve the desired level of performance and accuracy using Neural Magic\\u2019s \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparseml\"\n }, \"SparseML\"), \" tooling.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"What does the sparsification process look like?\")), mdx(\"p\", null, \"Neural Magic\\u2019s Sparsify and SparseML tooling, at its core, uses well-established state-of-the-art research principles such as\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/blog/pruning-gmp/\"\n }, \"Gradual Magnitude Pruning\"), \" (GMP) to sparsify models. This is an iterative process\\nin which groups of important weights are pruned away and then the network is allowed to recover. To significantly simplify the process,\\nwe offer tools and guidance for you to achieve the best performance possible. To peruse research papers contributed by Neural Magic\\nstaff, \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/resources/technical-papers/\"\n }, \"check them out.\"), \" Or head over to the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic\"\n }, \"Neural Magic GitHub repo\"), \"\\nto get started!\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"How does sparsification work in relation to TensorFlow?\")), mdx(\"p\", null, \"Today, we are able to sparsify models trained in popular deep learning libraries like TensorFlow. Our unique approach works with the\\noutput supplied by the model library and provides layer sparsification techniques that then can be compiled in the existing library\\nframework, within the user environment.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"When using your software to transfer learn, what about other hyperparameters? Are you just freezing other layers?\")), mdx(\"p\", null, \"For transfer learning, our tooling allows you to save the sparse architecture learned from larger datasets. Other\\nhyperparameters are fully under your control and allow you the flexibility to easily freeze layers as well.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you support INT8 and INT16 (quantized) operations?\")), mdx(\"p\", null, \"DeepSparse runs at FP32 and has support for INT8. With Intel Cascade Lake generation chips and later,\\nIntel CPUs include VNNI instructions and support both INT8 and INT16 operations. On these machines, performance improvements\\nfrom quantization will be greater. DeepSparse has INT8 support for the ONNX operators QLinearConv, QuantizeLinear,\\nDequantizeLinear, QLinearMatMul, and MatMulInteger. Our engine also supports 8-bit QLinearAdd, an ONNX Runtime custom operator.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do you support FP16 (half precision) and BF16 operations?\")), mdx(\"p\", null, \"Neural Magic is looking to include both FP16 and BF16 on our roadmap in the near future.\"), mdx(\"hr\", null), mdx(\"h2\", null, \"Runtime FAQs\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Do users have to do any model conversion before using DeepSparse?\")), mdx(\"p\", null, \"DeepSparse executes on an ONNX (Open Neural Network Exchange) representation of a deep learning model.\\nOur software allows you to produce an ONNX representation. If working with PyTorch, we use the built-in ONNX\\nexport and for TensorFlow, we convert from a standard exported protobuf file to ONNX. Outside of those frameworks,\\nyou would need to convert your model to ONNX first before passing it to DeepSparse.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Why is ONNX the file format used by Neural Magic?\")), mdx(\"p\", null, \"ONNX (Open Neural Network Exchange) is emerging as a standard, open-source format for model representation.\\nBased on the breadth of vendors supporting ONNX as well as the health of open-source community contributions,\\nwe believe ONNX offers a compelling solution for the market.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Are your users using ONNX runtime already?\")), mdx(\"p\", null, \"End users are using a wide variety of runtimes, both open source and proprietary. Neural Magic is focused on\\nensuring we are open and flexible, to allow our users to achieve deep learning performance regardless of how\\nthey choose to build, deploy, and run their models.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"What is the accuracy loss, if any, on the numbers Neural Magic demonstrates?\")), mdx(\"p\", null, \"Results will depend on your use case and specific requirements. We are capable of maintaining 100% baseline accuracy.\\nIn cases where accuracy is not as important as performance, you can use our model optimization tools to further speed\\nup the model at the expense of accuracy and weigh the tradeoffs.\"), mdx(\"p\", null, \"If you need sparsification, we provide the tooling for tradeoffs between accuracy and performance based on your specific requirements.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"For the runtime engine, is Neural Magic modifying the architecture in any way or just optimizing the instruction set at that level?\")), mdx(\"p\", null, \"Specifically for sparsification, our software keeps the architecture intact and changes the weights. For running dense, we do not change anything about the model.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"For a CPU are you using all the cores?\")), mdx(\"p\", null, \"DeepSparse optimizes \", mdx(\"em\", {\n parentName: \"p\"\n }, \"how\"), \" the model is run on the infrastructure resources applied to it. But, Neural\\nMagic does not optimize for the number of cores. You are in control to specify how much of the system Neural Magic will use and run on.\\nDepending on your goals (latency, throughput, and cost constraints), you can optimize your pipeline for maximum efficiency.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#faqs","title":"FAQs","items":[{"url":"#general-product-faqs","title":"General Product FAQs"},{"url":"#benchmarking-faqs","title":"Benchmarking FAQs"},{"url":"#infrastructure-faqs","title":"Infrastructure FAQs"},{"url":"#model-compression-faqs","title":"Model Compression FAQs"},{"url":"#runtime-faqs","title":"Runtime FAQs"}]}]},"parent":{"relativePath":"details/faqs.mdx"},"frontmatter":{"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform","index":4000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/details/glossary/page-data.json b/page-data/details/glossary/page-data.json index e46f26fe6dc..9069090d9a2 100644 --- a/page-data/details/glossary/page-data.json +++ b/page-data/details/glossary/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/details/glossary","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","title":"Glossary","slug":"/details/glossary","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/details/glossary.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Glossary\",\n \"metaTitle\": \"Glossary\",\n \"metaDescription\": \"Glossary for the Neural Magic product\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Glossary\"), mdx(\"p\", null, \"The machine learning community includes a vast array of terminology that can have variations in meaning depending on context. This glossary is not intended as a comprehensive list, but rather a clarification of terms you may encounter with Neural Magic and machine learning.\"), mdx(\"table\", null, mdx(\"tr\", null, mdx(\"td\", null, \"AutoML\"), mdx(\"td\", null, \"Automated Machine Learning. Platform that aims to reduce or eliminate the need for skilled data scientists to build ML and deep learning models. Google AutoML, for example, is a suite of cloud-based ML products.\")), mdx(\"tr\", null, mdx(\"td\", null, \"AVX2\"), mdx(\"td\", null, \"Advanced Vector Extensions 2. Instruction set used for applications on an Intel CPU.\")), mdx(\"tr\", null, mdx(\"td\", null, \"AVX-512\"), mdx(\"td\", null, \"Advanced Vector Extensions. Instruction set on Intel CPUs that impacts compute, storage, and network instructions. AVX-512 yields higher performance for demanding computational tasks.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Cascade Lake Chips\"), mdx(\"td\", null, \"Intel CPU chips up to 28 cores that are improved for machine learning and added VNNI instructions. Cascade Lake Chips support FP16 and INT8 floating point operations.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Convolutional Neural Network (CNN)\"), mdx(\"td\", null, \"Artificial neural network used in image recognition and object detection as well as processing that is specifically designed to process pixel data.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Deep Learning (DL)\"), mdx(\"td\", null, \"Subset of machine learning in which artificial neural networks (algorithms inspired by the human brain) learn from large amounts of data.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Deep Learning Frameworks\"), mdx(\"td\", null, \"Interface, library, or tool that allows one to build deep learning models more easily and quickly without getting into details of underlying algorithms.\")), mdx(\"tr\", null, mdx(\"td\", null, \"DLRM\"), mdx(\"td\", null, \"Open-source Deep Learning Recommendation Model from Facebook.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Fully Connected Network\"), mdx(\"td\", null, \"Network in which every node in a layer (except the input and output layer) is connected to every node in the previous layer and following layer.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Image Classification\"), mdx(\"td\", null, \"Supervised learning problem to define a set of target classes (objects to identify in images) and train a model to recognize them using labeled example photos.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Image Segmentation\"), mdx(\"td\", null, \"In computer vision, the process of partitioning a digital image into multiple segments to simplify and/or change the representation of an image into something more meaningful and easier to analyze.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Inference\"), mdx(\"td\", null, \"Process of using a trained machine learning algorithm to make predictions (done by machine learning engineers).\")), mdx(\"tr\", null, mdx(\"td\", null, \"MobileNets\"), mdx(\"td\", null, \"A family of mobile-first computer vision models for TensorFlow, designed to effectively maximize accuracy while being mindful of the restricted resources for an on-device or embedded application.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Model pipelines\"), mdx(\"td\", null, \"In machine learning deployment, multiple models chained together to achieve business goals (such as a detection model to select regions from an image for a later visual search model).\")), mdx(\"tr\", null, mdx(\"td\", null, \"Model serving\"), mdx(\"td\", null, \"In machine learning deployment, makes serving of models less expensive and faster to run by better using resources on the machine.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Multilayer Perceptron (MLP)\"), mdx(\"td\", null, \"A feedforward artificial neural network (ANN) model, composed of more than one perceptron, that maps sets of input data onto a set of appropriate outputs.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Neural Network\"), mdx(\"td\", null, \"System of hardware and/or software patterned after the operation of neurons in the human brain.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Object Detection\"), mdx(\"td\", null, \"Categorization of an image based on the number of objects in the image and/or the location of the objects.\")), mdx(\"tr\", null, mdx(\"td\", null, \"ONNX\"), mdx(\"td\", null, \"Open Neural Network Exchange. Open-source inference engine that is a performance-focused complete scoring engine for ONNX models.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Quantization\"), mdx(\"td\", null, \"The process of approximating a neural network that uses floating-point numbers by a neural network of low bit width numbers. Quantization dramatically reduces the memory requirement and computational cost of using neural networks.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Recommendations\"), mdx(\"td\", null, \"Categorization of an image based on relevant suggestions. This class of machine learning algorithms finds similarity between different images.\")), mdx(\"tr\", null, mdx(\"td\", null, \"ResNet\"), mdx(\"td\", null, \"Image classification model that is structurally dense.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Sparsification\"), mdx(\"td\", null, \"A model optimization technique used to improve performance by reducing the number of nonperformance critical elements, vectors, and matrices.\")), mdx(\"tr\", null, mdx(\"td\", null, \"SSD\"), mdx(\"td\", null, \"Single Shot Detector. Convolutional neural network (CNN) algorithm for object detection that provides better balance between swiftness and precision. SSD runs CNN on an input image only one time and computes a feature map.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Structured pruning\"), mdx(\"td\", null, \"A method for compressing a neural network. Structured pruning alternates between removing channel connections and fine-tuning to reduce overall width of the network. Structured pruning severely limits the maximum sparsity that can be imposed on a network when compared with unstructured pruning.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Tensor\"), mdx(\"td\", null, \"The input to a convolutional layer. Tensor is a 3 or 4 dimensional representation of a 2D image.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Training\"), mdx(\"td\", null, \"The process of feeding an ML algorithm with data to help identify and learn good values for all attributes involved.\")), mdx(\"tr\", null, mdx(\"td\", null, \"U-Net\"), mdx(\"td\", null, \"Fully convolutional network that does image segmentation (originally designed for medical image segmentation). The U-Net goal is to predict each pixel class.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Unstructured pruning\"), mdx(\"td\", null, \"A method for compressing a neural network. Unstructured pruning removes individual weight connections from a trained network. Software like Neural Magic's DeepSparse Engine runs these pruned networks faster.\")), mdx(\"tr\", null, mdx(\"td\", null, \"VNNI\"), mdx(\"td\", null, \"Vector Neural Network Instructions. New versions of Intel's CPU chips are optimized with VNNI, making them faster and more efficient for certain types of machine learning applications.\")), mdx(\"tr\", null, mdx(\"td\", null, \"YOLO\"), mdx(\"td\", null, \"You Only Look Once. Open-source type of CNN method of object detection that can recognize objects in images and videos swiftly.\"))));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#glossary","title":"Glossary"}]},"parent":{"relativePath":"details/glossary.mdx"},"frontmatter":{"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/details/glossary","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","title":"Glossary","slug":"/details/glossary","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/details/glossary.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Glossary\",\n \"metaTitle\": \"Glossary\",\n \"metaDescription\": \"Glossary for the Neural Magic product\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Glossary\"), mdx(\"p\", null, \"The machine learning community includes a vast array of terminology that can have variations in meaning depending on context. This glossary is not intended as a comprehensive list, but rather a clarification of terms you may encounter with Neural Magic and machine learning.\"), mdx(\"table\", null, mdx(\"tr\", null, mdx(\"td\", null, \"AutoML\"), mdx(\"td\", null, \"Automated Machine Learning. Platform that aims to reduce or eliminate the need for skilled data scientists to build ML and deep learning models. Google AutoML, for example, is a suite of cloud-based ML products.\")), mdx(\"tr\", null, mdx(\"td\", null, \"AVX2\"), mdx(\"td\", null, \"Advanced Vector Extensions 2. Instruction set used for applications on an Intel CPU.\")), mdx(\"tr\", null, mdx(\"td\", null, \"AVX-512\"), mdx(\"td\", null, \"Advanced Vector Extensions. Instruction set on Intel CPUs that impacts compute, storage, and network instructions. AVX-512 yields higher performance for demanding computational tasks.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Cascade Lake Chips\"), mdx(\"td\", null, \"Intel CPU chips up to 28 cores that are improved for machine learning and added VNNI instructions. Cascade Lake Chips support FP16 and INT8 floating point operations.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Convolutional Neural Network (CNN)\"), mdx(\"td\", null, \"Artificial neural network used in image recognition and object detection as well as processing that is specifically designed to process pixel data.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Deep Learning (DL)\"), mdx(\"td\", null, \"Subset of machine learning in which artificial neural networks (algorithms inspired by the human brain) learn from large amounts of data.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Deep Learning Frameworks\"), mdx(\"td\", null, \"Interface, library, or tool that allows one to build deep learning models more easily and quickly without getting into details of underlying algorithms.\")), mdx(\"tr\", null, mdx(\"td\", null, \"DLRM\"), mdx(\"td\", null, \"Open-source Deep Learning Recommendation Model from Facebook.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Fully Connected Network\"), mdx(\"td\", null, \"Network in which every node in a layer (except the input and output layer) is connected to every node in the previous layer and following layer.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Image Classification\"), mdx(\"td\", null, \"Supervised learning problem to define a set of target classes (objects to identify in images) and train a model to recognize them using labeled example photos.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Image Segmentation\"), mdx(\"td\", null, \"In computer vision, the process of partitioning a digital image into multiple segments to simplify and/or change the representation of an image into something more meaningful and easier to analyze.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Inference\"), mdx(\"td\", null, \"Process of using a trained machine learning algorithm to make predictions (done by machine learning engineers).\")), mdx(\"tr\", null, mdx(\"td\", null, \"MobileNets\"), mdx(\"td\", null, \"A family of mobile-first computer vision models for TensorFlow, designed to effectively maximize accuracy while being mindful of the restricted resources for an on-device or embedded application.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Model pipelines\"), mdx(\"td\", null, \"In machine learning deployment, multiple models chained together to achieve business goals (such as a detection model to select regions from an image for a later visual search model).\")), mdx(\"tr\", null, mdx(\"td\", null, \"Model serving\"), mdx(\"td\", null, \"In machine learning deployment, makes serving of models less expensive and faster to run by better using resources on the machine.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Multilayer Perceptron (MLP)\"), mdx(\"td\", null, \"A feedforward artificial neural network (ANN) model, composed of more than one perceptron, that maps sets of input data onto a set of appropriate outputs.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Neural Network\"), mdx(\"td\", null, \"System of hardware and/or software patterned after the operation of neurons in the human brain.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Object Detection\"), mdx(\"td\", null, \"Categorization of an image based on the number of objects in the image and/or the location of the objects.\")), mdx(\"tr\", null, mdx(\"td\", null, \"ONNX\"), mdx(\"td\", null, \"Open Neural Network Exchange. Open-source inference engine that is a performance-focused complete scoring engine for ONNX models.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Quantization\"), mdx(\"td\", null, \"The process of approximating a neural network that uses floating-point numbers by a neural network of low bit width numbers. Quantization dramatically reduces the memory requirement and computational cost of using neural networks.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Recommendations\"), mdx(\"td\", null, \"Categorization of an image based on relevant suggestions. This class of machine learning algorithms finds similarity between different images.\")), mdx(\"tr\", null, mdx(\"td\", null, \"ResNet\"), mdx(\"td\", null, \"Image classification model that is structurally dense.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Sparsification\"), mdx(\"td\", null, \"A model optimization technique used to improve performance by reducing the number of nonperformance critical elements, vectors, and matrices.\")), mdx(\"tr\", null, mdx(\"td\", null, \"SSD\"), mdx(\"td\", null, \"Single Shot Detector. Convolutional neural network (CNN) algorithm for object detection that provides better balance between swiftness and precision. SSD runs CNN on an input image only one time and computes a feature map.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Structured pruning\"), mdx(\"td\", null, \"A method for compressing a neural network. Structured pruning alternates between removing channel connections and fine-tuning to reduce overall width of the network. Structured pruning severely limits the maximum sparsity that can be imposed on a network when compared with unstructured pruning.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Tensor\"), mdx(\"td\", null, \"The input to a convolutional layer. Tensor is a 3 or 4 dimensional representation of a 2D image.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Training\"), mdx(\"td\", null, \"The process of feeding an ML algorithm with data to help identify and learn good values for all attributes involved.\")), mdx(\"tr\", null, mdx(\"td\", null, \"U-Net\"), mdx(\"td\", null, \"Fully convolutional network that does image segmentation (originally designed for medical image segmentation). The U-Net goal is to predict each pixel class.\")), mdx(\"tr\", null, mdx(\"td\", null, \"Unstructured pruning\"), mdx(\"td\", null, \"A method for compressing a neural network. Unstructured pruning removes individual weight connections from a trained network. Software like Neural Magic's DeepSparse runs these pruned networks faster.\")), mdx(\"tr\", null, mdx(\"td\", null, \"VNNI\"), mdx(\"td\", null, \"Vector Neural Network Instructions. New versions of Intel's CPU chips are optimized with VNNI, making them faster and more efficient for certain types of machine learning applications.\")), mdx(\"tr\", null, mdx(\"td\", null, \"YOLO\"), mdx(\"td\", null, \"You Only Look Once. Open-source type of CNN method of object detection that can recognize objects in images and videos swiftly.\"))));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#glossary","title":"Glossary"}]},"parent":{"relativePath":"details/glossary.mdx"},"frontmatter":{"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/details/page-data.json b/page-data/details/page-data.json index 3a7ac963aa6..b8a4ea9261c 100644 --- a/page-data/details/page-data.json +++ b/page-data/details/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/details","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","title":"Details","slug":"/details","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/details.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Details\",\n \"metaTitle\": \"Details\",\n \"metaDescription\": \"Details\",\n \"index\": 5000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Details\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#details","title":"Details"}]},"parent":{"relativePath":"details.mdx"},"frontmatter":{"metaTitle":"Details","metaDescription":"Details","index":5000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/details","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","title":"Details","slug":"/details","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/details.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Details\",\n \"metaTitle\": \"Details\",\n \"metaDescription\": \"Details\",\n \"index\": 5000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Details\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#details","title":"Details"}]},"parent":{"relativePath":"details.mdx"},"frontmatter":{"metaTitle":"Details","metaDescription":"Details","index":5000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/details/research-papers/page-data.json b/page-data/details/research-papers/page-data.json index 9a032592642..af93e5ccd78 100644 --- a/page-data/details/research-papers/page-data.json +++ b/page-data/details/research-papers/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/details/research-papers","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","title":"Research Papers","slug":"/details/research-papers","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/details/research-papers.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Research Papers\",\n \"metaTitle\": \"Research Papers\",\n \"metaDescription\": \"Research Papers\",\n \"targetURL\": \"https://neuralmagic.com/resources/technical-papers/\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Research Papers\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#research-papers","title":"Research Papers"}]},"parent":{"relativePath":"details/research-papers.mdx"},"frontmatter":{"metaTitle":"Research Papers","metaDescription":"Research Papers","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/details/research-papers","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","title":"Research Papers","slug":"/details/research-papers","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/details/research-papers.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Research Papers\",\n \"metaTitle\": \"Research Papers\",\n \"metaDescription\": \"Research Papers\",\n \"targetURL\": \"https://neuralmagic.com/resources/technical-papers/\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Research Papers\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#research-papers","title":"Research Papers"}]},"parent":{"relativePath":"details/research-papers.mdx"},"frontmatter":{"metaTitle":"Research Papers","metaDescription":"Research Papers","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/deploy-a-model/cv-object-detection/page-data.json b/page-data/get-started/deploy-a-model/cv-object-detection/page-data.json index 5801fdc0a06..37fa8f56067 100644 --- a/page-data/get-started/deploy-a-model/cv-object-detection/page-data.json +++ b/page-data/get-started/deploy-a-model/cv-object-detection/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/deploy-a-model/cv-object-detection","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","title":"CV Object Detection","slug":"/get-started/deploy-a-model/cv-object-detection","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/deploy-a-model/cv-object-detection.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"CV Object Detection\",\n \"metaTitle\": \"Deploy an Object Detection Model\",\n \"metaDescription\": \"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploy an Object Detection Model\"), mdx(\"p\", null, \"This page walks through an example of deploying an object detection model with DeepSparse Server.\"), mdx(\"p\", null, \"The DeepSparse Server is a server wrapper around \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \", including the object detection pipeline. As such,\\nthe server provides and HTTP interface that accepts images and image files as inputs and outputs the labeled predictions.\\nWith all of this built on top of the DeepSparse Engine, the simplicity of servable pipelines is combined with GPU-class performance on CPUs for sparse models.\"), mdx(\"h2\", null, \"Install Requirements\"), mdx(\"p\", null, \"This example requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Server+YOLO Install\"), \".\"), mdx(\"h2\", null, \"Start the Server\"), mdx(\"p\", null, \"Before starting the server, the model must be set up in the format expected for DeepSparse \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \".\\nSee an example of how to setup \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" in the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"../../try-a-model\"\n }, \"Try a Model\"), \" section.\"), mdx(\"p\", null, \"Once the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" are set up, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.server\"), \" command launches a server with the model at \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_path\"), \" inside. The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" can either\\nbe a SparseZoo stub or a path to a local \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file.\"), mdx(\"p\", null, \"The command below shows how to start up the DeepSparse Server for a sparsified YOLOv5l model trained on the COCO dataset from the SparseZoo.\\nThe output confirms the server was started on port \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \":5543\"), \" with a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs\"), \" route for general info and a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/predict/from_files\"), \" route for inference.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.server \\\\\\n --task \\\"yolo\\\" \\\\\\n --model_path \\\"zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95\\\"\\n\\n> deepsparse.server.main INFO created FastAPI app for inference serving\\n> deepsparse.server.main INFO created general routes, visit `/docs` to view available\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.1.0 COMMUNITY EDITION (a436ca67) (release) (optimized) (system=avx512_vnni, binary=avx512)\\n> deepsparse.server.main INFO created route /predict\\n> deepsparse.server.main INFO created route /predict/from_files\\n> INFO:uvicorn.error:Started server process [31382]\\n> INFO:uvicorn.error:Waiting for application startup.\\n> INFO:uvicorn.error:Application startup complete.\\n> INFO:uvicorn.error:Uvicorn running on http://0.0.0.0:5543 (Press CTRL+C to quit)\\n\")), mdx(\"h2\", null, \"View the Request Specs\"), mdx(\"p\", null, \"As noted in the startup command, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs\"), \" route was created; it contains OpenAPI specs and definitions for the expected inputs and responses.\\nVisiting the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"http://localhost:5543/docs\"), \" in a browser shows the available routes on the server.\\nThe important one for object detection is the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/predict/from_files\"), \" POST route which takes the form of a standard files argument.\\nThe files argument enables uploading one or more image files for object detection processing.\"), mdx(\"h2\", null, \"Make a Request\"), mdx(\"p\", null, \"With the expected input payload and method type defined, any HTTP request package can be used to make the request.\"), mdx(\"p\", null, \"First, a CURL request is made to download a sample image for use with the sample request.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg\\n\")), mdx(\"p\", null, \"Next, for simplicity and generality, the Python requests package is used to make a POST method request to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/predict/from_files\"), \" pathway on \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"localhost:5543\"), \" with the downloaded file.\\nThe predicted outputs can then be printed out or used in a later pipeline.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\nimport json\\n\\nresp = requests.post(\\n url=\\\"http://localhost:5543/predict/from_files\\\",\\n files=[('request', open('basilica.jpg', 'rb'))]\\n)\\nprint(resp.text)\\n\\n> {\\\"predictions\\\":[[[175.6397705078125,487.64117431640625,346.1619873046875,616.2821655273438,0.8640249371528625,3.0],...\\n\")), mdx(\"p\", null, \"After that request completes, the server will also log the request as the following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"> INFO:uvicorn.error:Uvicorn running on http://0.0.0.0:5543 (Press CTRL+C to quit)\\n> INFO: 127.0.0.1:50604 - \\\"POST /predict/from_files HTTP/1.1\\\" 200 OK\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploy-an-object-detection-model","title":"Deploy an Object Detection Model","items":[{"url":"#install-requirements","title":"Install Requirements"},{"url":"#start-the-server","title":"Start the Server"},{"url":"#view-the-request-specs","title":"View the Request Specs"},{"url":"#make-a-request","title":"Make a Request"}]}]},"parent":{"relativePath":"get-started/deploy-a-model/cv-object-detection.mdx"},"frontmatter":{"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/get-started/deploy-a-model/cv-object-detection","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","title":"CV Object Detection","slug":"/get-started/deploy-a-model/cv-object-detection","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/deploy-a-model/cv-object-detection.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"CV Object Detection\",\n \"metaTitle\": \"Deploy an Object Detection Model\",\n \"metaDescription\": \"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploy an Object Detection Model\"), mdx(\"p\", null, \"This page walks through an example of deploying an object detection model with DeepSparse Server.\"), mdx(\"p\", null, \"DeepSparse Server is a server wrapper around \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \", including the object detection pipeline. As such,\\nthe server provides and HTTP interface that accepts images and image files as inputs and outputs the labeled predictions.\\nIn this way, DeepSparse combines the simplicity of servable pipelines with GPU-class performance on CPUs for sparse models.\"), mdx(\"h2\", null, \"Install Requirements\"), mdx(\"p\", null, \"This example requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Server+YOLO Install\"), \".\"), mdx(\"h2\", null, \"Start the Server\"), mdx(\"p\", null, \"Before starting the server, the model must be set up in the format expected for DeepSparse \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \".\\nSee an example of how to setup \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" in the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"../../use-a-model\"\n }, \"Use a Model\"), \" section.\"), mdx(\"p\", null, \"Once the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" are set up, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.server\"), \" command launches a server with the model at \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_path\"), \" inside. The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" can either\\nbe a SparseZoo stub or a path to a local \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file.\"), mdx(\"p\", null, \"The command below shows how to start up DeepSparse Server for a sparsified YOLOv5l model trained on the COCO dataset from the SparseZoo.\\nThe output confirms the server was started on port \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \":5543\"), \" with a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs\"), \" route for general info and a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/predict/from_files\"), \" route for inference.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.server \\\\\\n --task \\\"yolo\\\" \\\\\\n --model_path \\\"zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95\\\"\\n\\n> deepsparse.server.main INFO created FastAPI app for inference serving\\n> deepsparse.server.main INFO created general routes, visit `/docs` to view available\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.1.0 COMMUNITY EDITION (a436ca67) (release) (optimized) (system=avx512_vnni, binary=avx512)\\n> deepsparse.server.main INFO created route /predict\\n> deepsparse.server.main INFO created route /predict/from_files\\n> INFO:uvicorn.error:Started server process [31382]\\n> INFO:uvicorn.error:Waiting for application startup.\\n> INFO:uvicorn.error:Application startup complete.\\n> INFO:uvicorn.error:Uvicorn running on http://0.0.0.0:5543 (Press CTRL+C to quit)\\n\")), mdx(\"h2\", null, \"View the Request Specs\"), mdx(\"p\", null, \"As noted in the startup command, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs\"), \" route was created; it contains OpenAPI specs and definitions for the expected inputs and responses.\\nVisiting the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"http://localhost:5543/docs\"), \" in a browser shows the available routes on the server.\\nThe important one for object detection is the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/predict/from_files\"), \" POST route which takes the form of a standard files argument.\\nThe files argument enables uploading one or more image files for object detection processing.\"), mdx(\"h2\", null, \"Make a Request\"), mdx(\"p\", null, \"With the expected input payload and method type defined, any HTTP request package can be used to make the request.\"), mdx(\"p\", null, \"First, a CURL request is made to download a sample image for use with the sample request.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg\\n\")), mdx(\"p\", null, \"Next, for simplicity and generality, the Python requests package is used to make a POST method request to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/predict/from_files\"), \" pathway on \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"localhost:5543\"), \" with the downloaded file.\\nThe predicted outputs can then be printed out or used in a later pipeline.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\nimport json\\n\\nresp = requests.post(\\n url=\\\"http://localhost:5543/predict/from_files\\\",\\n files=[('request', open('basilica.jpg', 'rb'))]\\n)\\nprint(resp.text)\\n\\n> {\\\"predictions\\\":[[[175.6397705078125,487.64117431640625,346.1619873046875,616.2821655273438,0.8640249371528625,3.0],...\\n\")), mdx(\"p\", null, \"After that request completes, the server will also log the request as the following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"> INFO:uvicorn.error:Uvicorn running on http://0.0.0.0:5543 (Press CTRL+C to quit)\\n> INFO: 127.0.0.1:50604 - \\\"POST /predict/from_files HTTP/1.1\\\" 200 OK\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploy-an-object-detection-model","title":"Deploy an Object Detection Model","items":[{"url":"#install-requirements","title":"Install Requirements"},{"url":"#start-the-server","title":"Start the Server"},{"url":"#view-the-request-specs","title":"View the Request Specs"},{"url":"#make-a-request","title":"Make a Request"}]}]},"parent":{"relativePath":"get-started/deploy-a-model/cv-object-detection.mdx"},"frontmatter":{"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/deploy-a-model/nlp-text-classification/page-data.json b/page-data/get-started/deploy-a-model/nlp-text-classification/page-data.json index 83dfc465ad4..c99ad284c51 100644 --- a/page-data/get-started/deploy-a-model/nlp-text-classification/page-data.json +++ b/page-data/get-started/deploy-a-model/nlp-text-classification/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/deploy-a-model/nlp-text-classification","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","title":"NLP Text Classification","slug":"/get-started/deploy-a-model/nlp-text-classification","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/deploy-a-model/nlp-text-classification.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"NLP Text Classification\",\n \"metaTitle\": \"Deploy a Text Classification Model\",\n \"metaDescription\": \"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploy a Text Classification Model\"), mdx(\"p\", null, \"This page walks through an example of deploying a text-classification model with DeepSparse Server.\"), mdx(\"p\", null, \"The DeepSparse Server is a server wrapper around \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \", including the sentiment analysis pipeline. As such,\\nthe server provides an HTTP interface that accepts raw text sequences as inputs and responds with the labeled predictions.\\nWith all of this built on top of the DeepSparse Engine, the simplicity of servable pipelines is combined with GPU-class performance on CPUs for sparse models.\"), mdx(\"h2\", null, \"Install Requirements\"), mdx(\"p\", null, \"This example requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Server Install\"), \".\"), mdx(\"h2\", null, \"Start the Server\"), mdx(\"p\", null, \"Before starting the server, the model must be set up in the format expected for DeepSparse \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \".\\nSee an example of how to set up \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" in the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"../../try-a-model\"\n }, \"Try a Model\"), \" section.\"), mdx(\"p\", null, \"Once the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" are set up, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.server\"), \" command launches a server with the model at \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_path\"), \" inside. The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" can either\\nbe a SparseZoo stub or a local model path.\"), mdx(\"p\", null, \"The command below starts up the DeepSparse Server for a sparsified DistilBERT model (from the SparseZoo) trained on the SST2 dataset for sentiment analysis.\\nThe output confirms the server was started on port \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \":5543\"), \" with a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs\"), \" route for general info and a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/predict\"), \" route for inference.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.server \\\\\\n --task \\\"sentiment-analysis\\\" \\\\\\n --model_path \\\"zoo:nlp/sentiment_analysis/distilbert-none/pytorch/huggingface/sst2/pruned80_quant-none-vnni\\\"\\n\\n> deepsparse.server.main INFO created FastAPI app for inference serving\\n> deepsparse.server.main INFO created general routes, visit `/docs` to view available\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.1.0 COMMUNITY EDITION (a436ca67) (release) (optimized) (system=avx512_vnni, binary=avx512)\\n> deepsparse.server.main INFO created route /predict\\n> INFO:deepsparse.server.main:created route /predict\\n> INFO:uvicorn.error:Started server process [23146]\\n> INFO:uvicorn.error:Waiting for application startup.\\n> INFO:uvicorn.error:Application startup complete.\\n> INFO:uvicorn.error:Uvicorn running on http://0.0.0.0:5543 (Press CTRL+C to quit)\\n\")), mdx(\"h2\", null, \"View the Request Specs\"), mdx(\"p\", null, \"As noted in the startup command, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs route\"), \" was created; it contains OpenAPI specs and definitions for the expected inputs and responses.\\nVisiting the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"http://localhost:5543/docs\"), \" in a browser shows the available routes on the server.\\nFor the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/predict\"), \" route specifically, it shows the following as the expected input schema:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-text\"\n }, \"TextClassificationInput{\\n description: Schema for inputs to text_classification pipelines\\n sequences* Sequences{\\n description: A string or List of strings representing input totext_classification task\\n anyOf ->\\n [[string]]\\n [string]\\n string\\n }\\n}\\n\")), mdx(\"p\", null, \"Utilizing the request spec, a valid input for the sentiment analysis would be:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-json\"\n }, \"{\\n \\\"sequences\\\": [\\n \\\"Snorlax loves my Tesla!\\\"\\n ]\\n}\\n\")), mdx(\"h2\", null, \"Make a Request\"), mdx(\"p\", null, \"With the expected input payload and method type defined, any HTTP request package can be used to make the request.\\nFor simplicity and generality, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"curl\"), \" command is used.\"), mdx(\"p\", null, \"The code below makes a POST method request to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/predict\"), \" pathway on \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"localhost:5543\"), \" with the JSON payload created above.\\nThe predicted outputs from the model are then printed in the terminal.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ curl 'http://localhost:5543/predict' \\\\\\n -XPOST \\\\\\n -H 'Content-type: application/json' \\\\\\n -d '{\\\"sequences\\\": [\\\"Snorlax loves my Tesla!\\\"]}'\\n\\n> {\\\"labels\\\":[\\\"positive\\\"],\\\"scores\\\":[0.992590069770813]}\\n\")), mdx(\"p\", null, \"After that request completes, the server will also log the request as the following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"> INFO:uvicorn.error:Uvicorn running on http://0.0.0.0:5543 (Press CTRL+C to quit)\\n> INFO: 127.0.0.1:50588 - \\\"POST /predict HTTP/1.1\\\" 200 OK\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploy-a-text-classification-model","title":"Deploy a Text Classification Model","items":[{"url":"#install-requirements","title":"Install Requirements"},{"url":"#start-the-server","title":"Start the Server"},{"url":"#view-the-request-specs","title":"View the Request Specs"},{"url":"#make-a-request","title":"Make a Request"}]}]},"parent":{"relativePath":"get-started/deploy-a-model/nlp-text-classification.mdx"},"frontmatter":{"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/get-started/deploy-a-model/nlp-text-classification","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","title":"NLP Text Classification","slug":"/get-started/deploy-a-model/nlp-text-classification","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/deploy-a-model/nlp-text-classification.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"NLP Text Classification\",\n \"metaTitle\": \"Deploy a Text Classification Model\",\n \"metaDescription\": \"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploy a Text Classification Model\"), mdx(\"p\", null, \"This page walks through an example of deploying a text-classification model with DeepSparse Server.\"), mdx(\"p\", null, \"DeepSparse Server is a server wrapper around \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \", including the sentiment analysis pipeline. As such,\\nthe server provides an HTTP interface that accepts raw text sequences as inputs and responds with the labeled predictions.\\nIn this way, DeepSparse combines the simplicity of servable pipelines with GPU-class performance on CPUs for sparse models.\"), mdx(\"h2\", null, \"Install Requirements\"), mdx(\"p\", null, \"This example requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Server Install\"), \".\"), mdx(\"h2\", null, \"Start the Server\"), mdx(\"p\", null, \"Before starting the server, the model must be set up in the format expected for DeepSparse \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \".\\nSee an example of how to set up \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" in the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"../../use-a-model\"\n }, \"Use a Model\"), \" section.\"), mdx(\"p\", null, \"Once the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" are set up, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.server\"), \" command launches a server with the model at \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_path\"), \" inside. The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" can either\\nbe a SparseZoo stub or a local model path.\"), mdx(\"p\", null, \"The command below starts up DeepSparse Server for a sparsified DistilBERT model (from the SparseZoo) trained on the SST2 dataset for sentiment analysis.\\nThe output confirms the server was started on port \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \":5543\"), \" with a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs\"), \" route for general info and a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/predict\"), \" route for inference.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.server \\\\\\n --task \\\"sentiment-analysis\\\" \\\\\\n --model_path \\\"zoo:nlp/sentiment_analysis/distilbert-none/pytorch/huggingface/sst2/pruned80_quant-none-vnni\\\"\\n\\n> deepsparse.server.main INFO created FastAPI app for inference serving\\n> deepsparse.server.main INFO created general routes, visit `/docs` to view available\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.1.0 COMMUNITY EDITION (a436ca67) (release) (optimized) (system=avx512_vnni, binary=avx512)\\n> deepsparse.server.main INFO created route /predict\\n> INFO:deepsparse.server.main:created route /predict\\n> INFO:uvicorn.error:Started server process [23146]\\n> INFO:uvicorn.error:Waiting for application startup.\\n> INFO:uvicorn.error:Application startup complete.\\n> INFO:uvicorn.error:Uvicorn running on http://0.0.0.0:5543 (Press CTRL+C to quit)\\n\")), mdx(\"h2\", null, \"View the Request Specs\"), mdx(\"p\", null, \"As noted in the startup command, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs route\"), \" was created; it contains OpenAPI specs and definitions for the expected inputs and responses.\\nVisiting the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"http://localhost:5543/docs\"), \" in a browser shows the available routes on the server.\\nFor the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/predict\"), \" route specifically, it shows the following as the expected input schema:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-text\"\n }, \"TextClassificationInput{\\n description: Schema for inputs to text_classification pipelines\\n sequences* Sequences{\\n description: A string or List of strings representing input totext_classification task\\n anyOf ->\\n [[string]]\\n [string]\\n string\\n }\\n}\\n\")), mdx(\"p\", null, \"Utilizing the request spec, a valid input for the sentiment analysis would be:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-json\"\n }, \"{\\n \\\"sequences\\\": [\\n \\\"Snorlax loves my Tesla!\\\"\\n ]\\n}\\n\")), mdx(\"h2\", null, \"Make a Request\"), mdx(\"p\", null, \"With the expected input payload and method type defined, any HTTP request package can be used to make the request.\\nFor simplicity and generality, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"curl\"), \" command is used.\"), mdx(\"p\", null, \"The code below makes a POST method request to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/predict\"), \" pathway on \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"localhost:5543\"), \" with the JSON payload created above.\\nThe predicted outputs from the model are then printed in the terminal.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ curl 'http://localhost:5543/predict' \\\\\\n -XPOST \\\\\\n -H 'Content-type: application/json' \\\\\\n -d '{\\\"sequences\\\": [\\\"Snorlax loves my Tesla!\\\"]}'\\n\\n> {\\\"labels\\\":[\\\"positive\\\"],\\\"scores\\\":[0.992590069770813]}\\n\")), mdx(\"p\", null, \"After that request completes, the server will also log the request as the following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"> INFO:uvicorn.error:Uvicorn running on http://0.0.0.0:5543 (Press CTRL+C to quit)\\n> INFO: 127.0.0.1:50588 - \\\"POST /predict HTTP/1.1\\\" 200 OK\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploy-a-text-classification-model","title":"Deploy a Text Classification Model","items":[{"url":"#install-requirements","title":"Install Requirements"},{"url":"#start-the-server","title":"Start the Server"},{"url":"#view-the-request-specs","title":"View the Request Specs"},{"url":"#make-a-request","title":"Make a Request"}]}]},"parent":{"relativePath":"get-started/deploy-a-model/nlp-text-classification.mdx"},"frontmatter":{"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/deploy-a-model/page-data.json b/page-data/get-started/deploy-a-model/page-data.json index d20d7ab2ce3..e50ab2cf73f 100644 --- a/page-data/get-started/deploy-a-model/page-data.json +++ b/page-data/get-started/deploy-a-model/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/deploy-a-model","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","title":"Deploy a Model","slug":"/get-started/deploy-a-model","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/deploy-a-model.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Deploy a Model\",\n \"metaTitle\": \"Deploy a Model\",\n \"metaDescription\": \"Deploy a model with the DeepSparse server for easy and performant ML deployments\",\n \"index\": 5000\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploy a Model\"), mdx(\"p\", null, \"The DeepSparse package comes pre-installed with a server to enable easy and performant model deployments.\\nThe server provides an HTTP interface to communicate and run inferences on the deployed model rather than the Python APIs or CLIs.\\nIt is a production-ready model serving solution built on Neural Magic's sparsification solutions resulting in faster and cheaper deployments.\"), mdx(\"p\", null, \"The inference server is built with performance and flexibility in mind, with support for multiple models and multiple simultaneous streams.\\nIt is also designed to be a plug-and-play solution for many ML Ops deployment solutions, including Kubernetes and AWS SageMaker.\"), mdx(\"h2\", null, \"Example Use Cases\"), mdx(\"p\", null, \"The docs below walk through use cases leveraging DeepSparse Server for deployment.\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./nlp-text-classification\",\n heading: \"NLP Text Classification\",\n mdxType: \"LinkCard\"\n }, \"Example deployment for an NLP text classification use case utilizing HuggingFace Transformers.\"), mdx(LinkCard, {\n href: \"./cv-object-detection\",\n heading: \"CV Object Detection\",\n mdxType: \"LinkCard\"\n }, \"Example deployment for a CV object detection use case utilizing Ultralytics YOLOv5.\")), mdx(\"h2\", null, \"Other Use Cases\"), mdx(\"p\", null, \"More documentation, models, use cases, and examples are continually being added.\\nIf you don't see one you're interested in, search the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse\"\n }, \"DeepSparse Github repo\"), \", the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml\"\n }, \"SparseML Github repo\"), \", the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com/\"\n }, \"SparseZoo website\"), \", or ask in the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Neural Magic Slack\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploy-a-model","title":"Deploy a Model","items":[{"url":"#example-use-cases","title":"Example Use Cases"},{"url":"#other-use-cases","title":"Other Use Cases"}]}]},"parent":{"relativePath":"get-started/deploy-a-model.mdx"},"frontmatter":{"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments","index":5000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/get-started/deploy-a-model","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","title":"Deploy a Model","slug":"/get-started/deploy-a-model","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/deploy-a-model.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Deploy a Model\",\n \"metaTitle\": \"Deploy a Model\",\n \"metaDescription\": \"Deploy a model with DeepSparse Server for easy and performant ML deployments\",\n \"index\": 5000\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploy a Model\"), mdx(\"p\", null, \"DeepSparse comes pre-installed with a server to enable easy and performant model deployments.\\nThe server provides an HTTP interface to communicate and run inferences on the deployed model rather than the Python APIs or CLIs.\\nIt is a production-ready model serving solution built on Neural Magic's sparsification solutions resulting in faster and cheaper deployments.\"), mdx(\"p\", null, \"The inference server is built with performance and flexibility in mind, with support for multiple models and multiple simultaneous streams.\\nIt is also designed to be a plug-and-play solution for many ML Ops deployment solutions, including Kubernetes and AWS SageMaker.\"), mdx(\"h2\", null, \"Example Use Cases\"), mdx(\"p\", null, \"The docs below walk through use cases leveraging DeepSparse Server for deployment.\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./nlp-text-classification\",\n heading: \"NLP Text Classification\",\n mdxType: \"LinkCard\"\n }, \"Example deployment for an NLP text classification use case utilizing HuggingFace Transformers.\"), mdx(LinkCard, {\n href: \"./cv-object-detection\",\n heading: \"CV Object Detection\",\n mdxType: \"LinkCard\"\n }, \"Example deployment for a CV object detection use case utilizing Ultralytics YOLOv5.\")), mdx(\"h2\", null, \"Other Use Cases\"), mdx(\"p\", null, \"More documentation, models, use cases, and examples are continually being added.\\nIf you don't see one you're interested in, search the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse\"\n }, \"DeepSparse Github repo\"), \", the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml\"\n }, \"SparseML Github repo\"), \", the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com/\"\n }, \"SparseZoo website\"), \", or ask in the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Neural Magic Slack\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploy-a-model","title":"Deploy a Model","items":[{"url":"#example-use-cases","title":"Example Use Cases"},{"url":"#other-use-cases","title":"Other Use Cases"}]}]},"parent":{"relativePath":"get-started/deploy-a-model.mdx"},"frontmatter":{"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments","index":5000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/install/deepsparse-ent/page-data.json b/page-data/get-started/install/deepsparse-ent/page-data.json index 3ce876d5a0a..85c1d62cde3 100644 --- a/page-data/get-started/install/deepsparse-ent/page-data.json +++ b/page-data/get-started/install/deepsparse-ent/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/install/deepsparse-ent","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","title":"DeepSparse Enterprise","slug":"/get-started/install/deepsparse-ent","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/install/deepsparse-ent.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"DeepSparse Enterprise\",\n \"metaTitle\": \"DeepSparse Enterprise Installation\",\n \"metaDescription\": \"Installation instructions for the DeepSparse Engine enabling performant neural network deployments\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"DeepSparse Enterprise Edition Installation\"), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/deepsparse-ent\"\n }, \"DeepSparse Engine\"), \" enables GPU-class performance on CPUs, leveraging sparsity within models to reduce FLOPs and the unique cache hierarchy on CPUs to reduce memory movement.\\nThe engine accepts models in the open-source \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://onnx.ai/\"\n }, \"ONNX format\"), \", which are easily created from PyTorch and TensorFlow models.\"), mdx(\"p\", null, \"Currently, DeepSparse is tested on Python 3.7-3.10, ONNX 1.5.0-1.10.1, ONNX opset version 11+ and is \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://peps.python.org/pep-0513/\"\n }, \"manylinux compliant\"), \".\\nIt is limited to Linux systems running on x86 CPU architectures.\"), mdx(\"p\", null, \"The DeepSparse Engine is available in two editions:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/products/deepsparse\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"The Community Edition\")), \" is open-source and free for evaluation, research, and non-production use with our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/engine-license-agreement/\"\n }, \"Engine Community License\"), \".\"), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/products/deepsparse-ent\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"The Enterprise Edition\")), \" requires a Trial License or \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/master-software-license-and-service-agreement/\"\n }, \"can be fully licensed\"), \" for production, commercial applications.\")), mdx(\"h2\", null, \"General Install\"), mdx(\"p\", null, \"Use the following command to install with pip:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse-ent\\n\")), mdx(\"h2\", null, \"Server Install\"), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/use-cases/deploying-deepsparse/deepsparse-server\"\n }, \"DeepSparse Server\"), \" allows you to serve models and pipelines through an HTTP interface using the deepsparse.server CLI.\\nTo install, use the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse-ent[server]\\n\")), mdx(\"h2\", null, \"YOLO Install\"), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/use-cases/object-detection/deploying\"\n }, \"Ultralytics YOLOv5\"), \" models require extra dependencies for deployment.\\nTo use YOLO models, install with the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse-ent[yolo] # just yolo requirements\\npip install deepsparse-ent[yolo,server] # both yolo + server requirements\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deepsparse-enterprise-edition-installation","title":"DeepSparse Enterprise Edition Installation","items":[{"url":"#general-install","title":"General Install"},{"url":"#server-install","title":"Server Install"},{"url":"#yolo-install","title":"YOLO Install"}]}]},"parent":{"relativePath":"get-started/install/deepsparse-ent.mdx"},"frontmatter":{"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/get-started/install/deepsparse-ent","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","title":"DeepSparse Enterprise","slug":"/get-started/install/deepsparse-ent","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/install/deepsparse-ent.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"DeepSparse Enterprise\",\n \"metaTitle\": \"DeepSparse Enterprise Installation\",\n \"metaDescription\": \"Installation instructions for DeepSparse enabling performant neural network deployments\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"DeepSparse Enterprise Installation\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/deepsparse-ent\"\n }, \"DeepSparse Enterprise\"), \" enables GPU-class performance on CPUs.\"), mdx(\"p\", null, \"Currently, DeepSparse is tested on Python 3.7-3.10, ONNX 1.5.0-1.10.1, ONNX opset version 11+, and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://peps.python.org/pep-0513/\"\n }, \"manylinux compliant systems\"), \".\"), mdx(\"p\", null, \"We currently support x86 CPU architectures.\"), mdx(\"p\", null, \"DeepSparse is available in two versions:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/products/deepsparse\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"DeepSparse Community\")), \" is free for evaluation, research, and non-production use with our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/engine-license-agreement/\"\n }, \"DeepSparse Community License\"), \".\"), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/products/deepsparse-ent\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"DeepSparse Enterprise\")), \" requires a Trial License or \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/master-software-license-and-service-agreement/\"\n }, \"can be fully licensed\"), \" for production, commercial applications.\")), mdx(\"h2\", null, \"Installing DeepSparse Enterprise\"), mdx(\"p\", null, \"Use the following command to install with pip:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse-ent\\n\")), mdx(\"h2\", null, \"Installing the Server\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deploying-deepsparse/deepsparse-server\"\n }, \"DeepSparse Server\"), \" allows you to serve models and pipelines through an HTTP interface using the deepsparse.server CLI.\\nTo install, use the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse-ent[server]\\n\")), mdx(\"h2\", null, \"Installing YOLO\"), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/use-cases/object-detection/deploying\"\n }, \"Ultralytics YOLOv5\"), \" models require extra dependencies for deployment.\\nTo use YOLO models, install with the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse-ent[yolo] # just yolo requirements\\npip install deepsparse-ent[yolo,server] # both yolo + server requirements\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deepsparse-enterprise-installation","title":"DeepSparse Enterprise Installation","items":[{"url":"#installing-deepsparse-enterprise","title":"Installing DeepSparse Enterprise"},{"url":"#installing-the-server","title":"Installing the Server"},{"url":"#installing-yolo","title":"Installing YOLO"}]}]},"parent":{"relativePath":"get-started/install/deepsparse-ent.mdx"},"frontmatter":{"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/install/deepsparse/page-data.json b/page-data/get-started/install/deepsparse/page-data.json index b3a299026b6..d34d7cc61de 100644 --- a/page-data/get-started/install/deepsparse/page-data.json +++ b/page-data/get-started/install/deepsparse/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/install/deepsparse","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","title":"DeepSparse","slug":"/get-started/install/deepsparse","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/install/deepsparse.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"DeepSparse\",\n \"metaTitle\": \"DeepSparse Installation\",\n \"metaDescription\": \"Installation instructions for the DeepSparse Engine enabling performant neural network deployments\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"DeepSparse Community Edition Installation\"), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/deepsparse\"\n }, \"DeepSparse Engine\"), \" enables GPU-class performance on CPUs, leveraging sparsity within models to reduce FLOPs and the unique cache hierarchy on CPUs to reduce memory movement.\\nThe engine accepts models in the open-source \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://onnx.ai/\"\n }, \"ONNX format\"), \", which are easily created from PyTorch and TensorFlow models.\"), mdx(\"p\", null, \"Currently, DeepSparse is tested on Python 3.7-3.10, ONNX 1.5.0-1.10.1, ONNX opset version 11+ and is \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://peps.python.org/pep-0513/\"\n }, \"manylinux compliant\"), \".\\nIt is limited to Linux systems running on x86 CPU architectures.\"), mdx(\"p\", null, \"The DeepSparse Engine is available in two editions:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/products/deepsparse\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"The Community Edition\")), \" is open-source and free for evaluation, research, and non-production use with our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/engine-license-agreement/\"\n }, \"Engine Community License\"), \".\"), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/products/deepsparse-ent\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"The Enterprise Edition\")), \" requires a Trial License or \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/master-software-license-and-service-agreement/\"\n }, \"can be fully licensed\"), \" for production, commercial applications.\")), mdx(\"h2\", null, \"General Installation\"), mdx(\"p\", null, \"Use the following command to install the Community Edition with pip:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse\\n\")), mdx(\"h2\", null, \"Server Install\"), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/use-cases/deploying-deepsparse/deepsparse-server\"\n }, \"DeepSparse Server\"), \" allows you to serve models and pipelines through an HTTP interface using the deepsparse.server CLI.\\nTo install, use the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse[server]\\n\")), mdx(\"h2\", null, \"YOLO Install\"), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/use-cases/object-detection/deploying\"\n }, \"Ultralytics YOLOv5\"), \" models require extra dependencies for deployment.\\nTo use YOLO models, install with the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse[yolo] # just yolo requirements\\npip install deepsparse[yolo,server] # both yolo + server requirements\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deepsparse-community-edition-installation","title":"DeepSparse Community Edition Installation","items":[{"url":"#general-installation","title":"General Installation"},{"url":"#server-install","title":"Server Install"},{"url":"#yolo-install","title":"YOLO Install"}]}]},"parent":{"relativePath":"get-started/install/deepsparse.mdx"},"frontmatter":{"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/get-started/install/deepsparse","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","title":"DeepSparse Community","slug":"/get-started/install/deepsparse","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/install/deepsparse.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"DeepSparse Community\",\n \"metaTitle\": \"DeepSparse Community Installation\",\n \"metaDescription\": \"Installation instructions for DeepSparse enabling performant neural network deployments\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"DeepSparse Community Installation\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/deepsparse\"\n }, \"DeepSparse Community\"), \" enables GPU-class performance on commodity CPUs.\"), mdx(\"p\", null, \"Currently, DeepSparse is tested on Python 3.7-3.10, ONNX 1.5.0-1.10.1, ONNX opset version 11+ and is \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://peps.python.org/pep-0513/\"\n }, \"manylinux compliant\"), \".\"), mdx(\"p\", null, \"We currently support x86 CPU architectures.\"), mdx(\"p\", null, \"DeepSparse is available in two versions:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/products/deepsparse\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"DeepSparse Community\")), \" is free for evaluation, research, and non-production use with our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/engine-license-agreement/\"\n }, \"DeepSparse Community License\"), \".\"), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/products/deepsparse-ent\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"DeepSparse Enterprise\")), \" requires a Trial License or \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/master-software-license-and-service-agreement/\"\n }, \"can be fully licensed\"), \" for production, commercial applications.\")), mdx(\"h2\", null, \"General Install\"), mdx(\"p\", null, \"Use the following command to install DeepSparse Community with pip:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse\\n\")), mdx(\"h2\", null, \"Installing the Server\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deploying-deepsparse/deepsparse-server\"\n }, \"DeepSparse Server\"), \" allows you to serve models and pipelines through an HTTP interface using the deepsparse.server CLI.\\nTo install, use the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse[server]\\n\")), mdx(\"h2\", null, \"Installing YOLO\"), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/use-cases/object-detection/deploying\"\n }, \"Ultralytics YOLOv5\"), \" models require extra dependencies for deployment.\\nTo use YOLO models, install with the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse[yolo] # just yolo requirements\\npip install deepsparse[yolo,server] # both yolo + server requirements\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deepsparse-community-installation","title":"DeepSparse Community Installation","items":[{"url":"#general-install","title":"General Install"},{"url":"#installing-the-server","title":"Installing the Server"},{"url":"#installing-yolo","title":"Installing YOLO"}]}]},"parent":{"relativePath":"get-started/install/deepsparse.mdx"},"frontmatter":{"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/install/page-data.json b/page-data/get-started/install/page-data.json index 4dbfb2cf51b..8e92ce53586 100644 --- a/page-data/get-started/install/page-data.json +++ b/page-data/get-started/install/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/install","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","title":"Installation","slug":"/get-started/install","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/install.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Installation\",\n \"metaTitle\": \"Install Deep Sparse Platform\",\n \"metaDescription\": \"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo\",\n \"index\": 0\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Installation\"), mdx(\"p\", null, \"The Deep Sparse Platform is made up of core libraries that are available as Python APIs and CLIs.\\nAll Python APIs and CLIs are installed through pip utilizing \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://pypi.org/user/neuralmagic/\"\n }, \"PyPI\"), \".\\nIt is recommended to install in a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.python.org/3/library/venv.html\"\n }, \"virtual environment\"), \" to encapsulate your local environment.\"), mdx(\"h2\", null, \"Quick Start\"), mdx(\"p\", null, \"To begin using the Deep Sparse Platform, run the following commands which install standard setups for deployment with the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"../../products/deepsparse\"\n }, \"DeepSparse Engine\"), \" and model training/optimization with \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"../../products/sparseml\"\n }, \"SparseML\"), \":\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse[server] sparseml[torch,torchvision]\\n\")), mdx(\"h2\", null, \"Package Installations\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./deepsparse\",\n heading: \"DeepSparse\",\n mdxType: \"LinkCard\"\n }, \"Install the DeepSparse Community Edition for performant inference on CPUs.\"), mdx(LinkCard, {\n href: \"./deepsparse-ent\",\n heading: \"DeepSparse Enterprise\",\n mdxType: \"LinkCard\"\n }, \"Install the DeepSparse Enterprise Edition for performant inference on CPUs in production deployments.\"), mdx(LinkCard, {\n href: \"./sparseml\",\n heading: \"SparseML\",\n mdxType: \"LinkCard\"\n }, \"Install SparseML to apply SOTA sparsification algorithms to models easily.\"), mdx(LinkCard, {\n href: \"./sparsezoo\",\n heading: \"SparseZoo\",\n mdxType: \"LinkCard\"\n }, \"Install SparseZoo to download pre-sparsified models and recipes.\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#installation","title":"Installation","items":[{"url":"#quick-start","title":"Quick Start"},{"url":"#package-installations","title":"Package Installations"}]}]},"parent":{"relativePath":"get-started/install.mdx"},"frontmatter":{"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo","index":0,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/get-started/install","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","title":"Installation","slug":"/get-started/install","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/install.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Installation\",\n \"metaTitle\": \"Install Neural Magic Platform\",\n \"metaDescription\": \"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo\",\n \"index\": 0\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Installation\"), mdx(\"p\", null, \"The Neural Magic Platform contains several products: DeepSparse (available in two editions, Community and Enterprise), SparseML, and SparseZoo.\"), mdx(\"p\", null, \"Each package is installed with \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://pypi.org/user/neuralmagic/\"\n }, \"PyPI\"), \". It is recommended to install in\\na \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.python.org/3/library/venv.html\"\n }, \"virtual environment\"), \" to encapsulate your local environment.\"), mdx(\"h2\", null, \"Installing the Neural Magic Platform\"), mdx(\"p\", null, \"To begin using the Neural Magic Platform, run the following command, which installs standard setups for deployment with \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"../../products/deepsparse\"\n }, \"DeepSparse\"), \" and model training/optimization with \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"../../products/sparseml\"\n }, \"SparseML\"), \":\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse[server] sparseml[torch,torchvision]\\n\")), mdx(\"p\", null, \"Now, you are ready to install one of the Neural Magic products.\"), mdx(\"h2\", null, \"Installing Products\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./deepsparse\",\n heading: \"DeepSparse Community\",\n mdxType: \"LinkCard\"\n }, \"Install DeepSparse Community for performant inference on CPUs in dev or testing environments.\"), mdx(LinkCard, {\n href: \"./deepsparse-ent\",\n heading: \"DeepSparse Enterprise\",\n mdxType: \"LinkCard\"\n }, \"Install DeepSparse Enterprise for performant inference on CPUs in production deployments.\"), mdx(LinkCard, {\n href: \"./sparseml\",\n heading: \"SparseML\",\n mdxType: \"LinkCard\"\n }, \"Install SparseML to apply SOTA sparsification algorithms to models easily.\"), mdx(LinkCard, {\n href: \"./sparsezoo\",\n heading: \"SparseZoo\",\n mdxType: \"LinkCard\"\n }, \"Install SparseZoo to download pre-sparsified models and recipes.\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#installation","title":"Installation","items":[{"url":"#installing-the-neural-magic-platform","title":"Installing the Neural Magic Platform"},{"url":"#installing-products","title":"Installing Products"}]}]},"parent":{"relativePath":"get-started/install.mdx"},"frontmatter":{"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo","index":0,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/install/sparseml/page-data.json b/page-data/get-started/install/sparseml/page-data.json index 55121465c82..7d231ccd6a0 100644 --- a/page-data/get-started/install/sparseml/page-data.json +++ b/page-data/get-started/install/sparseml/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/install/sparseml","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","title":"SparseML","slug":"/get-started/install/sparseml","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/install/sparseml.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"SparseML\",\n \"metaTitle\": \"SparseML Installation\",\n \"metaDescription\": \"Installation instructions for SparseML neural network optimization, training, and sparsification\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"SparseML Installation\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparseml\"\n }, \"SparseML\"), \" enables you to create sparse models trained on your data. It supports transfer learning from sparse models to new data and sparsifying dense models from scratch with state-of-the-art algorithms for pruning and quantization.\"), mdx(\"p\", null, \"Currently, SparseML is tested on Python 3.7-3.9 and is limited to Linux and MacOS systems.\"), mdx(\"h2\", null, \"General Install\"), mdx(\"p\", null, \"Use the following command to install with pip:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install sparseml\\n\")), mdx(\"h2\", null, \"PyTorch Install\"), mdx(\"p\", null, \"SparseML supports integrations with PyTorch versions >=1.1.0 and <=1.9.0.\\nLater PyTorch versions are untested and have a known issue for exporting quantized models to ONNX graphs.\\nTo install, use the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install sparseml[torch]\\n\")), mdx(\"p\", null, \"To install torchvision, use the following extra options:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install sparseml[torch,torchvision]\\n\")), mdx(\"h2\", null, \"Keras Install\"), mdx(\"p\", null, \"SparseML supports integrations with Keras versions ~=2.2.0.\\nLater Keras versions are untested and have known issues with exporting to ONNX.\\nTo install, use the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install sparseml[tf_keras]\\n\")), mdx(\"h2\", null, \"TensorFlow Install\"), mdx(\"p\", null, \"SparseML supports integrations with TensorFlow versions >=1.8.0 and <=1.15.3.\\nNote, TensorFlow V1 is no longer being built for newer operating systems such as Ubuntu 20.04.\\nTherefore, SparseML with TensorFlow V1 is also unsupported on these operating systems.\\nTo install, use the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install sparseml[tf_v1]\\n\")), mdx(\"p\", null, \"To install a GPU-compatible version, use the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install sparseml[tf_v1_gpu]\\n\")), mdx(\"p\", null, \"Depending on your device and CUDA version, you may need to install additional dependencies for using TensorFlow V1 with GPU operations.\\nYou can find these steps \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.tensorflow.org/install/gpu#older_versions_of_tensorflow\"\n }, \"here.\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparseml-installation","title":"SparseML Installation","items":[{"url":"#general-install","title":"General Install"},{"url":"#pytorch-install","title":"PyTorch Install"},{"url":"#keras-install","title":"Keras Install"},{"url":"#tensorflow-install","title":"TensorFlow Install"}]}]},"parent":{"relativePath":"get-started/install/sparseml.mdx"},"frontmatter":{"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/get-started/install/sparseml","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","title":"SparseML","slug":"/get-started/install/sparseml","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/install/sparseml.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"SparseML\",\n \"metaTitle\": \"SparseML Installation\",\n \"metaDescription\": \"Installation instructions for SparseML neural network optimization, training, and sparsification\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"SparseML Installation\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparseml\"\n }, \"SparseML\"), \" enables you to create sparse models trained on your data. It supports transfer learning from sparse models to new data and sparsifying dense models from scratch with state-of-the-art algorithms for pruning and quantization.\"), mdx(\"p\", null, \"Currently, SparseML is tested on Python 3.7-3.9 and is limited to Linux and MacOS systems.\"), mdx(\"h2\", null, \"General Install\"), mdx(\"p\", null, \"Use the following command to install with pip:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install sparseml\\n\")), mdx(\"h2\", null, \"PyTorch Install\"), mdx(\"p\", null, \"SparseML supports integrations with PyTorch versions >=1.1.0 and <=1.9.0.\\nLater PyTorch versions are untested and have a known issue for exporting quantized models to ONNX graphs.\\nTo install, use the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install sparseml[torch]\\n\")), mdx(\"p\", null, \"To install torchvision, use the following extra options:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install sparseml[torch,torchvision]\\n\")), mdx(\"h2\", null, \"Keras Install\"), mdx(\"p\", null, \"SparseML supports integrations with Keras versions ~=2.2.0.\\nLater Keras versions are untested and have known issues with exporting to ONNX.\\nTo install, use the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install sparseml[tf_keras]\\n\")), mdx(\"h2\", null, \"TensorFlow Install\"), mdx(\"p\", null, \"SparseML supports integrations with TensorFlow versions >=1.8.0 and <=1.15.3.\\nNote, TensorFlow V1 is no longer being built for newer operating systems such as Ubuntu 20.04.\\nTherefore, SparseML with TensorFlow V1 is also unsupported on these operating systems.\\nTo install, use the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install sparseml[tf_v1]\\n\")), mdx(\"p\", null, \"To install a GPU-compatible version, use the following extra option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install sparseml[tf_v1_gpu]\\n\")), mdx(\"p\", null, \"Depending on your device and CUDA version, you may need to install additional dependencies for using TensorFlow V1 with GPU operations.\\nYou can find these steps \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.tensorflow.org/install/gpu#older_versions_of_tensorflow\"\n }, \"here.\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparseml-installation","title":"SparseML Installation","items":[{"url":"#general-install","title":"General Install"},{"url":"#pytorch-install","title":"PyTorch Install"},{"url":"#keras-install","title":"Keras Install"},{"url":"#tensorflow-install","title":"TensorFlow Install"}]}]},"parent":{"relativePath":"get-started/install/sparseml.mdx"},"frontmatter":{"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/install/sparsezoo/page-data.json b/page-data/get-started/install/sparsezoo/page-data.json index e07574d7a14..df12dd8f4d8 100644 --- a/page-data/get-started/install/sparsezoo/page-data.json +++ b/page-data/get-started/install/sparsezoo/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/install/sparsezoo","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","title":"SparseZoo","slug":"/get-started/install/sparsezoo","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/install/sparsezoo.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"SparseZoo\",\n \"metaTitle\": \"SparseZoo Installation\",\n \"metaDescription\": \"Installation instructions for the SparseZoo sparse model repository\",\n \"index\": 4000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"SparseZoo Installation\"), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparsezoo\"\n }, \"SparseZoo\"), \" stores presparsified models and sparsification recipes so you can easily apply them to your data.\\nThis installs the Python API and CLIs for downloading models and recipes from the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com/\"\n }, \"SparseZoo UI\"), \".\"), mdx(\"p\", null, \"Note that the SparseZoo package is automatically installed with both SparseML and DeepSparse.\"), mdx(\"p\", null, \"Currently, the SparseZoo Python APIs and CLIs are tested on Python 3.7-3.10 and are limited to \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.linux.org/\"\n }, \"Linux\"), \" and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.apple.com/mac/\"\n }, \"MacOS\"), \" systems.\"), mdx(\"h2\", null, \"General Install\"), mdx(\"p\", null, \"Use the following command to install with pip:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install sparsezoo\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparsezoo-installation","title":"SparseZoo Installation","items":[{"url":"#general-install","title":"General Install"}]}]},"parent":{"relativePath":"get-started/install/sparsezoo.mdx"},"frontmatter":{"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository","index":4000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/get-started/install/sparsezoo","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","title":"SparseZoo","slug":"/get-started/install/sparsezoo","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/install/sparsezoo.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"SparseZoo\",\n \"metaTitle\": \"SparseZoo Installation\",\n \"metaDescription\": \"Installation instructions for the SparseZoo sparse model repository\",\n \"index\": 4000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"SparseZoo Installation\"), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparsezoo\"\n }, \"SparseZoo\"), \" stores presparsified models and sparsification recipes so you can easily apply them to your data.\\nThis installs the Python API and CLIs for downloading models and recipes from the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com/\"\n }, \"SparseZoo UI\"), \".\"), mdx(\"p\", null, \"Note that the SparseZoo package is automatically installed with both SparseML and DeepSparse.\"), mdx(\"p\", null, \"Currently, the SparseZoo Python APIs and CLIs are tested on Python 3.7-3.10 and are limited to \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.linux.org/\"\n }, \"Linux\"), \" and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.apple.com/mac/\"\n }, \"MacOS\"), \" systems.\"), mdx(\"h2\", null, \"General Install\"), mdx(\"p\", null, \"Use the following command to install with pip:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install sparsezoo\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparsezoo-installation","title":"SparseZoo Installation","items":[{"url":"#general-install","title":"General Install"}]}]},"parent":{"relativePath":"get-started/install/sparsezoo.mdx"},"frontmatter":{"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository","index":4000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/page-data.json b/page-data/get-started/page-data.json index cad866e301b..05414d82ad7 100644 --- a/page-data/get-started/page-data.json +++ b/page-data/get-started/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","title":"Get Started","slug":"/get-started","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Get Started\",\n \"metaTitle\": \"Get Started\",\n \"metaDescription\": \"Getting started with the Neural Magic DeepSparse Platform\",\n \"index\": 1000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Get Started\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#get-started","title":"Get Started"}]},"parent":{"relativePath":"get-started.mdx"},"frontmatter":{"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform","index":1000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/get-started","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","title":"Get Started","slug":"/get-started","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Get Started\",\n \"metaTitle\": \"Get Started\",\n \"metaDescription\": \"Getting started with the Neural Magic Platform\",\n \"index\": 1000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Get Started\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#get-started","title":"Get Started"}]},"parent":{"relativePath":"get-started.mdx"},"frontmatter":{"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform","index":1000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/sparsify-a-model/custom-integrations/page-data.json b/page-data/get-started/sparsify-a-model/custom-integrations/page-data.json index ef84365b757..a0314395d31 100644 --- a/page-data/get-started/sparsify-a-model/custom-integrations/page-data.json +++ b/page-data/get-started/sparsify-a-model/custom-integrations/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/sparsify-a-model/custom-integrations","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","title":"Custom Integrations","slug":"/get-started/sparsify-a-model/custom-integrations","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/sparsify-a-model/custom-integrations.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Custom Integrations\",\n \"metaTitle\": \"Creating a Custom Integration for Sparsifying Models\",\n \"metaDescription\": \"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Creating a Custom Integration for Sparsifying Models\"), mdx(\"p\", null, \"This page explains how to apply a recipe to a custom model. For more details on the concepts of pruning/quantization\\nas well as how to create recipes, see \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/sparsify-a-model/supported-integrations\"\n }, \"Sparsifying a Model for SparseML Integrations\"), \".\"), mdx(\"p\", null, \"In addition to supported integrations described on the prior page, SparseML is set to enable easy integration in custom training pipelines.\\nThis flexibility enables easy sparsification for any neural network architecture for custom models and use cases. Once SparseML is installed,\\nthe necessary code can be plugged into most PyTorch/Keras training pipelines with only a few lines of code.\"), mdx(\"h2\", null, \"Install Requirements\"), mdx(\"p\", null, \"This section requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torchvision Install\"), \" to run the Apply the Recipe section.\"), mdx(\"h2\", null, \"Integrate SparseML\"), mdx(\"p\", null, \"To enable sparsification of models with recipes, a few edits to the training pipeline code need to be made.\\nSpecifically, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager\"), \" instance is used to take over and inject the desired sparsification algorithms into the training process.\\nTo do this properly in PyTorch, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager\"), \" requires the instance of the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model\"), \" to modify, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"optimizer\"), \" used for training,\\nand the number of \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"steps_per_epoch\"), \" to ensure algorithms are applied at the right time.\"), mdx(\"p\", null, \"For the integration, the following code illustrates all that is needed:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-Python\"\n }, \"from sparseml.pytorch.optim import ScheduledModifierManager\\nmanager = ScheduledModifierManager.from_yaml(recipe_path)\\noptimizer = manager.modify(model, optimizer, steps_per_epoch)\\n\\n# your typical training loop, using model/optimizer as usual\\n\\nmanager.finalize(model)\\n\")), mdx(\"p\", null, \"Walking through this code:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, \"The \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ScheduledModifierManager\"), \" is imported from the SparseML Python package.\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"An instance of the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ScheduledModifierManager\"), \" is created from a recipe stored as a local file or on the SparseZoo.\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"The optimizer and model are modified by \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ScheduledModifierManager\"), \" so that the recipe will be applied while training.\\nA wrapped instance of the training optimizer is returned.\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"After training has been completed, a finalize call is invoked on the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ScheduledModifierManager\"), \" to release all resources.\")), mdx(\"p\", null, \"A simple training example utilizing PyTorch and Torchvision with this SparseML integration is provided below:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-Python\"\n }, \"import torch\\nfrom torch.nn import Linear\\nfrom torch.utils.data import DataLoader\\nfrom torch.nn import CrossEntropyLoss\\nfrom torch.optim import SGD\\n\\nfrom sparseml.pytorch.models import resnet50\\nfrom sparseml.pytorch.datasets import ImagenetteDataset, ImagenetteSize\\nfrom sparseml.pytorch.optim import ScheduledModifierManager\\n\\n# Model creation\\nNUM_CLASSES = 10 # number of Imagenette classes\\nmodel = resnet50(pretrained=True, num_classes=NUM_CLASSES)\\n\\n# Dataset creation\\nbatch_size = 64\\ntrain_dataset = ImagenetteDataset(train=True, dataset_size=ImagenetteSize.s320, image_size=224)\\ntrain_loader = DataLoader(train_dataset, batch_size, shuffle=True, pin_memory=True, num_workers=8)\\n\\n# Device setup\\ndevice = \\\"cuda\\\" if torch.cuda.is_available() else \\\"cpu\\\"\\nmodel.to(device)\\n\\n# Loss setup\\ncriterion = CrossEntropyLoss()\\noptimizer = SGD(model.parameters(), lr=10e-6, momentum=0.9)\\n\\n# Recipe - in this case, we pull down a recipe from the SparseZoo for ResNet-50\\n# This can be a be a path to a local file\\nrecipe_path = \\\"zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none?recipe_type=original\\\"\\n\\n# SparseML Integration\\nmanager = ScheduledModifierManager.from_yaml(recipe_path)\\noptimizer = manager.modify(model, optimizer, steps_per_epoch=len(train_loader))\\n\\n# Training Loop\\nfor epoch in range(manager.max_epochs):\\n running_loss = 0.0\\n running_corrects = 0.0\\n for inputs, labels in train_loader:\\n inputs = inputs.to(device)\\n labels = labels.to(device)\\n optimizer.zero_grad()\\n with torch.set_grad_enabled(True):\\n outputs, _ = model(inputs)\\n loss = criterion(outputs, labels)\\n _, preds = torch.max(outputs, 1)\\n loss.backward()\\n optimizer.step()\\n running_loss += loss.item() * inputs.size(0)\\n running_corrects += torch.sum(preds == labels.data)\\n\\n epoch_loss = running_loss / len(train_loader.dataset)\\n epoch_acc = running_corrects.double() / len(train_loader.dataset)\\n print(\\\"Training Loss: {:.4f} Acc: {:.4f}\\\".format(epoch_loss, epoch_acc))\\n\\nmanager.finalize(model)\\n\")), mdx(\"h2\", null, \"Create a Recipe\"), mdx(\"p\", null, \"To dive into the details of this recipe and how to edit it, visit \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/sparsify-a-model/supported-integrations\"\n }, \"Supported Integrations\"), \".\\nThe resulting recipe is included here for easy integration and testing.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"modifiers:\\n - !GlobalMagnitudePruningModifier\\n init_sparsity: 0.05\\n final_sparsity: 0.8\\n start_epoch: 0.0\\n end_epoch: 30.0\\n update_frequency: 1.0\\n params: __ALL_PRUNABLE__\\n\\n - !SetLearningRateModifier\\n start_epoch: 0.0\\n learning_rate: 0.05\\n\\n - !LearningRateFunctionModifier\\n start_epoch: 30.0\\n end_epoch: 50.0\\n lr_func: cosine\\n init_lr: 0.05\\n final_lr: 0.001\\n\\n - !QuantizationModifier\\n start_epoch: 50.0\\n freeze_bn_stats_epoch: 53.0\\n\\n - !SetLearningRateModifier\\n start_epoch: 50.0\\n learning_rate: 10e-6\\n\\n - !EpochRangeModifier\\n start_epoch: 0.0\\n end_epoch: 55.0\\n\")), mdx(\"h2\", null, \"Sparsify a Model\"), mdx(\"p\", null, \"The pipeline is ready to sparsify a model with the integration and recipe setup.\\nTo begin sparsifying, save the recipe as a local file called \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"recipe.yaml\"), \".\\nNext, pass in the path to the recipe to the training script for the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"recipe_path\"), \" argument for the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager.from_yaml(recipe_path)\"), \" line.\\nWith that completed, start the training pipeline, and the result will be a sparsified model.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#creating-a-custom-integration-for-sparsifying-models","title":"Creating a Custom Integration for Sparsifying Models","items":[{"url":"#install-requirements","title":"Install Requirements"},{"url":"#integrate-sparseml","title":"Integrate SparseML"},{"url":"#create-a-recipe","title":"Create a Recipe"},{"url":"#sparsify-a-model","title":"Sparsify a Model"}]}]},"parent":{"relativePath":"get-started/sparsify-a-model/custom-integrations.mdx"},"frontmatter":{"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"6662f291-f43f-5616-8f60-dea883911f57","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/get-started/sparsify-a-model/custom-integrations","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","title":"Custom Integrations","slug":"/get-started/sparsify-a-model/custom-integrations","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/sparsify-a-model/custom-integrations.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Custom Integrations\",\n \"metaTitle\": \"Creating a Custom Integration for Sparsifying Models\",\n \"metaDescription\": \"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Creating a Custom Integration for Sparsifying Models\"), mdx(\"p\", null, \"This page explains how to apply a recipe to a custom model. For more details on the concepts of pruning/quantization\\nas well as how to create recipes, see \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/sparsify-a-model/supported-integrations\"\n }, \"Sparsifying a Model for SparseML Integrations\"), \".\"), mdx(\"p\", null, \"In addition to supported integrations described on the prior page, SparseML is set to enable easy integration in custom training pipelines.\\nThis flexibility enables easy sparsification for any neural network architecture for custom models and use cases. Once SparseML is installed,\\nthe necessary code can be plugged into most PyTorch/Keras training pipelines with only a few lines of code.\"), mdx(\"h2\", null, \"Install Requirements\"), mdx(\"p\", null, \"This section requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torchvision Install\"), \" to run the Apply the Recipe section.\"), mdx(\"h2\", null, \"Integrate SparseML\"), mdx(\"p\", null, \"To enable sparsification of models with recipes, a few edits to the training pipeline code need to be made.\\nSpecifically, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager\"), \" instance is used to take over and inject the desired sparsification algorithms into the training process.\\nTo do this properly in PyTorch, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager\"), \" requires the instance of the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model\"), \" to modify, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"optimizer\"), \" used for training,\\nand the number of \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"steps_per_epoch\"), \" to ensure algorithms are applied at the right time.\"), mdx(\"p\", null, \"For the integration, the following code illustrates all that is needed:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-Python\"\n }, \"from sparseml.pytorch.optim import ScheduledModifierManager\\nmanager = ScheduledModifierManager.from_yaml(recipe_path)\\noptimizer = manager.modify(model, optimizer, steps_per_epoch)\\n\\n# your typical training loop, using model/optimizer as usual\\n\\nmanager.finalize(model)\\n\")), mdx(\"p\", null, \"Walking through this code:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, \"The \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ScheduledModifierManager\"), \" is imported from the SparseML Python package.\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"An instance of the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ScheduledModifierManager\"), \" is created from a recipe stored as a local file or on the SparseZoo.\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"The optimizer and model are modified by \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ScheduledModifierManager\"), \" so that the recipe will be applied while training.\\nA wrapped instance of the training optimizer is returned.\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"After training has been completed, a finalize call is invoked on the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ScheduledModifierManager\"), \" to release all resources.\")), mdx(\"p\", null, \"A simple training example utilizing PyTorch and Torchvision with this SparseML integration is provided below:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-Python\"\n }, \"import torch\\nfrom torch.nn import Linear\\nfrom torch.utils.data import DataLoader\\nfrom torch.nn import CrossEntropyLoss\\nfrom torch.optim import SGD\\n\\nfrom sparseml.pytorch.models import resnet50\\nfrom sparseml.pytorch.datasets import ImagenetteDataset, ImagenetteSize\\nfrom sparseml.pytorch.optim import ScheduledModifierManager\\n\\n# Model creation\\nNUM_CLASSES = 10 # number of Imagenette classes\\nmodel = resnet50(pretrained=True, num_classes=NUM_CLASSES)\\n\\n# Dataset creation\\nbatch_size = 64\\ntrain_dataset = ImagenetteDataset(train=True, dataset_size=ImagenetteSize.s320, image_size=224)\\ntrain_loader = DataLoader(train_dataset, batch_size, shuffle=True, pin_memory=True, num_workers=8)\\n\\n# Device setup\\ndevice = \\\"cuda\\\" if torch.cuda.is_available() else \\\"cpu\\\"\\nmodel.to(device)\\n\\n# Loss setup\\ncriterion = CrossEntropyLoss()\\noptimizer = SGD(model.parameters(), lr=10e-6, momentum=0.9)\\n\\n# Recipe - in this case, we pull down a recipe from the SparseZoo for ResNet-50\\n# This can be a be a path to a local file\\nrecipe_path = \\\"zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none?recipe_type=original\\\"\\n\\n# SparseML Integration\\nmanager = ScheduledModifierManager.from_yaml(recipe_path)\\noptimizer = manager.modify(model, optimizer, steps_per_epoch=len(train_loader))\\n\\n# Training Loop\\nfor epoch in range(manager.max_epochs):\\n running_loss = 0.0\\n running_corrects = 0.0\\n for inputs, labels in train_loader:\\n inputs = inputs.to(device)\\n labels = labels.to(device)\\n optimizer.zero_grad()\\n with torch.set_grad_enabled(True):\\n outputs, _ = model(inputs)\\n loss = criterion(outputs, labels)\\n _, preds = torch.max(outputs, 1)\\n loss.backward()\\n optimizer.step()\\n running_loss += loss.item() * inputs.size(0)\\n running_corrects += torch.sum(preds == labels.data)\\n\\n epoch_loss = running_loss / len(train_loader.dataset)\\n epoch_acc = running_corrects.double() / len(train_loader.dataset)\\n print(\\\"Training Loss: {:.4f} Acc: {:.4f}\\\".format(epoch_loss, epoch_acc))\\n\\nmanager.finalize(model)\\n\")), mdx(\"h2\", null, \"Create a Recipe\"), mdx(\"p\", null, \"To dive into the details of this recipe and how to edit it, visit \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/sparsify-a-model/supported-integrations\"\n }, \"Supported Integrations\"), \".\\nThe resulting recipe is included here for easy integration and testing.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"modifiers:\\n - !GlobalMagnitudePruningModifier\\n init_sparsity: 0.05\\n final_sparsity: 0.8\\n start_epoch: 0.0\\n end_epoch: 30.0\\n update_frequency: 1.0\\n params: __ALL_PRUNABLE__\\n\\n - !SetLearningRateModifier\\n start_epoch: 0.0\\n learning_rate: 0.05\\n\\n - !LearningRateFunctionModifier\\n start_epoch: 30.0\\n end_epoch: 50.0\\n lr_func: cosine\\n init_lr: 0.05\\n final_lr: 0.001\\n\\n - !QuantizationModifier\\n start_epoch: 50.0\\n freeze_bn_stats_epoch: 53.0\\n\\n - !SetLearningRateModifier\\n start_epoch: 50.0\\n learning_rate: 10e-6\\n\\n - !EpochRangeModifier\\n start_epoch: 0.0\\n end_epoch: 55.0\\n\")), mdx(\"h2\", null, \"Sparsify a Model\"), mdx(\"p\", null, \"The pipeline is ready to sparsify a model with the integration and recipe setup.\\nTo begin sparsifying, save the recipe as a local file called \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"recipe.yaml\"), \".\\nNext, pass in the path to the recipe to the training script for the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"recipe_path\"), \" argument for the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager.from_yaml(recipe_path)\"), \" line.\\nWith that completed, start the training pipeline, and the result will be a sparsified model.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#creating-a-custom-integration-for-sparsifying-models","title":"Creating a Custom Integration for Sparsifying Models","items":[{"url":"#install-requirements","title":"Install Requirements"},{"url":"#integrate-sparseml","title":"Integrate SparseML"},{"url":"#create-a-recipe","title":"Create a Recipe"},{"url":"#sparsify-a-model","title":"Sparsify a Model"}]}]},"parent":{"relativePath":"get-started/sparsify-a-model/custom-integrations.mdx"},"frontmatter":{"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"6662f291-f43f-5616-8f60-dea883911f57","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/sparsify-a-model/page-data.json b/page-data/get-started/sparsify-a-model/page-data.json index fa3b027c4fd..367ca5d7748 100644 --- a/page-data/get-started/sparsify-a-model/page-data.json +++ b/page-data/get-started/sparsify-a-model/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/sparsify-a-model","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","title":"Sparsify a Model","slug":"/get-started/sparsify-a-model","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/sparsify-a-model.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Sparsify a Model\",\n \"metaTitle\": \"Sparsify a Model\",\n \"metaDescription\": \"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment\",\n \"index\": 4000\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Sparsify a Model\"), mdx(\"p\", null, \"SparseML enables you to create a sparse model from scratch. The library contains state-of-the-art sparsification algorithms, including pruning, distillation, and quantization techniques.\"), mdx(\"p\", null, \"These algorithms are built on top of sparsification recipes, enabling easy integration into custom ML training pipelines to sparsify most neural networks.\\nAdditionally, SparseML integrates with popular ML repositories like Hugging Face Transformers and Ultralytics YOLO. With these integrations, creating a recipe and passing it to a CLI is all you need to sparsify a model.\"), mdx(\"p\", null, \"Aside from sparsification algorithms, SparseML contains generic export pathways for performant deployments.\\nThese export pathways ensure the model saves in the correct format and rewrites the inference graphs for performance, such as quantized operator folding.\\nThe results are simple to export CLIs and APIs that guarantee performance for sparsified models in their given deployment environment.\"), mdx(\"h2\", null, \"Example Use Cases\"), mdx(\"p\", null, \"The docs below walk through use cases leveraging SparseML to sparsify models with recipes and exporting for performant inference.\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./supported-integrations\",\n heading: \"Supported Integrations\",\n mdxType: \"LinkCard\"\n }, \"Example creating a recipe and utilizing it with supported SparseML integrations to create sparsified models.\"), mdx(LinkCard, {\n href: \"./custom-integrations\",\n heading: \"Custom Integrations\",\n mdxType: \"LinkCard\"\n }, \"Example enabling SparseML sparsification techniques with a custom ML pipeline to create sparsified models.\")), mdx(\"h2\", null, \"Other Use Cases\"), mdx(\"p\", null, \"More documentation, models, use cases, and examples are continually being added.\\nIf you don't see one you're interested in, search the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse\"\n }, \"DeepSparse Github repo\"), \", the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml\"\n }, \"SparseML Github repo\"), \", the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com/\"\n }, \"SparseZoo website\"), \", or ask in the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Neural Magic Slack\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparsify-a-model","title":"Sparsify a Model","items":[{"url":"#example-use-cases","title":"Example Use Cases"},{"url":"#other-use-cases","title":"Other Use Cases"}]}]},"parent":{"relativePath":"get-started/sparsify-a-model.mdx"},"frontmatter":{"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment","index":4000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/get-started/sparsify-a-model","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","title":"Sparsify a Model","slug":"/get-started/sparsify-a-model","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/sparsify-a-model.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Sparsify a Model\",\n \"metaTitle\": \"Sparsify a Model\",\n \"metaDescription\": \"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment\",\n \"index\": 4000\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Sparsify a Model\"), mdx(\"p\", null, \"SparseML enables you to create a sparse model from scratch. The library contains state-of-the-art sparsification algorithms, including pruning, distillation, and quantization techniques.\"), mdx(\"p\", null, \"These algorithms are built on top of sparsification recipes, enabling easy integration into custom ML training pipelines to sparsify most neural networks.\\nAdditionally, SparseML integrates with popular ML repositories like Hugging Face Transformers and Ultralytics YOLO. With these integrations, creating a recipe and passing it to a CLI is all you need to sparsify a model.\"), mdx(\"p\", null, \"Aside from sparsification algorithms, SparseML contains generic export pathways for performant deployments.\\nThese export pathways ensure the model saves in the correct format and rewrites the inference graphs for performance, such as quantized operator folding.\\nThe results are simple to export CLIs and APIs that guarantee performance for sparsified models in their given deployment environment.\"), mdx(\"h2\", null, \"Example Use Cases\"), mdx(\"p\", null, \"The docs below walk through use cases leveraging SparseML to sparsify models with recipes and exporting for performant inference.\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./supported-integrations\",\n heading: \"Supported Integrations\",\n mdxType: \"LinkCard\"\n }, \"Example creating a recipe and utilizing it with supported SparseML integrations to create sparsified models.\"), mdx(LinkCard, {\n href: \"./custom-integrations\",\n heading: \"Custom Integrations\",\n mdxType: \"LinkCard\"\n }, \"Example enabling SparseML sparsification techniques with a custom ML pipeline to create sparsified models.\")), mdx(\"h2\", null, \"Other Use Cases\"), mdx(\"p\", null, \"More documentation, models, use cases, and examples are continually being added.\\nIf you don't see one you're interested in, search the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse\"\n }, \"DeepSparse Github repo\"), \", the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml\"\n }, \"SparseML Github repo\"), \", the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com/\"\n }, \"SparseZoo website\"), \", or ask in the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Neural Magic Slack\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparsify-a-model","title":"Sparsify a Model","items":[{"url":"#example-use-cases","title":"Example Use Cases"},{"url":"#other-use-cases","title":"Other Use Cases"}]}]},"parent":{"relativePath":"get-started/sparsify-a-model.mdx"},"frontmatter":{"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment","index":4000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/sparsify-a-model/supported-integrations/page-data.json b/page-data/get-started/sparsify-a-model/supported-integrations/page-data.json index dcd47a67997..9e23f037a7f 100644 --- a/page-data/get-started/sparsify-a-model/supported-integrations/page-data.json +++ b/page-data/get-started/sparsify-a-model/supported-integrations/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/sparsify-a-model/supported-integrations","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","title":"Supported Integrations","slug":"/get-started/sparsify-a-model/supported-integrations","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/sparsify-a-model/supported-integrations.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Supported Integrations\",\n \"metaTitle\": \"Sparsifying a Model for SparseML Integrations\",\n \"metaDescription\": \"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Sparsifying a Model for SparseML Integrations\"), mdx(\"p\", null, \"This page walks through an example of creating a sparsification recipe to prune a dense model from scratch and applying a recipe to a supported integration.\"), mdx(\"p\", null, \"SparseML has pre-made integrations with many popular model repositories, such as with Hugging Face Transformers and Ultralytics YOLOv5.\\nFor these integrations, a sparsification recipe is all you need, and you can apply state-of-the-art sparsification algorithms, including\\npruning, distillation, and quantization, with a single command line call.\"), mdx(\"h2\", null, \"Install Requirements\"), mdx(\"p\", null, \"This section requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torchvision Install\"), \" to run the Apply the Recipe section.\"), mdx(\"h2\", null, \"Pruning and Pruning Recipes\"), mdx(\"p\", null, \"Pruning is a systematic way of removing redundant weights and connections within a neural network. An applied pruning algorithm must determine which\\nweights are redundant and will not affect the accuracy.\"), mdx(\"p\", null, \"A standard algorithm for pruning is gradual magnitude pruning, or GMP for short.\\nWith it, the weights closest to zero are iteratively removed over several epochs or training steps. The non-zero weights are then fine-tuned to the objective function.\\nThis iterative process enables the model to adjust to a new optimization space after pathways are removed before pruning again.\"), mdx(\"p\", null, \"Important hyperparameters that need to be set are the following:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The layers to prune and their target sparsity levels\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The number of epochs for pruning\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The frequency of pruning\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The length of time to fine-tune after pruning\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The learning rates to (LR) for pruning and fine-tuning\")), mdx(\"p\", null, \"The proper hyperparameter values will differ for different model architectures, training schemes, and domains, but there is some general intuition for safe starting values.\\nThe following are reasonably default values to start with:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The final sparsity is set to 80% sparsity applied globally across all layers.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The running frequency is set to pruning once per epoch (up to a few times per epoch for shorter schedules).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The number of pruning epochs is set to 1/3 the original training epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The number of fine-tuning epochs is set to 1/4 the original epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The pruning LR is set to the midrange from the model's training start and final LRs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The fine-tuning LRs cycle from the pruning LR to the final LR is used for training.\")), mdx(\"p\", null, \"SparseML conveniently encodes these hyperparameters into a YAML-based \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Recipe\"), \" file. The rest of the system parses the arguments in the YAML file to set the parameters of the algorithm.\"), mdx(\"p\", null, \"For example, the following \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"recipe.yaml\"), \" file for the default values listed above:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"modifiers:\\n - !GlobalMagnitudePruningModifier\\n init_sparsity: 0.05\\n final_sparsity: 0.8\\n start_epoch: 0.0\\n end_epoch: 30.0\\n update_frequency: 1.0\\n params: __ALL_PRUNABLE__\\n\\n - !SetLearningRateModifier\\n start_epoch: 0.0\\n learning_rate: 0.05\\n\\n - !LearningRateFunctionModifier\\n start_epoch: 30.0\\n end_epoch: 50.0\\n lr_func: cosine\\n init_lr: 0.05\\n final_lr: 0.001\\n\\n - !EpochRangeModifier\\n start_epoch: 0.0\\n end_epoch: 50.0\\n\")), mdx(\"p\", null, \"In this recipe:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"GlobalMagnitudePruningModifier\"), \" applies gradual magnitude pruning globally across all the prunable parameters/weights in a model.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"GlobalMagnitudePruningModifier\"), \" starts at 5% sparsity at epoch 0 and gradually ramps up to 80% sparsity at epoch 30, pruning at the start of each epoch.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"SetLearningRateModifier\"), \" sets the pruning LR to 0.05 (midpoint between the original 0.1 and 0.001 training LRs).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"LearningRateFunctionModifier\"), \" cycles the fine-tuning LR from the pruning LR to 0.001 with a cosine curve (0.001 was the final original training LR).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"EpochRangeModifier\"), \" expands the training time to continue fine-tuning for an additional 20 epochs after pruning has ended.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"30 pruning epochs and 20 fine-tuning epochs were chosen based on a 90 epoch training schedule -- be sure to adjust based on the number of epochs used for the initial training for your use case.\")), mdx(\"h2\", null, \"Quantization and Quantization Recipes\"), mdx(\"p\", null, \"A quantization recipe systematically reduces the precision for weights and activations within a neural network, generally from \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"FP32\"), \" to \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"INT8\"), \". Running a quantized\\nmodel increases speed and reduces memory consumption while sacrificing very little in terms of accuracy.\"), mdx(\"p\", null, \"Quantization-aware training (QAT) is the standard algorithm. With QAT, fake quantization operators are injected into the graph before quantizable nodes for activations, and weights are wrapped with fake quantization operators.\\nThe fake quantization operators interpolate the weights and activations down to INT8 on the forward pass but enable a full update of the weights at FP32 on the backward pass.\\nThe updates to the weights at FP32 throughout the training process allow the model to adapt to the loss of information from quantization on the forward pass.\\nQAT generally guarantees better recovery for a given model compared with post-training quantization (PTQ), where training is not used.\"), mdx(\"p\", null, \"Important hyperparameters for QAT are the learning rate (LR), the number of epochs to train for while quantized, and when to freeze batch normalization statistics for CNNs.\\nFreezing batch normalization statistics enables the folding of these operators into convolutions for inference time and is an essential step for QAT.\\nThe proper hyperparameter values will differ for different model architectures, training schemes, and domains, but there is some general intuition for safe starting values.\\nThe following are reasonably good values to start with:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The LR is set to 0.1 or 0.01 times the value of the final LR during training\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The number of quantized training epochs is set to 5.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The batch normalization statistics are frozen at the start of the third epoch.\")), mdx(\"p\", null, \"For example, the following \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"recipe.yaml\"), \" file for the default values listed above:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"modifiers:\\n - !QuantizationModifier\\n start_epoch: 0.0\\n freeze_bn_stats_epoch: 3.0\\n\\n - !SetLearningRateModifier\\n start_epoch: 0.0\\n learning_rate: 10e-6\\n\\n - !EpochRangeModifier\\n start_epoch: 0.0\\n end_epoch: 5.0\\n\")), mdx(\"p\", null, \"In this recipe:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"QuantizationModifier\"), \" applies QAT to all quantizable modules under the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model\"), \" scope.\\nNote the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model\"), \" is used here as a general placeholder; to determine the name of the root module for your model, print out the root module and use that root name.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"QuantizationModifier\"), \" starts at epoch 0 and freezes batch normalization statistics at the start of epoch 3.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"SetLearningRateModifier\"), \" sets the quantization LR to 10e-6 (0.01 times the example final LR of 0.001).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"EpochRangeModifier\"), \" sets the training time to continue training for the desired 5 epochs.\")), mdx(\"h2\", null, \"Pruning plus Quantization Recipe\"), mdx(\"p\", null, \"To create a pruning and quantization recipe, the pruning and quantization recipes are merged from the previous sections.\\nQuantization is added after pruning and fine-tuning are complete such that the training cycles end with it.\\nThis prevents stability issues from lacking precision when pruning and utilizing larger LRs.\"), mdx(\"p\", null, \"Combining the two previous recipes creates the following new recipe.yaml file:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"modifiers:\\n - !GlobalMagnitudePruningModifier\\n init_sparsity: 0.05\\n final_sparsity: 0.8\\n start_epoch: 0.0\\n end_epoch: 30.0\\n update_frequency: 1.0\\n params: __ALL_PRUNABLE__\\n\\n - !SetLearningRateModifier\\n start_epoch: 0.0\\n learning_rate: 0.05\\n\\n - !LearningRateFunctionModifier\\n start_epoch: 30.0\\n end_epoch: 50.0\\n lr_func: cosine\\n init_lr: 0.05\\n final_lr: 0.001\\n\\n - !QuantizationModifier\\n start_epoch: 50.0\\n freeze_bn_stats_epoch: 53.0\\n\\n - !SetLearningRateModifier\\n start_epoch: 50.0\\n learning_rate: 10e-6\\n\\n - !EpochRangeModifier\\n start_epoch: 0.0\\n end_epoch: 55.0\\n\")), mdx(\"h2\", null, \"Applying a Recipe\"), mdx(\"p\", null, \"The recipe created can now be applied using the SparseML integrations.\\nFor example, SparseML installs with a CLI utilizing Ultralytics YOLOv5 repo and training pathways, among others.\\nTo view instructions for the CLI, run the following command:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.train --help\\n\")), mdx(\"p\", null, \"To use the recipe given in the previous section, save it locally as a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"recipe.yaml\"), \" file.\\nNext, it can be passed in for the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--recipe\"), \" argument in the YOLOv5 train CLI.\"), mdx(\"p\", null, \"By running the following command, you will apply the GMP and QAT algorithms encoded in the recipe to the dense version of YOLOv5s\\n(which is pulled down from the SparseZoo). In this example, the fine-tuning is done onto the COCO dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.train \\\\\\n --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/base-none \\\\\\n --data coco.yaml \\\\\\n --hyp data/hyps/hyp.scratch.yaml \\\\\\n --recipe recipe.yaml\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparsifying-a-model-for-sparseml-integrations","title":"Sparsifying a Model for SparseML Integrations","items":[{"url":"#install-requirements","title":"Install Requirements"},{"url":"#pruning-and-pruning-recipes","title":"Pruning and Pruning Recipes"},{"url":"#quantization-and-quantization-recipes","title":"Quantization and Quantization Recipes"},{"url":"#pruning-plus-quantization-recipe","title":"Pruning plus Quantization Recipe"},{"url":"#applying-a-recipe","title":"Applying a Recipe"}]}]},"parent":{"relativePath":"get-started/sparsify-a-model/supported-integrations.mdx"},"frontmatter":{"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/get-started/sparsify-a-model/supported-integrations","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","title":"Supported Integrations","slug":"/get-started/sparsify-a-model/supported-integrations","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/sparsify-a-model/supported-integrations.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Supported Integrations\",\n \"metaTitle\": \"Sparsifying a Model for SparseML Integrations\",\n \"metaDescription\": \"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Sparsifying a Model for SparseML Integrations\"), mdx(\"p\", null, \"This page walks through an example of creating a sparsification recipe to prune a dense model from scratch and applying a recipe to a supported integration.\"), mdx(\"p\", null, \"SparseML has pre-made integrations with many popular model repositories, such as with Hugging Face Transformers and Ultralytics YOLOv5.\\nFor these integrations, a sparsification recipe is all you need, and you can apply state-of-the-art sparsification algorithms, including\\npruning, distillation, and quantization, with a single command line call.\"), mdx(\"h2\", null, \"Install Requirements\"), mdx(\"p\", null, \"This section requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torchvision Install\"), \" to run the Apply the Recipe section.\"), mdx(\"h2\", null, \"Pruning and Pruning Recipes\"), mdx(\"p\", null, \"Pruning is a systematic way of removing redundant weights and connections within a neural network. An applied pruning algorithm must determine which\\nweights are redundant and will not affect the accuracy.\"), mdx(\"p\", null, \"A standard algorithm for pruning is gradual magnitude pruning, or GMP for short.\\nWith it, the weights closest to zero are iteratively removed over several epochs or training steps. The non-zero weights are then fine-tuned to the objective function.\\nThis iterative process enables the model to adjust to a new optimization space after pathways are removed before pruning again.\"), mdx(\"p\", null, \"Important hyperparameters that need to be set are the following:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The layers to prune and their target sparsity levels\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The number of epochs for pruning\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The frequency of pruning\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The length of time to fine-tune after pruning\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The learning rates to (LR) for pruning and fine-tuning\")), mdx(\"p\", null, \"The proper hyperparameter values will differ for different model architectures, training schemes, and domains, but there is some general intuition for safe starting values.\\nThe following are reasonably default values to start with:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The final sparsity is set to 80% sparsity applied globally across all layers.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The running frequency is set to pruning once per epoch (up to a few times per epoch for shorter schedules).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The number of pruning epochs is set to 1/3 the original training epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The number of fine-tuning epochs is set to 1/4 the original epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The pruning LR is set to the midrange from the model's training start and final LRs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The fine-tuning LRs cycle from the pruning LR to the final LR is used for training.\")), mdx(\"p\", null, \"SparseML conveniently encodes these hyperparameters into a YAML-based \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Recipe\"), \" file. The rest of the system parses the arguments in the YAML file to set the parameters of the algorithm.\"), mdx(\"p\", null, \"For example, the following \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"recipe.yaml\"), \" file for the default values listed above:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"modifiers:\\n - !GlobalMagnitudePruningModifier\\n init_sparsity: 0.05\\n final_sparsity: 0.8\\n start_epoch: 0.0\\n end_epoch: 30.0\\n update_frequency: 1.0\\n params: __ALL_PRUNABLE__\\n\\n - !SetLearningRateModifier\\n start_epoch: 0.0\\n learning_rate: 0.05\\n\\n - !LearningRateFunctionModifier\\n start_epoch: 30.0\\n end_epoch: 50.0\\n lr_func: cosine\\n init_lr: 0.05\\n final_lr: 0.001\\n\\n - !EpochRangeModifier\\n start_epoch: 0.0\\n end_epoch: 50.0\\n\")), mdx(\"p\", null, \"In this recipe:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"GlobalMagnitudePruningModifier\"), \" applies gradual magnitude pruning globally across all the prunable parameters/weights in a model.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"GlobalMagnitudePruningModifier\"), \" starts at 5% sparsity at epoch 0 and gradually ramps up to 80% sparsity at epoch 30, pruning at the start of each epoch.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"SetLearningRateModifier\"), \" sets the pruning LR to 0.05 (midpoint between the original 0.1 and 0.001 training LRs).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"LearningRateFunctionModifier\"), \" cycles the fine-tuning LR from the pruning LR to 0.001 with a cosine curve (0.001 was the final original training LR).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"EpochRangeModifier\"), \" expands the training time to continue fine-tuning for an additional 20 epochs after pruning has ended.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"30 pruning epochs and 20 fine-tuning epochs were chosen based on a 90 epoch training schedule -- be sure to adjust based on the number of epochs used for the initial training for your use case.\")), mdx(\"h2\", null, \"Quantization and Quantization Recipes\"), mdx(\"p\", null, \"A quantization recipe systematically reduces the precision for weights and activations within a neural network, generally from \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"FP32\"), \" to \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"INT8\"), \". Running a quantized\\nmodel increases speed and reduces memory consumption while sacrificing very little in terms of accuracy.\"), mdx(\"p\", null, \"Quantization-aware training (QAT) is the standard algorithm. With QAT, fake quantization operators are injected into the graph before quantizable nodes for activations, and weights are wrapped with fake quantization operators.\\nThe fake quantization operators interpolate the weights and activations down to INT8 on the forward pass but enable a full update of the weights at FP32 on the backward pass.\\nThe updates to the weights at FP32 throughout the training process allow the model to adapt to the loss of information from quantization on the forward pass.\\nQAT generally guarantees better recovery for a given model compared with post-training quantization (PTQ), where training is not used.\"), mdx(\"p\", null, \"Important hyperparameters for QAT are the learning rate (LR), the number of epochs to train for while quantized, and when to freeze batch normalization statistics for CNNs.\\nFreezing batch normalization statistics enables the folding of these operators into convolutions for inference time and is an essential step for QAT.\\nThe proper hyperparameter values will differ for different model architectures, training schemes, and domains, but there is some general intuition for safe starting values.\\nThe following are reasonably good values to start with:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The LR is set to 0.1 or 0.01 times the value of the final LR during training\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The number of quantized training epochs is set to 5.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The batch normalization statistics are frozen at the start of the third epoch.\")), mdx(\"p\", null, \"For example, the following \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"recipe.yaml\"), \" file for the default values listed above:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"modifiers:\\n - !QuantizationModifier\\n start_epoch: 0.0\\n freeze_bn_stats_epoch: 3.0\\n\\n - !SetLearningRateModifier\\n start_epoch: 0.0\\n learning_rate: 10e-6\\n\\n - !EpochRangeModifier\\n start_epoch: 0.0\\n end_epoch: 5.0\\n\")), mdx(\"p\", null, \"In this recipe:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"QuantizationModifier\"), \" applies QAT to all quantizable modules under the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model\"), \" scope.\\nNote the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model\"), \" is used here as a general placeholder; to determine the name of the root module for your model, print out the root module and use that root name.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"QuantizationModifier\"), \" starts at epoch 0 and freezes batch normalization statistics at the start of epoch 3.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"SetLearningRateModifier\"), \" sets the quantization LR to 10e-6 (0.01 times the example final LR of 0.001).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"EpochRangeModifier\"), \" sets the training time to continue training for the desired 5 epochs.\")), mdx(\"h2\", null, \"Pruning plus Quantization Recipe\"), mdx(\"p\", null, \"To create a pruning and quantization recipe, the pruning and quantization recipes are merged from the previous sections.\\nQuantization is added after pruning and fine-tuning are complete such that the training cycles end with it.\\nThis prevents stability issues from lacking precision when pruning and utilizing larger LRs.\"), mdx(\"p\", null, \"Combining the two previous recipes creates the following new recipe.yaml file:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"modifiers:\\n - !GlobalMagnitudePruningModifier\\n init_sparsity: 0.05\\n final_sparsity: 0.8\\n start_epoch: 0.0\\n end_epoch: 30.0\\n update_frequency: 1.0\\n params: __ALL_PRUNABLE__\\n\\n - !SetLearningRateModifier\\n start_epoch: 0.0\\n learning_rate: 0.05\\n\\n - !LearningRateFunctionModifier\\n start_epoch: 30.0\\n end_epoch: 50.0\\n lr_func: cosine\\n init_lr: 0.05\\n final_lr: 0.001\\n\\n - !QuantizationModifier\\n start_epoch: 50.0\\n freeze_bn_stats_epoch: 53.0\\n\\n - !SetLearningRateModifier\\n start_epoch: 50.0\\n learning_rate: 10e-6\\n\\n - !EpochRangeModifier\\n start_epoch: 0.0\\n end_epoch: 55.0\\n\")), mdx(\"h2\", null, \"Applying a Recipe\"), mdx(\"p\", null, \"The recipe created can now be applied using the SparseML integrations.\\nFor example, SparseML installs with a CLI utilizing Ultralytics YOLOv5 repo and training pathways, among others.\\nTo view instructions for the CLI, run the following command:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.train --help\\n\")), mdx(\"p\", null, \"To use the recipe given in the previous section, save it locally as a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"recipe.yaml\"), \" file.\\nNext, it can be passed in for the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--recipe\"), \" argument in the YOLOv5 train CLI.\"), mdx(\"p\", null, \"By running the following command, you will apply the GMP and QAT algorithms encoded in the recipe to the dense version of YOLOv5s\\n(which is pulled down from the SparseZoo). In this example, the fine-tuning is done onto the COCO dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.train \\\\\\n --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/base-none \\\\\\n --data coco.yaml \\\\\\n --hyp data/hyps/hyp.scratch.yaml \\\\\\n --recipe recipe.yaml\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparsifying-a-model-for-sparseml-integrations","title":"Sparsifying a Model for SparseML Integrations","items":[{"url":"#install-requirements","title":"Install Requirements"},{"url":"#pruning-and-pruning-recipes","title":"Pruning and Pruning Recipes"},{"url":"#quantization-and-quantization-recipes","title":"Quantization and Quantization Recipes"},{"url":"#pruning-plus-quantization-recipe","title":"Pruning plus Quantization Recipe"},{"url":"#applying-a-recipe","title":"Applying a Recipe"}]}]},"parent":{"relativePath":"get-started/sparsify-a-model/supported-integrations.mdx"},"frontmatter":{"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/transfer-a-sparsified-model/cv-object-detection/page-data.json b/page-data/get-started/transfer-a-sparsified-model/cv-object-detection/page-data.json index a6551b2294a..0cd12a5c7b8 100644 --- a/page-data/get-started/transfer-a-sparsified-model/cv-object-detection/page-data.json +++ b/page-data/get-started/transfer-a-sparsified-model/cv-object-detection/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/transfer-a-sparsified-model/cv-object-detection","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","title":"CV Object Detection","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/transfer-a-sparsified-model/cv-object-detection.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"CV Object Detection\",\n \"metaTitle\": \"Transfer a Sparsified Model for Object Detection\",\n \"metaDescription\": \"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Transfer a Sparsified Model for Object Detection\"), mdx(\"p\", null, \"This page walks through an example of fine-tuning a pre-sparsified model from the SparseZoo onto a new dataset for object detection.\"), mdx(\"p\", null, \"We will use SparseZoo to pull down a pre-sparsified YOLOv5l and will use SparseML to fine-tune onto the VOC dataset while preserving sparsity.\"), mdx(\"h2\", null, \"Install Requirements\"), mdx(\"p\", null, \"This example requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torchvision Install\"), \".\"), mdx(\"h2\", null, \"Transfer Learning\"), mdx(\"p\", null, \"The SparseZoo contains several sparsified object detection models and transfer learning recipes, including YOLOv5l, which is used in this example. The SparseZoo stub is below:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95\\n\")), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.yolov5.train\"), \" CLI command kicks off a run to fine-tune the sparsified YOLOv5 model onto the VOC dataset for object detection.\\nAfter the command completes, the trained model will reamin sparse, achieve an \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"mailto:mAP@0.5\"\n }, \"mAP@0.5\"), \" of around 0.80 on VOC, and will be stored in the local \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"models/sparsified\"), \" directory.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.yolov5.train \\\\\\n --weights zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95?recipe_type=transfer_learn \\\\\\n --recipe zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95?recipe_type=transfer_learn \\\\\\n --cfg models_v5.0/yolov5l.yaml \\\\\\n --hyp data/hyps/hyp.finetune.yaml \\\\\\n --data VOC.yaml \\\\\\n --project yolov5l \\\\\\n --name sparsified\\n\")), mdx(\"p\", null, \"The most important arguments are \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--data\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--weights\"), \", and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--recipe\"), \":\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--data\"), \" specifies the dataset onto which the model will be fine-tuned\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--weights\"), \" specifies the base model used to start the transfer learning process (can be a SparseZoo stub or local custom model path)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--recipe\"), \" specifies the hyperparameters of the fine-tuning process (can be a SparseZoo stub or a local custom recipe)\")), mdx(\"p\", null, \"To utilize your own dataset, set up the appropriate image dataset structure and pass the path as the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--data\"), \" argument.\\nAn example for VOC is on \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/src/sparseml/yolov5/data/VOC.yaml\"\n }, \"GitHub\"), \".\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--cfg\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--hyp\"), \" are configuration files. You can checkout the examples on \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/yolov5\"\n }, \"GitHub\"), \".\"), mdx(\"p\", null, \"There are many additional command line arguments that can be passed to tweak your fine-tuning process. Run the following to see the full list of options:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.yolov5.train -h\\n\")), mdx(\"h2\", null, \"Exporting for Inference\"), mdx(\"p\", null, \"With the sparsified model successfully trained, it is time to export it for inference.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.yolov5.export_onnx\"), \" command is used to export the training graph to a performant inference one.\\nAfter the command completes, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file is created in \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"yolov5/sparsified\"), \" folder.\\nIt is now ready for deployment with the DeepSparse Engine utilizing its pipelines.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.yolov5.export_onnx \\\\\\n --weights yolov5l/sparsified/weights/best.pt \\\\\\n --dynamic\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#transfer-a-sparsified-model-for-object-detection","title":"Transfer a Sparsified Model for Object Detection","items":[{"url":"#install-requirements","title":"Install Requirements"},{"url":"#transfer-learning","title":"Transfer Learning"},{"url":"#exporting-for-inference","title":"Exporting for Inference"}]}]},"parent":{"relativePath":"get-started/transfer-a-sparsified-model/cv-object-detection.mdx"},"frontmatter":{"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/get-started/transfer-a-sparsified-model/cv-object-detection","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","title":"CV Object Detection","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/transfer-a-sparsified-model/cv-object-detection.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"CV Object Detection\",\n \"metaTitle\": \"Transfer a Sparsified Model for Object Detection\",\n \"metaDescription\": \"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Transfer a Sparsified Model for Object Detection\"), mdx(\"p\", null, \"This page walks through an example of fine-tuning a pre-sparsified model from the SparseZoo onto a new dataset for object detection.\"), mdx(\"p\", null, \"We will use SparseZoo to pull down a pre-sparsified YOLOv5l and will use SparseML to fine-tune onto the VOC dataset while preserving sparsity.\"), mdx(\"h2\", null, \"Install Requirements\"), mdx(\"p\", null, \"This example requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torchvision Install\"), \".\"), mdx(\"h2\", null, \"Transfer Learning\"), mdx(\"p\", null, \"The SparseZoo contains several sparsified object detection models and transfer learning recipes, including YOLOv5l, which is used in this example. The SparseZoo stub is below:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95\\n\")), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.yolov5.train\"), \" CLI command kicks off a run to fine-tune the sparsified YOLOv5 model onto the VOC dataset for object detection.\\nAfter the command completes, the trained model will reamin sparse, achieve an \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"mailto:mAP@0.5\"\n }, \"mAP@0.5\"), \" of around 0.80 on VOC, and will be stored in the local \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"models/sparsified\"), \" directory.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.yolov5.train \\\\\\n --weights zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95?recipe_type=transfer_learn \\\\\\n --recipe zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95?recipe_type=transfer_learn \\\\\\n --cfg models_v5.0/yolov5l.yaml \\\\\\n --hyp data/hyps/hyp.finetune.yaml \\\\\\n --data VOC.yaml \\\\\\n --project yolov5l \\\\\\n --name sparsified\\n\")), mdx(\"p\", null, \"The most important arguments are \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--data\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--weights\"), \", and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--recipe\"), \":\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--data\"), \" specifies the dataset onto which the model will be fine-tuned\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--weights\"), \" specifies the base model used to start the transfer learning process (can be a SparseZoo stub or local custom model path)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--recipe\"), \" specifies the hyperparameters of the fine-tuning process (can be a SparseZoo stub or a local custom recipe)\")), mdx(\"p\", null, \"To utilize your own dataset, set up the appropriate image dataset structure and pass the path as the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--data\"), \" argument.\\nAn example for VOC is on \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/src/sparseml/yolov5/data/VOC.yaml\"\n }, \"GitHub\"), \".\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--cfg\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--hyp\"), \" are configuration files. You can checkout the examples on \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/yolov5\"\n }, \"GitHub\"), \".\"), mdx(\"p\", null, \"There are many additional command line arguments that can be passed to tweak your fine-tuning process. Run the following to see the full list of options:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.yolov5.train -h\\n\")), mdx(\"h2\", null, \"Exporting for Inference\"), mdx(\"p\", null, \"With the sparsified model successfully trained, it is time to export it for inference.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.yolov5.export_onnx\"), \" command is used to export the training graph to a performant inference one.\\nAfter the command completes, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file is created in \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"yolov5/sparsified\"), \" folder.\\nIt is now ready for deployment with DeepSparse utilizing pipelines.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.yolov5.export_onnx \\\\\\n --weights yolov5l/sparsified/weights/best.pt \\\\\\n --dynamic\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#transfer-a-sparsified-model-for-object-detection","title":"Transfer a Sparsified Model for Object Detection","items":[{"url":"#install-requirements","title":"Install Requirements"},{"url":"#transfer-learning","title":"Transfer Learning"},{"url":"#exporting-for-inference","title":"Exporting for Inference"}]}]},"parent":{"relativePath":"get-started/transfer-a-sparsified-model/cv-object-detection.mdx"},"frontmatter":{"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/transfer-a-sparsified-model/nlp-text-classification/page-data.json b/page-data/get-started/transfer-a-sparsified-model/nlp-text-classification/page-data.json index 9edccad5d08..fb256fa98c3 100644 --- a/page-data/get-started/transfer-a-sparsified-model/nlp-text-classification/page-data.json +++ b/page-data/get-started/transfer-a-sparsified-model/nlp-text-classification/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/transfer-a-sparsified-model/nlp-text-classification","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","title":"NLP Text Classification","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/transfer-a-sparsified-model/nlp-text-classification.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"NLP Text Classification\",\n \"metaTitle\": \"Transfer a Sparsified Model for Text Classification\",\n \"metaDescription\": \"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Transfer a Sparsified Model for Text Classification\"), mdx(\"p\", null, \"This page walks through an example of fine-tuning a pre-sparsified model onto a new dataset for sentiment analysis.\"), mdx(\"p\", null, \"For NLP tasks, model distillation from a dense teacher to a sparse student model is helpful to achieve higher sparsity and accuracy.\\nWe will follow two steps using SparseML:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, \"Fine-tune a dense teacher model (BERT) onto a new dataset (SST2)\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Transfer learn a pre-sparsified model (DistilBERT) from the SparseZoo onto SST2, distilling from the dense teacher model trained in step 1\")), mdx(\"p\", null, \"If you already have a trained teacher model ready to go, you can skip step 1.\"), mdx(\"p\", null, \"An example of transfer learning without model distillation is in the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/use-cases/natural-language-processing/text-classification\"\n }, \"Use Cases Page\"), \".\"), mdx(\"h2\", null, \"Install Requirements\"), mdx(\"p\", null, \"This example requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML General Install\"), \".\"), mdx(\"h2\", null, \"Train a Teacher\"), mdx(\"p\", null, \"To create a teacher for the desired text classification dataset, we will fine-tune a dense BERT model from the SparseZoo, the stub of which is below:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none\\n\")), mdx(\"p\", null, \"The following script fine-tunes the dense teacher onto the SST2 dataset for sentiment analysis.\\nAfter the command completes, the trained model will be around 92.7% accurate on SST-2 and stored in the local \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"models/teacher\"), \" directory.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.text_classification \\\\\\n --output_dir models/teacher \\\\\\n --model_name_or_path \\\"zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none\\\" \\\\\\n --recipe \\\"zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none?recipe_type=transfer-text_classification\\\" \\\\\\n --recipe_args '{\\\"init_lr\\\":0.00003}' \\\\\\n --task_name sst2 \\\\\\n --max_seq_length 128 \\\\\\n --per_device_train_batch_size 32 --per_device_eval_batch_size 32 \\\\\\n --do_train --do_eval --evaluation_strategy epoch --fp16 \\\\\\n --save_strategy epoch --save_total_limit 1\\n\")), mdx(\"p\", null, \"The SparseML train script is a wrapper around a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts\"\n }, \"HuggingFace script\"), \", and\\nusage for most arguments follows the HuggingFace. The most important arguments for SparseML are:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model_name_or_path\"), \": specifies starting model. It can be a SparseZoo stub, HF model identifier, or a local directory\\nwith \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.pt\"), \", \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"tokenizer.json\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"config.json\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"recipe\"), \": recipe containing the training hyperparamters (SparseZoo stub or a local file)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"task_name\"), \": specifies the sentiment analysis task. If not provided, also specifies the dataset, pipelines, and eval metrics.\")), mdx(\"p\", null, \"To utilize a custom dataset, use the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--train_file\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--validation_file\"), \" arguments. To use a dataset from the HuggingFace hub, use \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--dataset_name\"), \".\\nSee the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts#run-a-script\"\n }, \"HF Docs\"), \" for more details.\"), mdx(\"p\", null, \"Run the following to see the full list of options:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.text_classification -h\\n\")), mdx(\"h2\", null, \"Transfer Learning\"), mdx(\"p\", null, \"With the teacher model trained, it is ready to be distilled into a sparsified student model.\"), mdx(\"p\", null, \"SparseZoo contains several pre-sparsified NLP models and recipes ready to be used as the student. This example uses the SparseZoo stub for a pruned-quantized DistilBERT:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"zoo:nlp/masked_language_modeling/distilbert-none/pytorch/huggingface/wikipedia_bookcorpus/pruned80_quant-none-vnni\\n\")), mdx(\"p\", null, \"The following script then transfers the sparsified DistilBERT onto the SST2 dataset for sentiment analysis with the help of the teacher from above.\\nAfter the command completes, the trained sparse model will be around 90.5% accurate on SST2 and stored in the local \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"models/sparsified\"), \" directory.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.text_classification \\\\\\n --output_dir models/sparsified \\\\\\n --model_name_or_path \\\"zoo:nlp/masked_language_modeling/distilbert-none/pytorch/huggingface/wikipedia_bookcorpus/pruned80_quant-none-vnni\\\" \\\\\\n --recipe \\\"zoo:nlp/sentiment_analysis/distilbert-none/pytorch/huggingface/sst2/pruned80_quant-none-vnni\\\" \\\\\\n --distill_teacher models/teacher \\\\\\n --task_name sst2 \\\\\\n --max_seq_length 128 \\\\\\n --per_device_train_batch_size 32 --per_device_eval_batch_size 32 \\\\\\n --do_train --do_eval --evaluation_strategy epoch --fp16 \\\\\\n --save_strategy epoch --save_total_limit 1\\n\")), mdx(\"p\", null, \"Usage is the same as above. The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--distill_teacher\"), \" argument instructs SparseML to perform model distillation from the\\nteacher saved at \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"models/teacher\"), \".\"), mdx(\"p\", null, \"There are many additional command line arguments that can be passed to tweak your fine-tuning process. Run the following to see the full list of options:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.text_classification -h\\n\")), mdx(\"h2\", null, \"Exporting for Inference\"), mdx(\"p\", null, \"With the sparsified model successfully trained, it is time to export it for inference.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.transformers.export_onnx\"), \" command is used to export the training graph to a performant inference one.\\nAfter the command completes, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file is created in \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"models/deployment\"), \" folder.\\nIt is now ready for deployment with the DeepSparse Engine.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.export_onnx \\\\\\n --model_path models/sparsified \\\\\\n --task 'text-classification' --finetuning_task sst2 \\\\\\n --sequence_length 128\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#transfer-a-sparsified-model-for-text-classification","title":"Transfer a Sparsified Model for Text Classification","items":[{"url":"#install-requirements","title":"Install Requirements"},{"url":"#train-a-teacher","title":"Train a Teacher"},{"url":"#transfer-learning","title":"Transfer Learning"},{"url":"#exporting-for-inference","title":"Exporting for Inference"}]}]},"parent":{"relativePath":"get-started/transfer-a-sparsified-model/nlp-text-classification.mdx"},"frontmatter":{"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/get-started/transfer-a-sparsified-model/nlp-text-classification","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","title":"NLP Text Classification","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/transfer-a-sparsified-model/nlp-text-classification.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"NLP Text Classification\",\n \"metaTitle\": \"Transfer a Sparsified Model for Text Classification\",\n \"metaDescription\": \"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Transfer a Sparsified Model for Text Classification\"), mdx(\"p\", null, \"This page walks through an example of fine-tuning a pre-sparsified model onto a new dataset for sentiment analysis.\"), mdx(\"p\", null, \"For NLP tasks, model distillation from a dense teacher to a sparse student model is helpful to achieve higher sparsity and accuracy.\\nWe will follow two steps using SparseML:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, \"Fine-tune a dense teacher model (BERT) onto a new dataset (SST2)\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Transfer learn a pre-sparsified model (DistilBERT) from the SparseZoo onto SST2, distilling from the dense teacher model trained in step 1\")), mdx(\"p\", null, \"If you already have a trained teacher model ready to go, you can skip step 1.\"), mdx(\"p\", null, \"An example of transfer learning without model distillation is in the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/use-cases/natural-language-processing/text-classification\"\n }, \"Use Cases Page\"), \".\"), mdx(\"h2\", null, \"Install Requirements\"), mdx(\"p\", null, \"This example requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML General Install\"), \".\"), mdx(\"h2\", null, \"Train a Teacher\"), mdx(\"p\", null, \"To create a teacher for the desired text classification dataset, we will fine-tune a dense BERT model from the SparseZoo, the stub of which is below:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none\\n\")), mdx(\"p\", null, \"The following script fine-tunes the dense teacher onto the SST2 dataset for sentiment analysis.\\nAfter the command completes, the trained model will be around 92.7% accurate on SST-2 and stored in the local \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"models/teacher\"), \" directory.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.text_classification \\\\\\n --output_dir models/teacher \\\\\\n --model_name_or_path \\\"zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none\\\" \\\\\\n --recipe \\\"zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none?recipe_type=transfer-text_classification\\\" \\\\\\n --recipe_args '{\\\"init_lr\\\":0.00003}' \\\\\\n --task_name sst2 \\\\\\n --max_seq_length 128 \\\\\\n --per_device_train_batch_size 32 --per_device_eval_batch_size 32 \\\\\\n --do_train --do_eval --evaluation_strategy epoch --fp16 \\\\\\n --save_strategy epoch --save_total_limit 1\\n\")), mdx(\"p\", null, \"The SparseML train script is a wrapper around a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts\"\n }, \"HuggingFace script\"), \", and\\nusage for most arguments follows the HuggingFace. The most important arguments for SparseML are:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model_name_or_path\"), \": specifies starting model. It can be a SparseZoo stub, HF model identifier, or a local directory\\nwith \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.pt\"), \", \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"tokenizer.json\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"config.json\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"recipe\"), \": recipe containing the training hyperparamters (SparseZoo stub or a local file)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"task_name\"), \": specifies the sentiment analysis task. If not provided, also specifies the dataset, pipelines, and eval metrics.\")), mdx(\"p\", null, \"To utilize a custom dataset, use the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--train_file\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--validation_file\"), \" arguments. To use a dataset from the HuggingFace hub, use \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--dataset_name\"), \".\\nSee the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts#run-a-script\"\n }, \"HF Docs\"), \" for more details.\"), mdx(\"p\", null, \"Run the following to see the full list of options:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.text_classification -h\\n\")), mdx(\"h2\", null, \"Transfer Learning\"), mdx(\"p\", null, \"With the teacher model trained, it is ready to be distilled into a sparsified student model.\"), mdx(\"p\", null, \"SparseZoo contains several pre-sparsified NLP models and recipes ready to be used as the student. This example uses the SparseZoo stub for a pruned-quantized DistilBERT:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"zoo:nlp/masked_language_modeling/distilbert-none/pytorch/huggingface/wikipedia_bookcorpus/pruned80_quant-none-vnni\\n\")), mdx(\"p\", null, \"The following script then transfers the sparsified DistilBERT onto the SST2 dataset for sentiment analysis with the help of the teacher from above.\\nAfter the command completes, the trained sparse model will be around 90.5% accurate on SST2 and stored in the local \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"models/sparsified\"), \" directory.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.text_classification \\\\\\n --output_dir models/sparsified \\\\\\n --model_name_or_path \\\"zoo:nlp/masked_language_modeling/distilbert-none/pytorch/huggingface/wikipedia_bookcorpus/pruned80_quant-none-vnni\\\" \\\\\\n --recipe \\\"zoo:nlp/sentiment_analysis/distilbert-none/pytorch/huggingface/sst2/pruned80_quant-none-vnni\\\" \\\\\\n --distill_teacher models/teacher \\\\\\n --task_name sst2 \\\\\\n --max_seq_length 128 \\\\\\n --per_device_train_batch_size 32 --per_device_eval_batch_size 32 \\\\\\n --do_train --do_eval --evaluation_strategy epoch --fp16 \\\\\\n --save_strategy epoch --save_total_limit 1\\n\")), mdx(\"p\", null, \"Usage is the same as above. The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--distill_teacher\"), \" argument instructs SparseML to perform model distillation from the\\nteacher saved at \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"models/teacher\"), \".\"), mdx(\"p\", null, \"There are many additional command line arguments that can be passed to tweak your fine-tuning process. Run the following to see the full list of options:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.text_classification -h\\n\")), mdx(\"h2\", null, \"Exporting for Inference\"), mdx(\"p\", null, \"With the sparsified model successfully trained, it is time to export it for inference.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.transformers.export_onnx\"), \" command is used to export the training graph to a performant inference one.\\nAfter the command completes, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file is created in \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"models/deployment\"), \" folder.\\nIt is now ready for deployment with DeepSparse.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.export_onnx \\\\\\n --model_path models/sparsified \\\\\\n --task 'text-classification' --finetuning_task sst2 \\\\\\n --sequence_length 128\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#transfer-a-sparsified-model-for-text-classification","title":"Transfer a Sparsified Model for Text Classification","items":[{"url":"#install-requirements","title":"Install Requirements"},{"url":"#train-a-teacher","title":"Train a Teacher"},{"url":"#transfer-learning","title":"Transfer Learning"},{"url":"#exporting-for-inference","title":"Exporting for Inference"}]}]},"parent":{"relativePath":"get-started/transfer-a-sparsified-model/nlp-text-classification.mdx"},"frontmatter":{"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/transfer-a-sparsified-model/page-data.json b/page-data/get-started/transfer-a-sparsified-model/page-data.json index 024ee61f540..dc4116aeac5 100644 --- a/page-data/get-started/transfer-a-sparsified-model/page-data.json +++ b/page-data/get-started/transfer-a-sparsified-model/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/transfer-a-sparsified-model","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","title":"Transfer a Sparsified Model","slug":"/get-started/transfer-a-sparsified-model","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/transfer-a-sparsified-model.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Transfer a Sparsified Model\",\n \"metaTitle\": \"Transfer a Sparsified Model\",\n \"metaDescription\": \"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training\",\n \"index\": 3000\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Transfer a Sparsified Model\"), mdx(\"p\", null, \"Sparse transfer learning is the easiest pathway for creating a sparse model fine-tuned on your datasets.\"), mdx(\"p\", null, \"Sparse transfer learning works by taking a sparse model pre-trained on a large dataset and fine-tuning it onto a smaller downstream dataset.\\nSparseZoo and SparseML work together to accomplish this goal:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"SparseZoo is a growing repository of sparse models pre-trained on large datasets ready for fine-tuning\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"SparseML contains convenient training CLIs that run transfer-learn while preserving the same level of sparsity as the starting model\")), mdx(\"p\", null, \"By fine-tuning pre-sparsified models onto your dataset, you can avoid the time, money, and hyperparameter tuning involved with sparsifying a dense model from scratch.\\nOnce trained, deploy your model on the DeepSparse Engine for GPU-level performance on CPUs.\"), mdx(\"h2\", null, \"Example Use Cases\"), mdx(\"p\", null, \"The docs below walk through example use cases leveraging SparseML for sparse transfer learning.\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./nlp-text-classification\",\n heading: \"NLP Text Classification\",\n mdxType: \"LinkCard\"\n }, \"Example transferring an NLP model to a text classification use case utilizing HuggingFace Transformers.\"), mdx(LinkCard, {\n href: \"./cv-object-detection\",\n heading: \"CV Object Detection\",\n mdxType: \"LinkCard\"\n }, \"Example transferring an object detection model to a new dataset utilizing Ultralytics YOLOv5.\")), mdx(\"h2\", null, \"Other Use Cases\"), mdx(\"p\", null, \"More documentation, models, use cases, and examples are continually being added.\\nIf you don't see one you're interested in, search the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse\"\n }, \"DeepSparse Github repo\"), \", the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml\"\n }, \"SparseML Github repo\"), \", the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com/\"\n }, \"SparseZoo website\"), \", or ask in the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Neural Magic Slack\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#transfer-a-sparsified-model","title":"Transfer a Sparsified Model","items":[{"url":"#example-use-cases","title":"Example Use Cases"},{"url":"#other-use-cases","title":"Other Use Cases"}]}]},"parent":{"relativePath":"get-started/transfer-a-sparsified-model.mdx"},"frontmatter":{"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/get-started/transfer-a-sparsified-model","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","title":"Transfer a Sparsified Model","slug":"/get-started/transfer-a-sparsified-model","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/transfer-a-sparsified-model.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Transfer a Sparsified Model\",\n \"metaTitle\": \"Transfer a Sparsified Model\",\n \"metaDescription\": \"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training\",\n \"index\": 3000\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Transfer a Sparsified Model\"), mdx(\"p\", null, \"Sparse transfer learning is the easiest pathway for creating a sparse model fine-tuned on your datasets.\"), mdx(\"p\", null, \"Sparse transfer learning works by taking a sparse model pre-trained on a large dataset and fine-tuning it onto a smaller downstream dataset.\\nSparseZoo and SparseML work together to accomplish this goal:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"SparseZoo is a growing repository of sparse models pre-trained on large datasets ready for fine-tuning\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"SparseML contains convenient training CLIs that run transfer-learn while preserving the same level of sparsity as the starting model\")), mdx(\"p\", null, \"By fine-tuning pre-sparsified models onto your dataset, you can avoid the time, money, and hyperparameter tuning involved with sparsifying a dense model from scratch.\\nOnce trained, deploy your model with DeepSparse for GPU-level performance on CPUs.\"), mdx(\"h2\", null, \"Example Use Cases\"), mdx(\"p\", null, \"The docs below walk through example use cases leveraging SparseML for sparse transfer learning.\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./nlp-text-classification\",\n heading: \"NLP Text Classification\",\n mdxType: \"LinkCard\"\n }, \"Example transferring an NLP model to a text classification use case utilizing HuggingFace Transformers.\"), mdx(LinkCard, {\n href: \"./cv-object-detection\",\n heading: \"CV Object Detection\",\n mdxType: \"LinkCard\"\n }, \"Example transferring an object detection model to a new dataset utilizing Ultralytics YOLOv5.\")), mdx(\"h2\", null, \"Other Use Cases\"), mdx(\"p\", null, \"More documentation, models, use cases, and examples are continually being added.\\nIf you don't see one you're interested in, search the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse\"\n }, \"DeepSparse Github repo\"), \", the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml\"\n }, \"SparseML Github repo\"), \", the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com/\"\n }, \"SparseZoo website\"), \", or ask in the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Neural Magic Slack\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#transfer-a-sparsified-model","title":"Transfer a Sparsified Model","items":[{"url":"#example-use-cases","title":"Example Use Cases"},{"url":"#other-use-cases","title":"Other Use Cases"}]}]},"parent":{"relativePath":"get-started/transfer-a-sparsified-model.mdx"},"frontmatter":{"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/try-a-model/custom-use-case/page-data.json b/page-data/get-started/try-a-model/custom-use-case/page-data.json deleted file mode 100644 index 2da18ac8f08..00000000000 --- a/page-data/get-started/try-a-model/custom-use-case/page-data.json +++ /dev/null @@ -1 +0,0 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/try-a-model/custom-use-case","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","title":"Custom Use Case","slug":"/get-started/try-a-model/custom-use-case","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/try-a-model/custom-use-case.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Custom Use Case\",\n \"metaTitle\": \"Try a Custom Use Case\",\n \"metaDescription\": \"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Try a Custom Use Case\"), mdx(\"p\", null, \"This page explains how to run a model on the DeepSparse Engine for a custom task inside a Python API called \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines.\")), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" wrap key utilities around the DeepSparse Engine for easy testing and deployment.\"), mdx(\"p\", null, \"The DeepSparse Engine supports many operators within ONNX, enabling performance for most models and use cases outside of the ones available on the SparseZoo.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"CustomTaskPipeline\"), \" enables you to wrap your model with custom pre and post-processing functions for simple deployment and benchmarking.\\nIn this way, the simplicity of \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" is combined with the performance of DeepSparse for arbitrary use cases.\"), mdx(\"h2\", null, \"Install Requirements\"), mdx(\"p\", null, \"This example requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse General Install\"), \" and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torchvision Install\"), \".\"), mdx(\"h2\", null, \"Model Setup\"), mdx(\"p\", null, \"For custom model deployment, first export your model to the ONNX model format (create a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file).\\nSparseML has available wrappers for ONNX export classes and APIs for a more straightforward export process.\\nA sample export utilizing this API for a MobileNetV2 TorchVision model is given below.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import torch\\nfrom torchvision.models.mobilenetv2 import mobilenet_v2\\nfrom sparseml.pytorch.utils import export_onnx\\n\\nmodel = mobilenet_v2(pretrained=True)\\nsample_batch = torch.randn((1, 3, 224, 224))\\nexport_path = \\\"custom_model.onnx\\\"\\nexport_onnx(model, sample_batch, export_path)\\n\")), mdx(\"p\", null, \"Once the model is in an ONNX format, it is ready for inclusion in a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"CustomTaskPipeline\"), \" or benchmarking.\\nExamples for both are given below.\"), mdx(\"h2\", null, \"Inference Pipelines\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file can be passed into a DeepSparse \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"CustomTaskPipeline\"), \" utilizing the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" argument alongside optional pre and post-processing functions.\"), mdx(\"p\", null, \"A sample image is downloaded that will be run through the example to test the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \".\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg\\n\")), mdx(\"p\", null, \"Next, the pre and post-processing functions are defined, and the pipeline enabling the classification of the image file is instantiated:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse.pipelines.custom_pipeline import CustomTaskPipeline\\nimport torch\\nfrom torchvision import transforms\\nfrom PIL import Image\\n\\nIMAGENET_RGB_MEANS = [0.485, 0.456, 0.406]\\nIMAGENET_RGB_STDS = [0.229, 0.224, 0.225]\\npreprocess_transforms = transforms.Compose([\\n transforms.Resize(256),\\n transforms.CenterCrop(224),\\n transforms.ToTensor(),\\n transforms.Normalize(mean=IMAGENET_RGB_MEANS, std=IMAGENET_RGB_STDS),\\n])\\n\\ndef preprocess(inputs):\\n with open(inputs, \\\"rb\\\") as img_file:\\n img = Image.open(img_file)\\n img = img.convert(\\\"RGB\\\")\\n img = preprocess_transforms(img)\\n batch = torch.stack([img])\\n return [batch.numpy()] # deepsparse requires a list of numpy array inputs\\n\\ndef postprocess(outputs):\\n return outputs # list of numpy array outputs\\n\\ncustom_pipeline = CustomTaskPipeline(\\n model_path=\\\"custom_model.onnx\\\",\\n process_inputs_fn=preprocess,\\n process_outputs_fn=postprocess,\\n)\\ninference = custom_pipeline(\\\"basilica.jpg\\\")\\nprint(inference)\\n\\n> [array([[-5.64189434e+00, -2.78636312e+00, -2.62499309e+00, ...\\n\")), mdx(\"h2\", null, \"Benchmarking\"), mdx(\"p\", null, \"The DeepSparse install includes a benchmark CLI for convenient and easy inference performance benchmarking: \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.benchmark\"), \".\\nThe CLI takes in both SparseZoo stubs or paths to a local \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file.\"), mdx(\"p\", null, \"The code below provides an example for benchmarking the previously exported MobileNetV2 model.\\nThe output shows that the model achieved 441 items per second on a 4-core CPU.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark custom_model.onnx\\n\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.2 (7dc5fa34) (release) (optimized) (system=avx512, binary=avx512)\\n> Original Model Path: custom_model.onnx\\n> Batch Size: 1\\n> Scenario: async\\n> Throughput (items/sec): 441.2780\\n> Latency Mean (ms/batch): 4.5244\\n> Latency Median (ms/batch): 4.5054\\n> Latency Std (ms/batch): 0.0774\\n> Iterations: 4414\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#try-a-custom-use-case","title":"Try a Custom Use Case","items":[{"url":"#install-requirements","title":"Install Requirements"},{"url":"#model-setup","title":"Model Setup"},{"url":"#inference-pipelines","title":"Inference Pipelines"},{"url":"#benchmarking","title":"Benchmarking"}]}]},"parent":{"relativePath":"get-started/try-a-model/custom-use-case.mdx"},"frontmatter":{"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/try-a-model/cv-object-detection/page-data.json b/page-data/get-started/try-a-model/cv-object-detection/page-data.json deleted file mode 100644 index 020edba2e83..00000000000 --- a/page-data/get-started/try-a-model/cv-object-detection/page-data.json +++ /dev/null @@ -1 +0,0 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/try-a-model/cv-object-detection","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","title":"CV Object Detection","slug":"/get-started/try-a-model/cv-object-detection","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/try-a-model/cv-object-detection.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"CV Object Detection\",\n \"metaTitle\": \"Try an Object Detection Model\",\n \"metaDescription\": \"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Try an Object Detection Model\"), mdx(\"p\", null, \"This page explains how to run a trained model on the DeepSparse Engine for Object Detection inside a Python API called \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines.\")), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" wrap key utilities around the DeepSparse Engine for easy testing and deployment.\"), mdx(\"p\", null, \"The object detection \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \", for example, wraps a trained model with the proper preprocessing and postprocessing pipelines such as NMS.\\nThis enables the passing of raw images and receiving the bounding boxes from the DeepSparse Engine without any extra effort.\\nWith all of this built on top of the DeepSparse Engine, the simplicity of \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" is combined with GPU-class performance on CPUs for sparse models.\"), mdx(\"h2\", null, \"Install Requirements\"), mdx(\"p\", null, \"This example requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse YOLO Install\"), \".\"), mdx(\"h2\", null, \"Model Setup\"), mdx(\"p\", null, \"The object detection \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" uses Ultralytics YOLOv5 standards and configurations for model setup.\\nThe possible files/variables that can be passed in are the following:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.onnx\"), \" - The exported YOLOv5 model in the ONNX format.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.yaml\"), \" - The Ultralytics model config file containing configuration information about the model and its post-processing.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"class_names\"), \" - A list, dictionary, or file containing the index to class name mappings for the trained model.\")), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" is the only required file.\\nThe pipeline will default to a standard setup for the COCO dataset if the model config file or class names are not provided.\"), mdx(\"p\", null, \"There are two options for passing these files to DeepSparse:\"), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"1) Using The SparseZoo\")), mdx(\"p\", null, \"This pathway is relevant if you want to use a pre-sparsified state-of-the-art model off the shelpf.\"), mdx(\"p\", null, \"SparseZoo is a repository of pre-trained and pre-sparsified models. DeepSparse supports SparseZoo stubs as inputs for automatic download and inclusion into easy testing and deployment.\\nThese models include dense and sparsified versions of YOLOv5 trained on the COCO dataset for performant and general detection, among others.\\nThe SparseZoo stubs can be found on SparseZoo model pages, and YOLOv5l examples are provided below:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/models/cv%2Fdetection%2Fyolov5-l%2Fpytorch%2Fultralytics%2Fcoco%2Fpruned_quant-aggressive_95\"\n }, \"Sparse-quantized YOLOv5l\"))), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95\\n\")), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/models/cv%2Fdetection%2Fyolov5-l%2Fpytorch%2Fultralytics%2Fcoco%2Fbase-none\"\n }, \"Dense YOLOv5l\"))), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/base-none\\n\")), mdx(\"p\", null, \"These SparseZoo stubs can be passed as arguments to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" constructor in the examples below.\")), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"2) Using a Custom Local Model\")), mdx(\"p\", null, \"This pathway is relevant if you want to use a model fine-tuned on your data with SparseML or a custom model.\"), mdx(\"p\", null, \"There are three steps to using a local model with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \":\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, \"Create the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.onnx\"), \" file (if you trained with SparseML, use the \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/ultralytics-yolov5#exporting-the-sparse-model-to-onnx\"\n }, \"ONNX export script\"), \")\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Collect the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.yaml\"), \" file and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"class_names\"), \" listed above.\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Pass the local paths of the files in place of the SparseZoo stubs.\"))), mdx(\"p\", null, \"The examples below use the SparseZoo stubs. Pass the path to the local model in place of the stubs if you want to use a custom model.\"), mdx(\"h2\", null, \"Inference Pipelines\"), mdx(\"p\", null, \"With the object detection model setup, it can then be passed into a DeepSparse \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" utilizing the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" argument.\\nThe SparseZoo stub for the sparse-quantized YOLOv5l model given at the beginning is used in the sample code below.\\nIt will automatically download the necessary files for the model from the SparseZoo and then compile them on your local machine in the DeepSparse engine.\\nOnce compiled, the model \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" is ready for inference with images.\"), mdx(\"p\", null, \"First, a sample image is downloaded that will be run through the example to test the pipeline.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg\\n\")), mdx(\"p\", null, \"Next, instantiate the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" and pass the image in using the images argument:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\nyolo_pipeline = Pipeline.create(\\n task=\\\"yolo\\\",\\n model_path=\\\"zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95\\\", # if using custom model, pass in local path to model.onnx\\n class_names=None, # if using custom model, pass in a list of classes the model will clasify or a path to a json file containing them\\n model_config=None, # if using custom model, pass in the path to a local model config file here\\n)\\ninference = yolo_pipeline(images=['basilica.jpg'], iou_thres=0.6, conf_thres=0.001)\\nprint(inference)\\n\\n> predictions=[[[174.3507843017578, 478.4552917480469, 346.09051513671875, 618.4129638671875, ...\\n\")), mdx(\"h2\", null, \"Benchmarking\"), mdx(\"p\", null, \"The DeepSparse install includes a CLI for convenient performance benchmarking.\\nYou can pass a SparseZoo stub or a local \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file.\"), mdx(\"h3\", null, \"Dense YOLOv5l\"), mdx(\"p\", null, \"The code below provides an example for benchmarking a dense YOLOv5l model in the DeepSparse Engine.\\nThe output shows that the model achieved 5.3 items per second on a 4-core CPU.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/base-none\\n\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.0 (8eaddc24) (release) (optimized) (system=avx512, binary=avx512)\\n> Original Model Path: zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/base-none\\n> Batch Size: 1\\n> Scenario: async\\n> Throughput (items/sec): 5.2836\\n> Latency Mean (ms/batch): 378.2448\\n> Latency Median (ms/batch): 378.1490\\n> Latency Std (ms/batch): 2.5183\\n> Iterations: 54\\n\")), mdx(\"h3\", null, \"Sparsified YOLOv5l\"), mdx(\"p\", null, \"Running on the same server, the code below shows how the benchmarks change when utilizing a sparsified version of YOLOv5l.\\nIt achieved 19.0 items per second, a \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"3.6X\"), \" increase in performance over the dense baseline.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95\\n\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.0 (8eaddc24) (release) (optimized) (system=avx512, binary=avx512)\\n> Original Model Path: zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95\\n> Batch Size: 1\\n> Scenario: async\\n> Throughput (items/sec): 18.9863\\n> Latency Mean (ms/batch): 105.2613\\n> Latency Median (ms/batch): 105.0656\\n> Latency Std (ms/batch): 1.6043\\n> Iterations: 190\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#try-an-object-detection-model","title":"Try an Object Detection Model","items":[{"url":"#install-requirements","title":"Install Requirements"},{"url":"#model-setup","title":"Model Setup"},{"url":"#inference-pipelines","title":"Inference Pipelines"},{"url":"#benchmarking","title":"Benchmarking","items":[{"url":"#dense-yolov5l","title":"Dense YOLOv5l"},{"url":"#sparsified-yolov5l","title":"Sparsified YOLOv5l"}]}]}]},"parent":{"relativePath":"get-started/try-a-model/cv-object-detection.mdx"},"frontmatter":{"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/try-a-model/nlp-text-classification/page-data.json b/page-data/get-started/try-a-model/nlp-text-classification/page-data.json deleted file mode 100644 index 60461308ba7..00000000000 --- a/page-data/get-started/try-a-model/nlp-text-classification/page-data.json +++ /dev/null @@ -1 +0,0 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/try-a-model/nlp-text-classification","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","title":"NLP Text Classification","slug":"/get-started/try-a-model/nlp-text-classification","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/try-a-model/nlp-text-classification.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"NLP Text Classification\",\n \"metaTitle\": \"Try a Text Classification Model\",\n \"metaDescription\": \"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Try a Text Classification Model\"), mdx(\"p\", null, \"This page explains how to run a trained model with the DeepSparse Engine for NLP inside a Python API called \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines.\")), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" wrap key utilities around the DeepSparse Engine for easy testing and deployment.\"), mdx(\"p\", null, \"The text classification \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \", for example, wraps an NLP model with the proper preprocessing and postprocessing pipelines, such as tokenization.\\nThis enables passing in raw text sequences and receiving the labeled predictions from the DeepSparse Engine without any extra effort.\\nWith all of this built on top of the DeepSparse Engine, the simplicity of \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" is combined with GPU-class performance on CPUs for sparse models.\"), mdx(\"h2\", null, \"Install Requirements\"), mdx(\"p\", null, \"This example requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse General Install\"), \".\"), mdx(\"h2\", null, \"Model Setup\"), mdx(\"p\", null, \"The first step is collecting an ONNX representaiton of the model and required configuration files.\\nThe text classification \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" is integrated with HuggingFace and uses HuggingFace's standards\\nand configurations for model setup. The following files are required:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.onnx\"), \" - The exported Transformers model in the ONNX format.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"tokenizer.json\"), \" - The HuggingFace tokenizer used with the model.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"tokenizer_config.json\"), \" - The HuggingFace tokenizer configuration used with the model.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"config.json\"), \" - The HuggingFace configuration file used with the model.\")), mdx(\"p\", null, \"For an example of the config files, checkout \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/bert-base-uncased/tree/main\"\n }, \"BERT's model page on HuggingFace\"), \".\"), mdx(\"p\", null, \"There are two options for passing these files to DeepSparse:\"), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"1) Using SparseZoo Stubs (Reccomended Starting Point)\")), mdx(\"p\", null, \"SparseZoo contains several pre-sparsified Transformer models, including the config files listed above. DeepSparse is integrated\\nwith SparseZoo, and supports SparseZoo stubs as inputs for automatic download and inclusion into easy testing and deployment.\"), mdx(\"p\", null, \"The SparseZoo stubs can be found on SparseZoo model pages, and DistilBERT examples are provided below:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/models/nlp%2Ftext_classification%2Fdistilbert-none%2Fpytorch%2Fhuggingface%2Fmnli%2Fpruned80_quant-none-vnni\"\n }, \"Sparse-quantized DistilBERT\"))), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni\\n\")), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/models/nlp%2Ftext_classification%2Fdistilbert-none%2Fpytorch%2Fhuggingface%2Fmnli%2Fbase-none\"\n }, \"Dense DistilBERT\"))), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/base-none\\n\")), mdx(\"p\", null, \"These SparseZoo stubs are passed arguments to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" constructor in the examples below.\")), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"2) Using a Local Model\")), mdx(\"p\", null, \"Alternatively, you can use a custom or fine-tuned model from your local drive.\"), mdx(\"p\", null, \"There are three steps to using a local model with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \":\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, \"Export model to \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.onnx\"), \" (if you trained with SparseML, use \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/huggingface-transformers#exporting-to-onnx\"\n }, \"ONNX export\"), \")\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Collect the configuration files listed above. These are generally stored with the resulting model files from HuggingFace training pipelines (as is the case with SparseML)\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Place the files into a directory\")), mdx(\"p\", null, \"Pass the path the local directory in the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_path\"), \" in place of the SparseZoo stubs in the examples below.\")), mdx(\"h2\", null, \"Inference Pipelines\"), mdx(\"p\", null, \"With the text classification model setup, it can then be passed into a DeepSparse \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" utilizing the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" argument.\\nThe SparseZoo stub for the sparse-quantized DistilBERT model given at the beginning is used in the sample code below.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" automatically downloads the necessary files for the model from the SparseZoo and compiles them on your local machine in the DeepSparse engine.\\nOnce compiled, the model \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" is ready for inference with text sequences.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\nclassification_pipeline = Pipeline.create(\\n task=\\\"text-classification\\\",\\n model_path=\\\"zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni\\\",\\n)\\ninference = classification_pipeline(\\n [[\\n \\\"Fun for adults and children.\\\",\\n \\\"Fun for only children.\\\",\\n ]]\\n)\\nprint(inference)\\n\\n> labels=['contradiction'] scores=[0.9983579516410828]\\n\")), mdx(\"p\", null, \"Because DistilBERT is a language model trained on the MNLI dataset, it can additionally be used to perform zero-shot text classification for any text sequences.\\nThe code below gives an example of a zero-shot text classification pipeline.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\nzero_shot_pipeline = Pipeline.create(\\n task=\\\"zero_shot_text_classification\\\",\\n model_path=\\\"zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni\\\",\\n model_scheme=\\\"mnli\\\",\\n model_config={\\\"hypothesis_template\\\": \\\"This text is related to {}\\\"},\\n)\\ninference = zero_shot_pipeline(\\n sequences='Who are you voting for in 2020?',\\n labels=['politics', 'public health', 'Europe'],\\n)\\nprint(inference)\\n\\n> sequences='Who are you voting for in 2020?' labels=['politics', 'Europe', 'public health'] scores=[0.9345628619194031, 0.039115309715270996, 0.026321841403841972]\\n\")), mdx(\"h2\", null, \"Benchmarking\"), mdx(\"p\", null, \"The DeepSparse install includes a benchmark CLI for convenient and easy inference benchmarking: \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.benchmark\"), \".\\nThe CLI takes in either a SparseZoo stub or a path to a local \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file.\"), mdx(\"h3\", null, \"Dense DistilBERT\"), mdx(\"p\", null, \"The code below provides an example for benchmarking a dense DistilBERT model in the DeepSparse Engine.\\nThe output shows that the model achieved 32.6 items per second on a 4-core CPU.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/base-none\\n\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.0 (8eaddc24) (release) (optimized) (system=avx512, binary=avx512)\\n> Original Model Path: zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/base-none\\n> Batch Size: 1\\n> Scenario: async\\n> Throughput (items/sec): 32.2806\\n> Latency Mean (ms/batch): 61.9034\\n> Latency Median (ms/batch): 61.7760\\n> Latency Std (ms/batch): 0.4792\\n> Iterations: 324\\n\")), mdx(\"h3\", null, \"Sparsified DistilBERT\"), mdx(\"p\", null, \"Running on the same server, the code below shows how the benchmarks change when utilizing a sparsified version of DistilBERT.\\nIt achieved 221.0 items per second, a \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"6.8X increase\"), \" in performance over the dense baseline.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni\\n\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.0 (8eaddc24) (release) (optimized) (system=avx512, binary=avx512)\\n> Original Model Path: zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni\\n> Batch Size: 1\\n> Scenario: async\\n> Throughput (items/sec): 220.9794\\n> Latency Mean (ms/batch): 9.0147\\n> Latency Median (ms/batch): 9.0085\\n> Latency Std (ms/batch): 0.1037\\n> Iterations: 2210\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#try-a-text-classification-model","title":"Try a Text Classification Model","items":[{"url":"#install-requirements","title":"Install Requirements"},{"url":"#model-setup","title":"Model Setup"},{"url":"#inference-pipelines","title":"Inference Pipelines"},{"url":"#benchmarking","title":"Benchmarking","items":[{"url":"#dense-distilbert","title":"Dense DistilBERT"},{"url":"#sparsified-distilbert","title":"Sparsified DistilBERT"}]}]}]},"parent":{"relativePath":"get-started/try-a-model/nlp-text-classification.mdx"},"frontmatter":{"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/try-a-model/page-data.json b/page-data/get-started/try-a-model/page-data.json deleted file mode 100644 index 94a6be7406e..00000000000 --- a/page-data/get-started/try-a-model/page-data.json +++ /dev/null @@ -1 +0,0 @@ -{"componentChunkName":"component---src-root-jsx","path":"/get-started/try-a-model","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","title":"Try a Model","slug":"/get-started/try-a-model","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/try-a-model.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Try a Model\",\n \"metaTitle\": \"Try a Model\",\n \"metaDescription\": \"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs\",\n \"index\": 2000\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Try a Model\"), mdx(\"p\", null, \"DeepSparse Engine supports fast inference on CPUs for sparse and dense models. For sparse models in particular, it achieves GPU-level performance in many use cases.\"), mdx(\"p\", null, \"Around the engine, the DeepSparse package includes various utilities to simplify benchmarking performance and model deployment. For instance:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, \"Trained models are passed in the open ONNX file format, enabling easy exporting from common packages like PyTorch, Keras, and TensorFlow.\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Benchmaking latency and performance is available via a single CLI call, with various arguments to test scenarios.\"), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"Pipelines\"), \" utilities wrap the model execution with input pre-processing and output post-processing, simplifying deployment and adding functionality like multi-stream, bucketing and dynamic shape.\")), mdx(\"h2\", null, \"Use Case Examples\"), mdx(\"p\", null, \"The examples below walk through use cases leveraging DeepSparse for testing and benchmarking ONNX models for integrated use cases.\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./nlp-text-classification\",\n heading: \"NLP Text Classification\",\n mdxType: \"LinkCard\"\n }, \"Example pipelines and benchmarking for an NLP text classification use case utilizing HuggingFace Transformers.\"), mdx(LinkCard, {\n href: \"./cv-object-detection\",\n heading: \"CV Object Detection\",\n mdxType: \"LinkCard\"\n }, \"Example pipelines and benchmarking for a CV object detection use case utilizing Ultralytics YOLOv5.\"), mdx(LinkCard, {\n href: \"./custom-use-case\",\n heading: \"Custom Use Case\",\n mdxType: \"LinkCard\"\n }, \"Example for how to create a pipeline for a custom model utilizing the DeepSparse Engine.\")), mdx(\"h2\", null, \"Other Use Cases\"), mdx(\"p\", null, \"More documentation, models, use cases, and examples are continually being added.\\nIf you don't see one you're interested in, search the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse\"\n }, \"DeepSparse Github repo\"), \", the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml\"\n }, \"SparseML Github repo\"), \", the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com/\"\n }, \"SparseZoo website\"), \", or ask in the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Neural Magic Slack\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#try-a-model","title":"Try a Model","items":[{"url":"#use-case-examples","title":"Use Case Examples"},{"url":"#other-use-cases","title":"Other Use Cases"}]}]},"parent":{"relativePath":"get-started/try-a-model.mdx"},"frontmatter":{"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/use-a-model/custom-use-case/page-data.json b/page-data/get-started/use-a-model/custom-use-case/page-data.json new file mode 100644 index 00000000000..7567673c4e9 --- /dev/null +++ b/page-data/get-started/use-a-model/custom-use-case/page-data.json @@ -0,0 +1 @@ +{"componentChunkName":"component---src-root-jsx","path":"/get-started/use-a-model/custom-use-case","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","title":"Custom Use Case","slug":"/get-started/use-a-model/custom-use-case","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/use-a-model/custom-use-case.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Custom Use Case\",\n \"metaTitle\": \"Use a Custom Use Case\",\n \"metaDescription\": \"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Use a Custom Use Case\"), mdx(\"p\", null, \"This page explains how to run a model on DeepSparse for a custom task inside a Python API called \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines.\")), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" wrap key utilities around DeepSparse for easy testing and deployment.\"), mdx(\"p\", null, \"DeepSparse supports many operators within ONNX, enabling performance for most models and use cases outside of the ones available on the SparseZoo.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"CustomTaskPipeline\"), \" enables you to wrap your model with custom pre-processing and post-processing functions for simple deployment and benchmarking.\\nIn this way, DeepSparse combines the simplicity of Pipelines with GPU-class performance for any use case.\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This example requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse General Installation\"), \" and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torchvision Installation\"), \".\"), mdx(\"h2\", null, \"Model Setup\"), mdx(\"p\", null, \"For custom model deployment, export your model to the ONNX model format (create a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file).\\nSparseML has available wrappers for ONNX export classes and APIs for a more straightforward export process.\\nA sample export utilizing this API for a MobileNetV2 TorchVision model is given below.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import torch\\nfrom torchvision.models.mobilenetv2 import mobilenet_v2\\nfrom sparseml.pytorch.utils import export_onnx\\n\\nmodel = mobilenet_v2(pretrained=True)\\nsample_batch = torch.randn((1, 3, 224, 224))\\nexport_path = \\\"custom_model.onnx\\\"\\nexport_onnx(model, sample_batch, export_path)\\n\")), mdx(\"p\", null, \"Once the model is in an ONNX format, it is ready for inclusion in a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"CustomTaskPipeline\"), \" or benchmarking.\\nExamples for both are given below.\"), mdx(\"h2\", null, \"Inference Pipelines\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file can be passed into a DeepSparse \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"CustomTaskPipeline\"), \" utilizing the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" argument alongside optional pre-processing and post-processing functions.\"), mdx(\"p\", null, \"A sample image is downloaded that will be run through the example to test the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \".\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg\\n\")), mdx(\"p\", null, \"Next, the pre-processing and post-processing functions are defined, and the pipeline enabling the classification of the image file is instantiated:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse.pipelines.custom_pipeline import CustomTaskPipeline\\nimport torch\\nfrom torchvision import transforms\\nfrom PIL import Image\\n\\nIMAGENET_RGB_MEANS = [0.485, 0.456, 0.406]\\nIMAGENET_RGB_STDS = [0.229, 0.224, 0.225]\\npreprocess_transforms = transforms.Compose([\\n transforms.Resize(256),\\n transforms.CenterCrop(224),\\n transforms.ToTensor(),\\n transforms.Normalize(mean=IMAGENET_RGB_MEANS, std=IMAGENET_RGB_STDS),\\n])\\n\\ndef preprocess(inputs):\\n with open(inputs, \\\"rb\\\") as img_file:\\n img = Image.open(img_file)\\n img = img.convert(\\\"RGB\\\")\\n img = preprocess_transforms(img)\\n batch = torch.stack([img])\\n return [batch.numpy()] # deepsparse requires a list of numpy array inputs\\n\\ndef postprocess(outputs):\\n return outputs # list of numpy array outputs\\n\\ncustom_pipeline = CustomTaskPipeline(\\n model_path=\\\"custom_model.onnx\\\",\\n process_inputs_fn=preprocess,\\n process_outputs_fn=postprocess,\\n)\\ninference = custom_pipeline(\\\"basilica.jpg\\\")\\nprint(inference)\\n\\n> [array([[-5.64189434e+00, -2.78636312e+00, -2.62499309e+00, ...\\n\")), mdx(\"h2\", null, \"Benchmarking\"), mdx(\"p\", null, \"The DeepSparse installation includes a benchmark CLI for convenient and easy inference performance benchmarking: \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.benchmark\"), \".\\nThe CLI takes in both SparseZoo stubs or paths to a local \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file.\"), mdx(\"p\", null, \"The code below provides an example for benchmarking the previously exported MobileNetV2 model.\\nThe output shows that the model achieved 441 items per second on a 4-core CPU.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark custom_model.onnx\\n\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.2 (7dc5fa34) (release) (optimized) (system=avx512, binary=avx512)\\n> Original Model Path: custom_model.onnx\\n> Batch Size: 1\\n> Scenario: async\\n> Throughput (items/sec): 441.2780\\n> Latency Mean (ms/batch): 4.5244\\n> Latency Median (ms/batch): 4.5054\\n> Latency Std (ms/batch): 0.0774\\n> Iterations: 4414\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#use-a-custom-use-case","title":"Use a Custom Use Case","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#model-setup","title":"Model Setup"},{"url":"#inference-pipelines","title":"Inference Pipelines"},{"url":"#benchmarking","title":"Benchmarking"}]}]},"parent":{"relativePath":"get-started/use-a-model/custom-use-case.mdx"},"frontmatter":{"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"00c56759-713b-5731-92b9-027dab853257","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/use-a-model/cv-object-detection/page-data.json b/page-data/get-started/use-a-model/cv-object-detection/page-data.json new file mode 100644 index 00000000000..ab563f6f9b5 --- /dev/null +++ b/page-data/get-started/use-a-model/cv-object-detection/page-data.json @@ -0,0 +1 @@ +{"componentChunkName":"component---src-root-jsx","path":"/get-started/use-a-model/cv-object-detection","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","title":"CV Object Detection","slug":"/get-started/use-a-model/cv-object-detection","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/use-a-model/cv-object-detection.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"CV Object Detection\",\n \"metaTitle\": \"Use an Object Detection Model\",\n \"metaDescription\": \"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Use an Object Detection Model\"), mdx(\"p\", null, \"This page explains how to run a trained model on DeepSparse for Object Detection inside a Python API called \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines.\")), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" wraps key utilities around DeepSparse for easy testing and deployment.\"), mdx(\"p\", null, \"The object detection \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \", for example, wraps a trained model with the proper pre-processing and post-processing pipelines such as NMS.\\nThis enables the passing of raw images and receiving the bounding boxes from the DeepSparse Engine without any extra effort.\\nWith all of this built on top of the DeepSparse Engine, the simplicity of \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" is combined with GPU-class performance on CPUs for sparse models.\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This example requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse YOLO Installation\"), \".\"), mdx(\"h2\", null, \"Model Setup\"), mdx(\"p\", null, \"The object detection \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" uses Ultralytics YOLOv5 standards and configurations for model setup.\\nThe possible files/variables that can be passed in are:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.onnx\"), \" - Exported YOLOv5 model in the ONNX format.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.yaml\"), \" - Ultralytics model configuration file containing configuration information about the model and its post-processing.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"class_names\"), \" - A list, dictionary, or file containing the index to class name mappings for the trained model.\")), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" is the only required file.\\nThe pipeline will default to a standard setup for the COCO dataset if the model configuration file or class names are not provided.\"), mdx(\"p\", null, \"There are two options for passing these files to DeepSparse:\"), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"1) Using the SparseZoo\")), mdx(\"p\", null, \"This pathway is relevant if you want to use a pre-sparsified state-of-the-art model off the shelf.\"), mdx(\"p\", null, \"SparseZoo is a repository of pre-trained and pre-sparsified models. DeepSparse supports SparseZoo stubs as inputs for automatic download and inclusion into easy testing and deployment.\\nThese models include dense and sparsified versions of YOLOv5 trained on the COCO dataset for performant and general detection, among others.\\nThe SparseZoo stubs can be found on SparseZoo model pages, and YOLOv5l examples are provided below:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/models/cv%2Fdetection%2Fyolov5-l%2Fpytorch%2Fultralytics%2Fcoco%2Fpruned_quant-aggressive_95\"\n }, \"Sparse-quantized YOLOv5l\"))), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95\\n\")), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/models/cv%2Fdetection%2Fyolov5-l%2Fpytorch%2Fultralytics%2Fcoco%2Fbase-none\"\n }, \"Dense YOLOv5l\"))), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/base-none\\n\")), mdx(\"p\", null, \"These SparseZoo stubs can be passed as arguments to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" constructor in the examples below.\")), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"2) Using a custom local model\")), mdx(\"p\", null, \"This pathway is relevant if you want to use a model fine-tuned on your data with SparseML or a custom model.\"), mdx(\"p\", null, \"There are three steps to using a local model with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \":\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, \"Create the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.onnx\"), \" file (if you trained with SparseML, use the \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/ultralytics-yolov5#exporting-the-sparse-model-to-onnx\"\n }, \"ONNX export script\"), \").\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Collect the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.yaml\"), \" file and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"class_names\"), \" listed above.\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Pass the local paths of the files in place of the SparseZoo stubs.\"))), mdx(\"p\", null, \"The examples below use the SparseZoo stubs. Pass the path to the local model in place of the stubs if you want to use a custom model.\"), mdx(\"h2\", null, \"Inference Pipelines\"), mdx(\"p\", null, \"With the object detection model set up, the model can be passed into a DeepSparse \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" utilizing the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" argument.\\nThe SparseZoo stub for the sparse-quantized YOLOv5l model given at the beginning is used in the sample code below.\\nIt will automatically download the necessary files for the model from the SparseZoo and then compile them on your local machine with DeepSparse.\\nOnce compiled, the model \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" is ready for inference with images.\"), mdx(\"p\", null, \"First, a sample image is downloaded that will be run through the example to test the pipeline.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg\\n\")), mdx(\"p\", null, \"Next, instantiate the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" and pass in the image using the images argument:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\nyolo_pipeline = Pipeline.create(\\n task=\\\"yolo\\\",\\n model_path=\\\"zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95\\\", # if using custom model, pass in local path to model.onnx\\n class_names=None, # if using custom model, pass in a list of classes the model will clasify or a path to a json file containing them\\n model_config=None, # if using custom model, pass in the path to a local model config file here\\n)\\ninference = yolo_pipeline(images=['basilica.jpg'], iou_thres=0.6, conf_thres=0.001)\\nprint(inference)\\n\\n> predictions=[[[174.3507843017578, 478.4552917480469, 346.09051513671875, 618.4129638671875, ...\\n\")), mdx(\"h2\", null, \"Benchmarking\"), mdx(\"p\", null, \"The DeepSparse installation includes a CLI for convenient performance benchmarking.\\nYou can pass a SparseZoo stub or a local \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file.\"), mdx(\"h3\", null, \"Dense YOLOv5l\"), mdx(\"p\", null, \"The code below provides an example for benchmarking a dense YOLOv5l model with DeepSparse.\\nThe output shows that the model achieved 5.3 items per second on a 4-core CPU.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/base-none\\n\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.0 (8eaddc24) (release) (optimized) (system=avx512, binary=avx512)\\n> Original Model Path: zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/base-none\\n> Batch Size: 1\\n> Scenario: async\\n> Throughput (items/sec): 5.2836\\n> Latency Mean (ms/batch): 378.2448\\n> Latency Median (ms/batch): 378.1490\\n> Latency Std (ms/batch): 2.5183\\n> Iterations: 54\\n\")), mdx(\"h3\", null, \"Sparsified YOLOv5l\"), mdx(\"p\", null, \"Running on the same server, the code below shows how the benchmarks change when utilizing a sparsified version of YOLOv5l.\\nIt achieved 19.0 items per second, a \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"3.6X\"), \" increase in performance over the dense baseline.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95\\n\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.0 (8eaddc24) (release) (optimized) (system=avx512, binary=avx512)\\n> Original Model Path: zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95\\n> Batch Size: 1\\n> Scenario: async\\n> Throughput (items/sec): 18.9863\\n> Latency Mean (ms/batch): 105.2613\\n> Latency Median (ms/batch): 105.0656\\n> Latency Std (ms/batch): 1.6043\\n> Iterations: 190\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#use-an-object-detection-model","title":"Use an Object Detection Model","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#model-setup","title":"Model Setup"},{"url":"#inference-pipelines","title":"Inference Pipelines"},{"url":"#benchmarking","title":"Benchmarking","items":[{"url":"#dense-yolov5l","title":"Dense YOLOv5l"},{"url":"#sparsified-yolov5l","title":"Sparsified YOLOv5l"}]}]}]},"parent":{"relativePath":"get-started/use-a-model/cv-object-detection.mdx"},"frontmatter":{"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/use-a-model/nlp-text-classification/page-data.json b/page-data/get-started/use-a-model/nlp-text-classification/page-data.json new file mode 100644 index 00000000000..cf03d2efad6 --- /dev/null +++ b/page-data/get-started/use-a-model/nlp-text-classification/page-data.json @@ -0,0 +1 @@ +{"componentChunkName":"component---src-root-jsx","path":"/get-started/use-a-model/nlp-text-classification","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","title":"NLP Text Classification","slug":"/get-started/use-a-model/nlp-text-classification","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/use-a-model/nlp-text-classification.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"NLP Text Classification\",\n \"metaTitle\": \"Use a Text Classification Model\",\n \"metaDescription\": \"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Use a Text Classification Model\"), mdx(\"p\", null, \"This page explains how to run a trained model with DeepSparse for NLP inside a Python API called \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines.\")), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" wraps key utilities around DeepSparse for easy testing and deployment.\"), mdx(\"p\", null, \"The text classification \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \", for example, wraps an NLP model with the proper pre-processing and post-processing pipelines, such as tokenization.\\nThis enables passing in raw text sequences and receiving the labeled predictions from DeepSparse without any extra effort.\\nIn this way, DeepSparse combines the simplicity of \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" with GPU-class performance on CPUs for sparse models.\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This example requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse General Installation\"), \".\"), mdx(\"h2\", null, \"Model Setup\"), mdx(\"p\", null, \"The first step is collecting an ONNX representaiton of the model and required configuration files.\\nThe text classification \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" is integrated with Hugging Face and uses Hugging Face's standards\\nand configurations for model setup. The following files are required:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.onnx\"), \" - Exported Transformers model in the ONNX format.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"tokenizer.json\"), \" - Hugging Face tokenizer used with the model.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"tokenizer_config.json\"), \" - Hugging Face tokenizer configuration used with the model.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"config.json\"), \" - Hugging Face configuration file used with the model.\")), mdx(\"p\", null, \"For an example of the configuration files, check out \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/bert-base-uncased/tree/main\"\n }, \"BERT's model page on Hugging Face\"), \".\"), mdx(\"p\", null, \"There are two options for passing these files to DeepSparse:\"), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"1) Using SparseZoo stubs (recommended starting point)\")), mdx(\"p\", null, \"SparseZoo contains several pre-sparsified Transformer models, including the configuration files listed above. DeepSparse is integrated\\nwith SparseZoo, and supports SparseZoo stubs as inputs for automatic download and inclusion into easy testing and deployment.\"), mdx(\"p\", null, \"The SparseZoo stubs can be found on SparseZoo model pages, and DistilBERT examples are provided below:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/models/nlp%2Ftext_classification%2Fdistilbert-none%2Fpytorch%2Fhuggingface%2Fmnli%2Fpruned80_quant-none-vnni\"\n }, \"Sparse-quantized DistilBERT\"))), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni\\n\")), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/models/nlp%2Ftext_classification%2Fdistilbert-none%2Fpytorch%2Fhuggingface%2Fmnli%2Fbase-none\"\n }, \"Dense DistilBERT\"))), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/base-none\\n\")), mdx(\"p\", null, \"These SparseZoo stubs are passed arguments to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" constructor in the examples below.\")), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"2) Using a local model\")), mdx(\"p\", null, \"Alternatively, you can use a custom or fine-tuned model from your local drive.\"), mdx(\"p\", null, \"There are three steps to using a local model with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \":\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, \"Export the model to \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.onnx\"), \" (if you trained with SparseML, use \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/huggingface-transformers#exporting-to-onnx\"\n }, \"ONNX export\"), \").\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Collect the configuration files listed above. These are generally stored with the resulting model files from Hugging Face training pipelines (as is the case with SparseML).\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Place the files into a directory.\")), mdx(\"p\", null, \"Pass the path of the local directory in the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_path\"), \" in place of the SparseZoo stubs in the examples below.\")), mdx(\"h2\", null, \"Inference Pipelines\"), mdx(\"p\", null, \"With the text classification model set up, the model can be passed into a DeepSparse \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" utilizing the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" argument.\\nThe SparseZoo stub for the sparse-quantized DistilBERT model given at the beginning is used in the sample code below.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" automatically downloads the necessary files for the model from the SparseZoo and compiles them on your local machine in DeepSparse.\\nOnce compiled, the model \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" is ready for inference with text sequences.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\nclassification_pipeline = Pipeline.create(\\n task=\\\"text-classification\\\",\\n model_path=\\\"zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni\\\",\\n)\\ninference = classification_pipeline(\\n [[\\n \\\"Fun for adults and children.\\\",\\n \\\"Fun for only children.\\\",\\n ]]\\n)\\nprint(inference)\\n\\n> labels=['contradiction'] scores=[0.9983579516410828]\\n\")), mdx(\"p\", null, \"Because DistilBERT is a language model trained on the MNLI dataset, it can additionally be used to perform zero-shot text classification for any text sequences.\\nThe code below gives an example of a zero-shot text classification pipeline.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\nzero_shot_pipeline = Pipeline.create(\\n task=\\\"zero_shot_text_classification\\\",\\n model_path=\\\"zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni\\\",\\n model_scheme=\\\"mnli\\\",\\n model_config={\\\"hypothesis_template\\\": \\\"This text is related to {}\\\"},\\n)\\ninference = zero_shot_pipeline(\\n sequences='Who are you voting for in 2020?',\\n labels=['politics', 'public health', 'Europe'],\\n)\\nprint(inference)\\n\\n> sequences='Who are you voting for in 2020?' labels=['politics', 'Europe', 'public health'] scores=[0.9345628619194031, 0.039115309715270996, 0.026321841403841972]\\n\")), mdx(\"h2\", null, \"Benchmarking\"), mdx(\"p\", null, \"The DeepSparse installation includes a benchmark CLI for convenient and easy inference benchmarking: \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.benchmark\"), \".\\nThe CLI takes in either a SparseZoo stub or a path to a local \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file.\"), mdx(\"h3\", null, \"Dense DistilBERT\"), mdx(\"p\", null, \"The code below provides an example for benchmarking a dense DistilBERT model with DeepSparse.\\nThe output shows that the model achieved 32.6 items per second on a 4-core CPU.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/base-none\\n\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.0 (8eaddc24) (release) (optimized) (system=avx512, binary=avx512)\\n> Original Model Path: zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/base-none\\n> Batch Size: 1\\n> Scenario: async\\n> Throughput (items/sec): 32.2806\\n> Latency Mean (ms/batch): 61.9034\\n> Latency Median (ms/batch): 61.7760\\n> Latency Std (ms/batch): 0.4792\\n> Iterations: 324\\n\")), mdx(\"h3\", null, \"Sparsified DistilBERT\"), mdx(\"p\", null, \"Running on the same server, the code below shows how the benchmarks change when utilizing a sparsified version of DistilBERT.\\nIt achieved 221.0 items per second, a \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"6.8X increase\"), \" in performance over the dense baseline.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni\\n\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 1.0.0 (8eaddc24) (release) (optimized) (system=avx512, binary=avx512)\\n> Original Model Path: zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/mnli/pruned80_quant-none-vnni\\n> Batch Size: 1\\n> Scenario: async\\n> Throughput (items/sec): 220.9794\\n> Latency Mean (ms/batch): 9.0147\\n> Latency Median (ms/batch): 9.0085\\n> Latency Std (ms/batch): 0.1037\\n> Iterations: 2210\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#use-a-text-classification-model","title":"Use a Text Classification Model","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#model-setup","title":"Model Setup"},{"url":"#inference-pipelines","title":"Inference Pipelines"},{"url":"#benchmarking","title":"Benchmarking","items":[{"url":"#dense-distilbert","title":"Dense DistilBERT"},{"url":"#sparsified-distilbert","title":"Sparsified DistilBERT"}]}]}]},"parent":{"relativePath":"get-started/use-a-model/nlp-text-classification.mdx"},"frontmatter":{"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/get-started/use-a-model/page-data.json b/page-data/get-started/use-a-model/page-data.json new file mode 100644 index 00000000000..4fd6b3251b5 --- /dev/null +++ b/page-data/get-started/use-a-model/page-data.json @@ -0,0 +1 @@ +{"componentChunkName":"component---src-root-jsx","path":"/get-started/use-a-model","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","title":"Use a Model","slug":"/get-started/use-a-model","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/get-started/use-a-model.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Use a Model\",\n \"metaTitle\": \"Use a Model\",\n \"metaDescription\": \"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs\",\n \"index\": 2000\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Use a Model\"), mdx(\"p\", null, \"DeepSparse supports fast inference on CPUs for sparse and dense models. For sparse models in particular, it achieves GPU-level performance in many use cases.\"), mdx(\"p\", null, \"Around the engine, the DeepSparse package includes various utilities to simplify benchmarking performance and model deployment. For instance:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Trained models are passed in the open ONNX file format, enabling easy exporting from common packages like PyTorch, Keras, and TensorFlow.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Benchmaking latency and performance is available via a single CLI call, with various arguments to test scenarios.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Pipelines utilities wrap the model execution with input pre-processing and output post-processing, simplifying deployment and adding functionality like multi-stream, bucketing, and dynamic shape.\")), mdx(\"h2\", null, \"Use Case Examples\"), mdx(\"p\", null, \"The examples below walk through use cases leveraging DeepSparse for testing and benchmarking ONNX models for integrated use cases.\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./nlp-text-classification\",\n heading: \"NLP Text Classification\",\n mdxType: \"LinkCard\"\n }, \"Example pipelines and benchmarking for an NLP text classification use case utilizing HuggingFace Transformers.\"), mdx(LinkCard, {\n href: \"./cv-object-detection\",\n heading: \"CV Object Detection\",\n mdxType: \"LinkCard\"\n }, \"Example pipelines and benchmarking for a CV object detection use case utilizing Ultralytics YOLOv5.\"), mdx(LinkCard, {\n href: \"./custom-use-case\",\n heading: \"Custom Use Case\",\n mdxType: \"LinkCard\"\n }, \"Example for how to create a pipeline for a custom model utilizing DeepSparse.\")), mdx(\"h2\", null, \"Other Use Cases\"), mdx(\"p\", null, \"More documentation, models, use cases, and examples are continually being added.\\nIf you don't see one you're interested in, search the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse\"\n }, \"DeepSparse Github repo\"), \", \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml\"\n }, \"SparseML Github repo\"), \", or \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com/\"\n }, \"SparseZoo website\"), \". Or, ask in the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Neural Magic Slack\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#use-a-model","title":"Use a Model","items":[{"url":"#use-case-examples","title":"Use Case Examples"},{"url":"#other-use-cases","title":"Other Use Cases"}]}]},"parent":{"relativePath":"get-started/use-a-model.mdx"},"frontmatter":{"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"5ba330af-8819-52cd-8818-2374113da636","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/index/deploy-workflow/page-data.json b/page-data/index/deploy-workflow/page-data.json new file mode 100644 index 00000000000..dbe1b4027cc --- /dev/null +++ b/page-data/index/deploy-workflow/page-data.json @@ -0,0 +1 @@ +{"componentChunkName":"component---src-root-jsx","path":"/index/deploy-workflow","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","title":"Deploy on CPUs","slug":"/index/deploy-workflow","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/index/deploy-workflow.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Deploy on CPUs\",\n \"metaTitle\": \"Deploy on CPUs\",\n \"metaDescription\": \"Overview of deployment capabilities in the Neural Magic Platform\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploy on CPUs\"), mdx(\"p\", null, \"The Neural Magic Platform enables you to deploy models performantly on CPUs.\"), mdx(\"h2\", null, \"Benefits of CPU-deployments\"), mdx(\"p\", null, \"Because DeepSparse reaches GPU-class performance with commodity CPUs, you no longer need to tie deployments to\\naccelerators to reach the performance needed for production. \"), mdx(\"p\", null, \"Free from specialized hardware, deployments can take advantage of the flexibility and scalability of software-defined inference:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Deploy the same model and runtime on any hardware from Intel to AMD to ARM and from cloud to data center to edge, including on pre-existing systems\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Scale vertically from 1 to 192 cores, tailoring the footprint to an app's exact needs\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Scale horizontally with standard Kubernetes, including using services like EKS/GKE\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Scale abstractly with serverless instances like GCP Cloud Run and AWS Lambda\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Integrate easily into \\\"Deploy with code\\\" provisioning systems\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"No wrestling with drivers, operator support, and compatibility issues\")), mdx(\"p\", null, \"Simply put, with DeepSparse on CPUs, you can \", mdx(\"em\", {\n parentName: \"p\"\n }, \"both\"), \" simplify your deep learning deployment process \", mdx(\"em\", {\n parentName: \"p\"\n }, \"and\"), \"\\nsave on infrastructure costs required to support enterprise-scale workloads.\"), mdx(\"h2\", null, \"How DeepSparse Works\"), mdx(\"p\", null, \"DeepSparse achieves its performance using breakthrough algorithms to accelerate the computation. There are two high level ideas\\nthat underpin the system:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"First, DeepSparse is \\\"sparsity-aware\\\"\"), \". This means we have implementations of common neural network\\noperations that take advantage of structured and unstructured sparsity. Because the locations of the 0 weights in a sparse model\\nare known at compile time, DeepSparse can \\\"skip\\\" the multiply-adds by 0. This reduces the number of instructions significantly\\nand the computation becomes memory-bound.\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Second, DeepSparse takes advantage of the large caches in CPUs\"), \". DeepSparse identifies and breaks down\\nthe computational graph into into depth-wise chunks called \\\"tensor-columns\\\" that can be executed in parallel across many CPU-cores.\\nThis pattern has much better locality of reference in comparison to traditional layer-by-layer execution. In this way,\\nDeepSparse minimizes data movement in-and-out of the large caches in a CPU, which is the performance bottleneck in a memory-bound system.\"))), mdx(\"p\", null, \"These two ideas sum up to GPU-class performance on commodity CPUs! As far as we know, DeepSparse is the only production-grade\\nruntime that focuses on speedups from unstructured sparsity. The unstructured sparsity optimizations are hard to\\nimplement but are an important unlock, because, as discussed before,\\nunstructured pruning allows us to reach the high levels of sparsity needed to\\nsee the performance gains without sacrificing accuracy.\"), mdx(\"h4\", null, \"Additional Resources\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/technology/\"\n }, \"More on our technology\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/index/optimize-workflow\"\n }, \"More on sparsity\"))), mdx(\"h2\", null, \"DeepSparse\"), mdx(\"p\", null, \"Beyond all GPU-class performance and benefits of the scalability of CPU-only deployments,\\nDeepSparse also wraps the runtime with APIs and utilites that simplify the process of adding inference to\\nan application and monitoring a model in production.\"), mdx(\"h3\", null, \"DeepSparse Pipelines\"), mdx(\"p\", null, \"DeepSparse Pipelines are Python APIs which wrap the runtime with prewritten pre-processing and post-processing utilities that\\nmake it easy to call the invoked model from within an application. For NLP, this means you\\ncan pass strings to DeepSparse and receive back predictions. For Object Detection, this means you\\npass a raw image to DeepSparse and get back bounding boxes after NMS has been applied.\"), mdx(\"p\", null, \"DeepSparse supports the following use cases out of the box:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"CV: Image Classification\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"CV: Object Detection\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"CV: Segmentation\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"NLP: Sentiment Analysis\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"NLP: Text Classification\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"NLP: Token Classification\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"NLP: Document Classification\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"NLP: Extractive Question Answering\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"NLP: HayStack Information Retrieval\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Embedding Extraction\")), mdx(\"p\", null, \"We are continually adding more use cases. Additonally, DeepSparse offers a CustomTaskPipeline which allows users to\\nadd custom pre-processing and custom post-processing for unsupported use cases in a consistent way.\"), mdx(\"p\", null, \"Want a new use case? Reach out in our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Community Slack\"), \".\"), mdx(\"h3\", null, \"DeepSparse Server\"), mdx(\"p\", null, \"Built on FastAPI and uvicorn, DeepSparse Server is a wrapper around DeepSparse Pipelines that enable you to\\ninvoke inference via REST APIs. This means that you can create a model-serving endpoint running DeepSparse\\nin the cloud and datacenter with just a single command line call. Additionally, because DeepSparse Server is CPU-only,\\na model dervice with DeepSparse can be easily scaled up and down elastically with Kubernetes, can run on Serverless\\nservices like Lambda and CloudRun, and is intergrated with managed service endpoints like SageMaker and Hugging Face Endpoints.\"), mdx(\"h3\", null, \"Additional Features\"), mdx(\"p\", null, \"DeepSparse has multiple modes that allow you to tune a deployment. Examples include:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Synchronous Scheduling: minimize latency by using all cores on a single input\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Asynchronous Scheduling: control the number of streams that can be executed simultaenously for handling multiple clients\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Benchmarking: tools to compare performance and tune configurations\")), mdx(\"p\", null, \"DeepSparse has utilities that make it easy to handle dynamic inputs. Examples include:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Dynamic Batch: handle various batch sizes without needing to recomplile the model\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Bucketing: handle NLP sequences of variable length without padding to max_seq_len\")), mdx(\"p\", null, \"DeepSparse has capabilities to support MLOps related monitoring. Examples include: \"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"System Logging: monitor granular request latency data with Prometheus and Grafana\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Data Logging: log input and output data (and projections thereof) for use with data drift detection or retraining\")), mdx(\"p\", null, \"All this means that DeepSparse is not only fast and CPU-only, but also \", mdx(\"strong\", {\n parentName: \"p\"\n }, mdx(\"em\", {\n parentName: \"strong\"\n }, \"easy\")), \" to add to your application.\\nWith DeepSparse, you can spend less time writing scaffolding-code and focus more on building a great system.\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"We love to hear feature requests in our Community Slack!\")), mdx(\"h4\", null, \"Additional Resources\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/use-a-model/\"\n }, \"Checkout an example Pipeline in Use a Model\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/deploy-a-model/\"\n }, \"Checkout an example Server in Deploy a Model\"))));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploy-on-cpus","title":"Deploy on CPUs","items":[{"url":"#benefits-of-cpu-deployments","title":"Benefits of CPU-deployments"},{"url":"#how-deepsparse-works","title":"How DeepSparse Works","items":[{"items":[{"url":"#additional-resources","title":"Additional Resources"}]}]},{"url":"#deepsparse","title":"DeepSparse","items":[{"url":"#deepsparse-pipelines","title":"DeepSparse Pipelines"},{"url":"#deepsparse-server","title":"DeepSparse Server"},{"url":"#additional-features","title":"Additional Features","items":[{"url":"#additional-resources-1","title":"Additional Resources"}]}]}]}]},"parent":{"relativePath":"index/deploy-workflow.mdx"},"frontmatter":{"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/index/optimize-workflow/page-data.json b/page-data/index/optimize-workflow/page-data.json new file mode 100644 index 00000000000..fd57fa1557d --- /dev/null +++ b/page-data/index/optimize-workflow/page-data.json @@ -0,0 +1 @@ +{"componentChunkName":"component---src-root-jsx","path":"/index/optimize-workflow","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","title":"Optimize for Inference","slug":"/index/optimize-workflow","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/index/optimize-workflow.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Optimize for Inference\",\n \"metaTitle\": \"Optimize for Inference\",\n \"metaDescription\": \"Overview of deployment capabilities in the Neural Magic Platform\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Optimize a Model for Inference\"), mdx(\"p\", null, \"The Neural Magic Platform enables you to optimize your models for inference with sparsity.\"), mdx(\"h3\", null, \"Motivation\"), mdx(\"p\", null, \"There are multiple factors to consider when creating a deep learning model. In training, accuracy on the test-set\\nis the primary metric. In deployment, however, the performance (latency/throughput) of the model becomes\\nan important consideration at production scale.\"), mdx(\"p\", null, \"However, as Deep Learning has exploded and state-of-the-art models have grown bigger and bigger,\\nperformance and accuracy have been increasingly at odds.\"), mdx(\"h3\", null, \"Sparsity: Improve Performance While Maintaining High Accuracy\"), mdx(\"p\", null, \"SparseML and SparseZoo work together to help users create performance-optimized models\\n\", mdx(\"em\", {\n parentName: \"p\"\n }, \"while mimizing accuracy loss\"), \", using sparsification techniques called pruning and quantization.\"), mdx(\"p\", null, \"Importantly, they support \", mdx(\"em\", {\n parentName: \"p\"\n }, \"training-aware\"), \" pruning and quantization algorithms (as well as post-training).\\nTraining-aware techniques apply the sparsification gradually, allowing the model to adjust by fine-tuning the remaining weights\\nwith the training dataset at each step. This technique is critical to maintain high accuracy at the high\\nlevels of sparsity needed to reach GPU-class performance.\"), mdx(\"h2\", null, \"Conceptual Guide\"), mdx(\"h3\", null, \"What is Pruning?\"), mdx(\"p\", null, \"Pruning is the process of removing weights from a trained deep learning model by setting them to zero. Pruning can\\nspeed up a model, because inference runtimes implement optimizations that \\\"skip\\\" the multiply-adds by zero,\\nreducing the needed computation.\"), mdx(\"p\", null, \"There are two types of pruning that can be applied to a model:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Structured Pruning\"), \" - weights are pruned in groups (e.g. entire channels or nodes)\"), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Unstructured Pruning\"), \" - weights (or small groups of weights) can be pruned in any pattern\")), mdx(\"p\", null, \"With \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Structured Pruning\"), \", it is \", mdx(\"strong\", {\n parentName: \"p\"\n }, mdx(\"em\", {\n parentName: \"strong\"\n }, \"easy\")), \" for an inference runtime to include optimizations that speed-up the model and most\\nruntimes will benefit from this type of pruning. However, structured pruning can have large negative impacts on accuracy of the model,\\nespecially at the high levels of sparsity needed to see speedups.\"), mdx(\"p\", null, \"With \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Unstructured Pruning\"), \", it is \", mdx(\"strong\", {\n parentName: \"p\"\n }, mdx(\"em\", {\n parentName: \"strong\"\n }, \"very hard\")), \" for an inference runtime to include optimizations that speed-up the model\\n(as far as we know, DeepSparse is the only production-grade runtime focused on speed-ups from unstructured pruning). The\\nbenefit of unstructured pruning, however, is that sparsity can be pushed to very high levels while maintaining high levels of\\naccuracy. With both CNNs (\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ResNet-50\"), \") and Transformers (\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"BERT-base\"), \"), Neural Magic has pruned 95% of weights\\nwhile maintaining 99% of the accuracy as the baseline models.\"), mdx(\"h3\", null, \"What is Quantization?\"), mdx(\"p\", null, \"Quantization is a technique to reduce computation and memory usage by converting the parameters\\nand activations of a model from a high precision format like FP32 (which is the default\\nfor a deep learning model) to a low precision format like INT8.\"), mdx(\"p\", null, \"By using lower precision, runtimes can reduce memory footprint and perform operations like\\nmatrix multiply faster. Additionally, quantization can be combined with unstructured pruning\\nto gain additional speedup, a concept we call \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Compound Sparsity\"), \".\"), mdx(\"h3\", null, \"Training-Aware Algorithms\"), mdx(\"p\", null, \"Broadly, there are two ways that pruning and quantization can be applied to a model:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Post-Training\"), \" - this is where sparsity is applied in one-pass with no training data \"), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Training Aware\"), \" - this is where sparsity is applied gradually and the non-zero weights are adjusted with training data\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Post-Training\"), \" pruning and quantization optimizations are easier to apply to a model. However, these techniques often create\\nsignficant drops in accuracy, as the model does not have a chance to re-adjust to the optimization space.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Training-Aware\"), \" pruning and quantization, by contrast, require setting up a training pipeline and implementing\\ncomplex algorithms. However, applying the pruning and quantization gradually and fine-tuning the non-zero weights\\nwith training data enables accuracy to recover to 99% of the baseline dense model even as sparsity is pushed to very high levels.\"), mdx(\"p\", null, \"SparseML uses Training-Aware Unstructured Pruning and Training-Aware Quantization to create very\\nsparse models that sacrifice very little accuracy.\"), mdx(\"h2\", null, \"How to Create an Inference-Optimized Sparse Model\"), mdx(\"p\", null, \"SparseML and SparseZoo extend PyTorch and TensorFlow with features for\\ncreating sparse models trained on custom data.\"), mdx(\"p\", null, \"Together, they enable two workflows:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \": fine-tune a pre-sparsified foundation model (like ResNet-50 or BERT) from the SparseZoo\\nonto a custom dataset\"), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification From Scratch\"), \": apply training-aware pruning and quantization algorithms to any trained\\nPyTorch, TensorFlow, and Hugging Face model, with fine-grained control of hyperparameters\")), mdx(\"h3\", null, \"Sparse Transfer Learning\"), mdx(\"p\", null, \"Sparse Transfer Learning is the easiest path to creating a sparse model trained on custom data\\nand is preferred for any scenario where a pre-sparsified foundation model exists in SparseZoo.\"), mdx(\"p\", null, \"Neural Magic's research team has invested many hours in creating state-of-the-art pruned and quantized verisons of popular foundation\\nmodels trained on large open datasets. These state-of-the-art models (including the hyperparameters of\\nthe sparsification process) are publically available in the SparseZoo. \"), mdx(\"p\", null, \"SparseML enables users to fine-tune the pre-sparsified models in SparseZoo onto custom data \", mdx(\"em\", {\n parentName: \"p\"\n }, \"while maintaining the same\\nlevel of sparsity\"), \" (which we call \\\"Sparse Transfer Learning\\\"). Under the hood, SparseML extends PyTorch and TensorFlow\\nto only update non-zero weights during backprogation. Users, then, can Sparse Transfer Learn\\nwith just a single CLI command or five additional lines of code around a custom PyTorch training loop.\"), mdx(\"p\", null, \"This means that any engineer (without deep knowledge of cutting-edge sparsity algorithms) can easily\\ncreate accurate, inference-optimized sparse models for their specific use cases.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Additional Resources\")), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/transfer-a-sparsified-model\"\n }, \"Checkout an example of Sparse Transfer Learning\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"Checkout our Pre-Sparsified Models on SparseZoo\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Request a Model in Our Community Slack\"))), mdx(\"h3\", null, \"Sparsification From Scratch\"), mdx(\"p\", null, \"Sparsification From Scratch can be applied to any model, providing power-users a path to create sparse versions of any model. \"), mdx(\"p\", null, \"As described in the conceptual section above, Training-Aware Unstructured Pruning and\\nTraining-Aware Quantization are the best techniques for creating models with the highest levels of sparsity\\nwithout suffering from much accuracy degradation.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Gradual Magnitude Pruning (GMP)\"), \" is the best algorithm for unstructured pruning:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"With GMP, pruning occurs gradually over a training run. Over several epochs or training steps the least impactful weights are\\niteratively removed. The non-zero weights are then fine-tuned to the objective function.\\nThis iterative process enables the model to adjust to a new optimization space after pathways are removed before pruning again. \")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Quantization Aware Training (QAT)\"), \" is the best algorithm for quantization:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"With QAT, fake quantization operators are injected into the graph before quantizable nodes for activations,\\nand weights are wrapped with fake quantization operators. The fake quantization operators interpolate the weights and\\nactivations down to INT8 on the forward pass but enable a full update of the weights at FP32 on the backward pass.\\nThe updates to the weights at FP32 throughout the training process allow the model to adapt to the loss of information\\nfrom quantization on the forward pass.\")), mdx(\"p\", null, \"Applying these algorithms correctly in an ad-hoc way is challenging. As such, Neural Magic created\\nSparseML, which implements these algorithms on top of PyTorch and TensorFlow.\"), mdx(\"p\", null, \"Using SparseML, users can apply these algorithms to their trained PyTorch and TensorFlow models\\nwith just five additional lines of code around a training loop. This enables ML Engineers to shift focus\\nand time from (re)building sparsity algorithms to running experiments and tuning hyperparameters of the\\npruning and quantization process.\"), mdx(\"p\", null, \"Ultimately, creating a sparse model from scratch is a form of architecture search. This is an inherently\\n\\u201Cresearch-like\\u201D exercise, which requires tuning hyperparameters of GMP and QAT and running experiments to test accuracy\\nwith various changes to the model. SparseML dramatically increases the productivity of developers\\nrunning these experiements.\"), mdx(\"h4\", null, \"Additional Resources\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/sparsify-a-model/custom-integrations\"\n }, \"Checkout an example of Sparsifying From Scatch\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/recipes/creating\"\n }, \"Checkout our guide on creating a hyperparameter recipe\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/blog/pruning-overview/\"\n }, \"Checkout our blog on pruning a model\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Request a model in our Community Slack\"))));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#optimize-a-model-for-inference","title":"Optimize a Model for Inference","items":[{"items":[{"url":"#motivation","title":"Motivation"},{"url":"#sparsity-improve-performance-while-maintaining-high-accuracy","title":"Sparsity: Improve Performance While Maintaining High Accuracy"}]},{"url":"#conceptual-guide","title":"Conceptual Guide","items":[{"url":"#what-is-pruning","title":"What is Pruning?"},{"url":"#what-is-quantization","title":"What is Quantization?"},{"url":"#training-aware-algorithms","title":"Training-Aware Algorithms"}]},{"url":"#how-to-create-an-inference-optimized-sparse-model","title":"How to Create an Inference-Optimized Sparse Model","items":[{"url":"#sparse-transfer-learning","title":"Sparse Transfer Learning"},{"url":"#sparsification-from-scratch","title":"Sparsification From Scratch","items":[{"url":"#additional-resources","title":"Additional Resources"}]}]}]}]},"parent":{"relativePath":"index/optimize-workflow.mdx"},"frontmatter":{"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/index/page-data.json b/page-data/index/page-data.json index f0655232c21..5d60cb5bef6 100644 --- a/page-data/index/page-data.json +++ b/page-data/index/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","title":"Home","slug":"/","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/index.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Home\",\n \"metaTitle\": \"Neural Magic Documentation\",\n \"metaDescription\": \"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data\",\n \"index\": 0\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Neural Magic Documentation\"), mdx(\"p\", null, \"Neural Magic's Deep Sparse Platform provides models and tools needed to create sparse models and a CPU-based inference engine that runs sparse models at GPU speeds.\"), mdx(\"p\", null, \"Using the Deep Sparse Platform, you are free to deploy your neural networks anywhere you have a CPU from edge to cloud.\"), mdx(\"p\", null, \"There are three products which accomplish these goals:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/deepsparse\"\n }, \"DeepSparse Engine\"), \" offers best-in-class CPU performance for dense and sparsified models.\\nSpecifically for sparse models, it offers better than GPU performance in many use cases.\\nThe performance is achieved by leveraging technology around the unique cache hierarchy of CPUs for faster memory access, and sparsification techniques to reduce the number of FLOPs.\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparseml\"\n }, \"SparseML\"), \" provides the tools to easily create sparse models via \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/transfer-a-sparsified-model\"\n }, \"sparse transfer-learning\"), \" from pre-sparsified models or state-of-the-art \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/sparsification\"\n }, \"sparsification algorithms\"), \" that prune dense models from scratch.\\nThe algorithms are built on top of recipes that encode configurations and hyperparamers, enabling easy integration to common frameworks with only a few lines of code.\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparsezoo\"\n }, \"SparseZoo\"), \" stores dense and presparsified models/recipes ready for deployment, sparsification, and fine-tuning onto your data.\\nSparseZoo stubs enable you to reference any model on the SparseZoo in a convenient and identifiable way.\\nThey are found throughout the documentation and the model pages on the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"SparseZoo website\"), \".\"))), mdx(\"h2\", null, \"Starting Points\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"/get-started/try-a-model\",\n heading: \"Get Started\",\n mdxType: \"LinkCard\"\n }, \"A step-by-step introduction into basic Deep Sparse Platform features.\"), mdx(LinkCard, {\n href: \"/use-cases/natural-language-processing/question-answering\",\n heading: \"Use Cases\",\n mdxType: \"LinkCard\"\n }, \"A non-exhaustive list of scenarios the Deep Sparse Platform can help with.\"), mdx(LinkCard, {\n href: \"/user-guide/sparsification\",\n heading: \"User Guide\",\n mdxType: \"LinkCard\"\n }, \"Study the detailed inner workings of the Deep Sparse Platform in its user guide.\"), mdx(LinkCard, {\n href: \"/products/deepsparse\",\n heading: \"Products\",\n mdxType: \"LinkCard\"\n }, \"See all of the Deep Sparse Platform's products and available commands and APIs.\")), mdx(\"h2\", null, \"External Resources\"), mdx(\"p\", null, \"\\u2705 Join our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"community\"), \" if you need any help\\nor \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/deep-sparse-community/#subscribe\"\n }, \"subscribe\"), \" for regular Neural Magic email updates.\"), mdx(\"p\", null, \"\\u2705 Check out our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic\"\n }, \"GitHub repositories\"), \" and give us a \\u2B50 as we appreciate the community support!\"), mdx(\"p\", null, \"\\u2705 Contribute to our various repos \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic\"\n }, \"on GitHub\"), \" or help us improve this \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/docs\"\n }, \"documentation\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#neural-magic-documentation","title":"Neural Magic Documentation","items":[{"url":"#starting-points","title":"Starting Points"},{"url":"#external-resources","title":"External Resources"}]}]},"parent":{"relativePath":"index.mdx"},"frontmatter":{"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data","index":0,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","title":"Home","slug":"/","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/index.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Home\",\n \"metaTitle\": \"Neural Magic Documentation\",\n \"metaDescription\": \"Documentation for the Neural Magic Platform\",\n \"index\": 0\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Neural Magic Platform Documentation\"), mdx(\"p\", null, \"Neural Magic enables you to deploy deep learning models on commodity CPUs with GPU-class performance.\"), mdx(\"h2\", null, \"Why Deploy on CPUs?\"), mdx(\"p\", null, \"CPU-based deep learning deployments on commodity hardware are flexible and scalable.\"), mdx(\"p\", null, \"Because DeepSparse reaches GPU-class performance with commodity CPUs, users no longer need to tether deployments to\\naccelerators to reach the performance needed for production. Free from specialized hardware,\\ndeployments can take advantage of the flexibility and scalability of software-defined inference:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Deploy the same model and runtime on any hardware from Intel to AMD to ARM and from cloud to data center to edge, including on pre-existing systems\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Scale vertically from 1 to 192 cores, tailoring the footprint to an app's exact needs\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Scale horizontally with standard Kubernetes, including using services like EKS/GKE\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Scale abstractly with serverless instances like GCP Cloud Run and AWS Lambda\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Integrate easily into \\\"Deploy with code\\\" provisioning systems\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"No wrestling with drivers, operator support, and compatibility issues\")), mdx(\"p\", null, \"Simply put, deep learning deployments no longer need to choose between the performance of GPUs and simplicty of software!\"), mdx(\"h2\", null, \"Neural Magic Platform\"), mdx(\"p\", null, \"The Neural Magic Platform enables two major workflows.\"), mdx(\"h3\", null, \"1. Optimize a Model for Inference\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"SparseML\"), \" and \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"SparseZoo\"), \" work together to optimize models for inference with\\ntechniques like pruning and quantization (which we call \\\"sparsity\\\").\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparseml\"\n }, \"SparseML\"), \" is an open-source library that extends PyTorch and TensorFlow to simplify the process of\\napplying sparsity algorithms. Via simple CLI scripts or five lines of code, users can sparsify any model from scratch\\nor sparse transfer learn from pre-sparsified versions of foundation models like ResNet, YOLOv5, or BERT.\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/products/sparsezoo\"\n }, \"SparseZoo\"), \" is an open-source repository of pre-sparsified models\\n(for example, sparse ResNet-50 has 95% of weights set to 0 while maintaining 99% of the baseline accuracy). SparseZoo is integrated with\\nSparseML, making it trival for users to fine-tune from sparse model (which we call \\\"Sparse Transfer Learning\\\") onto their data.\"))), mdx(\"h3\", null, \"2. Deploy a Model on CPUs\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"DeepSparse\"), \" runs inference-optimized sparse models with GPU-class performance on CPUs.\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/products/deepsparse\"\n }, \"DeepSparse\"), \" is an inference runtime offering GPU class performance on CPUs and\\nAPIs for integrating ML into an application. When running an inference-optimized sparse model, DeepSparse on commodity CPUs\\nachieves better latency than a NVIDIA T4 (the most common GPU for inference) and an order of magnitude more throughput than\\nONNX Runtime. As a result, it offers the best price-performance for deep learning deployments.\")), mdx(\"h2\", null, \"Docs Content\"), mdx(\"p\", null, \"The documentation is organized into several sections:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"GET STARTED\"), \" provides install instructions and a tour of major functionality\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"USE CASES\"), \" walks through detailed examples using SparseML and DeepSparse\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"USER GUIDE\"), \" shows more advanced functionality with specific tasks\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"PRODUCTS\"), \" provides API-level docs for all classes and functions \"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"DETAILS\"), \" includes research papers and a glossary of terms\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Not Sure Where to Start?\")), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Jump to \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/index/optimize-workflow\"\n }, \"Optimize For Inference\"), \" to learn about using applying sparsity to your models\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Jump to \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/index/deploy-workflow\"\n }, \"Deploy on CPUs\"), \" to learn about the benefits of deploying on CPUs\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Jump to \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/index/quick-tour\"\n }, \"Quick Tour\"), \" for a run through of our capabilities.\")), mdx(\"h2\", null, \"External Resources\"), mdx(\"p\", null, \"\\u2705 Join our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"community\"), \" if you need any help\\nor \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/deep-sparse-community/#subscribe\"\n }, \"subscribe\"), \" for regular email updates.\"), mdx(\"p\", null, \"\\u2705 Check out our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic\"\n }, \"GitHub repositories\"), \" and give us a \\u2B50.\"), mdx(\"p\", null, \"\\u2705 Help us improve this \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/docs\"\n }, \"documentation\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#neural-magic-platform-documentation","title":"Neural Magic Platform Documentation","items":[{"url":"#why-deploy-on-cpus","title":"Why Deploy on CPUs?"},{"url":"#neural-magic-platform","title":"Neural Magic Platform","items":[{"url":"#1-optimize-a-model-for-inference","title":"1. Optimize a Model for Inference"},{"url":"#2-deploy-a-model-on-cpus","title":"2. Deploy a Model on CPUs"}]},{"url":"#docs-content","title":"Docs Content"},{"url":"#external-resources","title":"External Resources"}]}]},"parent":{"relativePath":"index.mdx"},"frontmatter":{"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform","index":0,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/index/quick-tour/page-data.json b/page-data/index/quick-tour/page-data.json new file mode 100644 index 00000000000..824c84776ed --- /dev/null +++ b/page-data/index/quick-tour/page-data.json @@ -0,0 +1 @@ +{"componentChunkName":"component---src-root-jsx","path":"/index/quick-tour","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","title":"Quick Tour","slug":"/index/quick-tour","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/index/quick-tour.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Quick Tour\",\n \"metaTitle\": \"Quick Tour\",\n \"metaDescription\": \"Quick tour of the available functionality\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Quick Tour\"), mdx(\"p\", null, \"The Neural Magic Platform enables you to (1) \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/index/optimize-workflow\"\n }, \"Optimize a Model for Inference\"), \" and\\n(2) \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/index/deploy-workflow\"\n }, \"Deploy a Model on CPUs\"), \" with GPU-class performance.\"), mdx(\"p\", null, \"This page walks through the major functionality and provides pointers to more details.\"), mdx(\"h2\", null, \"1. Optimize a Model for Inference with SparseML\"), mdx(\"p\", null, \"SparseML and SparseZoo enable users to create models that are optimized for inference.\\nWith an inference-optimized model, users can reach GPU-class performance when deploying with DeepSparse on CPUs.\"), mdx(\"p\", null, \"There are two workflows that allow users to accomplish this goal:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"strong\",\n \"href\": \"/get-started/transfer-a-sparsified-model\"\n }, \"Sparse Transfer Learning\")), \": fine-tune pre-sparsified models\\nonto custom data\"), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"strong\",\n \"href\": \"/get-started/sparsify-a-model\"\n }, \"Sparsification From Scratch\")), \": apply pruning and quantization to any model\")), mdx(\"p\", null, \"Sparse Transfer Learning is recommended for use cases with pre-sparsified models in SparseZoo.\\nSparsification From Scratch can be used to optimize any model but requires experimenting with\\nhyperparameters to reach high levels of sparsity with high accuracy.\"), mdx(\"p\", null, \"Each workflow can be applied via CLI scripts or Python code.\"), mdx(\"h3\", null, \"CLI Scripts\"), mdx(\"p\", null, \"For supported use cases, SparseML provides CLI scripts that enable users to kick off Sparse Transfer Learning\\nor Sparsification From Scratch runs with a single command.\"), mdx(\"p\", null, \"Each use case has slightly different arguments that align to their integrations (the Transformer scripts adhere\\nto Hugging Face format while the YOLOv5 scripts adhere to Ultralytics format), but they generally look something like\\nthe following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.[use_case].train\\n --model [LOCAL_PATH / SPARSEZOO_STUB]\\n --dataset [LOCAL_PATH]\\n --recipe [LOCAL_PATH / SPARSEZOO_RECIPE_STUB]\\n --other_configs [e.g. BATCH_SIZE, EPOCHS, etc.] \\n\")), mdx(\"p\", null, \"Let's break down each argument:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model\"), \" points SparseML to a trained model which is the starting point for the training process. In Sparse Transfer Learning,\\nthis is usually a SparseZoo stub that points to the pre-sparsified model of choice. In Sparsification From Scratch, this is usually\\na path to a trained PyTorch or TensorFlow model in a local filesystem.\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--dataset\"), \" points SparseML to the dataset to be used (both STL and SFS require training data). Datasets must be provided in the form expected\\nby the underlying integration. For instance, if training YOLOv5, data must be provided in the YOLOv5 format and if training Transformers,\\ndata must be provided in the Hugging Face format. \")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--recipe\"), \" points SparseML to a YAML file called a recipe. Recipes encode sparsity-related hyperparameters used by SparseML.\\nFor instance, a recipe for Sparsification From Scratch encodes the target sparsity level for each layer while a recipe for Sparse Transfer Learning\\ninstructs SparseML to maintain sparsity as the fine-tuning occurs.\"))), mdx(\"p\", null, \"You can now see why SparseML makes Sparse Transfer Learning so easy. All you have to do is point SparseML to a\\npre-sparsified model and pre-made transfer learning recipe in SparseZoo and to your own dataset and you are off!\"), mdx(\"p\", null, \"There are also pre-made sparsification from scratch recipes availble in the SparseZoo. For models not yet in SparseZoo,\\nSparseML's declarative recipes make it easy to specify hyperparameters, allowing you to focus on running experiments rather than writing code. \"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Additional Resources\")), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Get Started With \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/transfer-a-model\"\n }, \"Sparse Transfer Learning\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Get Started With \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/sparsify-a-model\"\n }, \"Sparsification From Scratch\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Refer to \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/use-cases\"\n }, \"Use Cases\"), \" for details on usage\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Refer to \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/recipes\"\n }, \"Recipe User Guide\"), \" for details on recipes\")), mdx(\"h3\", null, \"Python API\"), mdx(\"p\", null, \"For users needing flexibility for an unsupported use case or a custom training setup,\\nSparseML provides Python APIs that let you integrate SparseML into any PyTorch or TensorFlow pipeline.\"), mdx(\"p\", null, \"Because of the declarative nature of recipes, users can apply Sparse Transfer Learning and\\nSparsification From Scratch with just three additional lines of code around a training pipeline.\"), mdx(\"p\", null, \"The following code illustrates all that is needed:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-Python\"\n }, \"from sparseml.pytorch.optim import ScheduledModifierManager\\n\\nmodel = Model(...) # typical torch model\\noptimizer = Optimizer(...) # typical torch optimizer\\nmanager = ScheduledModifierManager.from_yaml(recipe_path)\\noptimizer = manager.modify(model, optimizer, steps_per_epoch)\\n\\n# ...your typical training loop, using model/optimizer as usual\\n\\nmanager.finalize(model)\\n\")), mdx(\"p\", null, \"Let's break down this example step-by-step:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"optimizer\"), \" are the typical PyTorch objects used in every training loop.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ScheduledModifierManager.from_yaml(recipe_path)\"), \" accepts a \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"recipe_path\"), \", which points to the location of\\na YAML file called a Recipe. The Recipes encode the hyperparameters of the Sparse Transfer Learning or Sparsification From Scratch workflows. \"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"manager.modify(...)\"), \" edits the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"optimizer\"), \" objects to run the Sparse Transfer Learning or\\nSparsification From Scratch algorithms specified in the recipe.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"optimizer\"), \" are then used as usual in a training loop. If a Sparsification from Scratch recipe was\\ngiven to the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"manager\"), \", then the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"optimizer\"), \" will gradually prune weights according to the recipe. If a Sparsification\\nfrom Scratch recipe was passed, then pruned weights will remain at zero during gradient updates.\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Additional Resources\")), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Refer to \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/sparsify-a-model/custom-integrations\"\n }, \"Custom Integrations Guide\"), \" for more details on the Python API.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Refer to \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/recipes\"\n }, \"Recipe User Guide\"), \" for details on creating recipes.\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Want to Learn More?\")), mdx(\"p\", null, \"Checkout our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/index/optimize-workflow\"\n }, \"conceptual guide on optimizing for inference with sparsity\"), \".\"), mdx(\"h2\", null, \"2. Deploy on CPUs with DeepSparse\"), mdx(\"p\", null, \"DeepSparse is a CPU-only deep learning deployment platform. It wraps a sparsity-aware runtime that reaches GPU-class\\nperformance on inference-optimized sparse models with APIs that simplify the process of integrating a model into\\nan application.\"), mdx(\"p\", null, \"There are three primary interfaces for interacting with DeepSparse:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Pipeline\"), \" - Python APIs that wrap the runtime with pre-processing and post-processing\"), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Server\"), \" - REST APIs that allow you to create a model service around a Pipeline\"), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Engine\"), \" - Python APIs that provide direct access to the runtime\")), mdx(\"p\", null, \"Pipeline and Server are the preferred pathways for interacting with DeepSparse.\"), mdx(\"h3\", null, \"Pipelines\"), mdx(\"p\", null, \"DeepSparse Pipelines make it easy to integrate DeepSparse into an application, by wrapping pre and post-processing\\naround the inference runtime. For example, a DeepSparse Pipeline in the NLP domain handles the tokenization process,\\nmeaning you can pass raw strings and receive answers and a DeepSparse Pipeline in the Object Detection domain handles\\ninput normalization (mean and std transform) as well as the non-max supression of output, meaning you can just pass\\nraw images and receive the bounding boxes. \"), mdx(\"p\", null, \"For supported use cases, Pipelines are pre-made. For unsupported use cases, you can create a custom Pipeline by\\nspecifying a pre and post-processing function, creating a consistent interface for interacting with DeepSparse.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Pipeline Usage - Python API\")), mdx(\"p\", null, \"For a supported use case, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" class is workhorse that you will use. Simplify specify a use case via the\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"task\"), \" argument and a model in ONNX format via the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" argument and you are off!\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\nexample_pipeline = Pipeline.create(\\n task=\\\"example_task\\\", # e.g. image_classification or question_answering\\n model_path=\\\"model.onnx\\\", # local model or SparseZoo stub\\n)\\n\\n# pass raw, unprocessed input \\npipeline_inputs = [\\\"The quick brown fox jumps over the lazy dog\\\"]\\n\\n# get back post-processed outputs\\npipeline_outputs = example_pipeline(pipeline_inputs)\\n\")), mdx(\"p\", null, \"For an unsupported use case, you will use \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"CustomTaskPipeline\"), \" to create a Pipeline. Simply specify a\\npre-processing and post-processing function and a model in ONNX format.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse.pipelines.custom_pipeline import CustomTaskPipeline\\n\\ndef preprocess(inputs):\\n pass # define your function\\ndef postprocess(outputs):\\n pass # define your function\\n\\ncustom_pipeline = CustomTaskPipeline(\\n model_path=\\\"custom_model.onnx\\\",\\n process_inputs_fn=preprocess,\\n process_outputs_fn=postprocess,\\n)\\n\\n# pass raw, unprocessed input\\npipeline_inputs = [\\\"The quick brown fox jumps over the lazy dog\\\"]\\n\\n# get back post-processed outputs\\npipeline_outputs = custom_pipeline(pipeline_inputs) \\n\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Additional Resources\")), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Get Started and \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/use-a-model\"\n }, \"Use A Model\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Get Started and \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/use-a-model/custom-use-case\"\n }, \"Use A Model in a Custom Use Case\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Refer to \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/use-cases\"\n }, \"Use Cases\"), \" for details on usage of supported use cases\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"List of Supported Use Cases \", \"[Docs Coming Soon]\")), mdx(\"p\", null, \"Beyond pre-processing and post-processing, Pipelines also have other useful utilites like Data Logging,\\nMulti-Stream Inference, and Dynamic Batch. Check out the documentation on the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/pipelines\"\n }, \"Pipeline Class\"), \"\\nor the ad-hoc user guides:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/deepsparse-engine/scheduler\"\n }, \"Multi-Stream Scheduling Overview\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Example Using Multi-Stream in Pipelines \", \"[Docs Coming Soon]\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Data Logging in Pipelines \", \"[Docs Coming Soon]\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Dynamic Batch \", \"[Docs Coming Soon]\")), mdx(\"h3\", null, \"Server\"), mdx(\"p\", null, \"DeepSparse Server wraps Pipelines with REST API using FastAPI web framework and uvicorn web server.\\nThis enables you to spin up a model service around DeepSparse with no code.\"), mdx(\"p\", null, \"Since Server is a wrapper around Pipelines, the Server inherits all of the functionality of Pipelines (including the\\npre- and post-processing phases), meaning you can pass raw unprocessed inputs to the Server and receive post-processed\\npredictions.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Server Usage - Launch From CLI\")), mdx(\"p\", null, \"DeepSparse Server is launched from the CLI, with configuration via either command line arguments or a configuration file.\"), mdx(\"p\", null, \"With the command line argument path, users specify a use case via the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"task\"), \" argument (e.g., \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"image_classification\"), \" or \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"question_answering\"), \") as\\nwell as a model (either a local ONNX file or a SparseZoo stub) via the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" argument:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server --task [use_case_name] --model_path [model_path]\\n\")), mdx(\"p\", null, \"With the config file path, users create a YAML file that specifies the server configuration. A YAML file looks like the following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"endpoints:\\n - task: task_name # specifiy use case (e.g., image_classification, question_answering)\\n route: /predict # specify the route of the endpoint\\n model: model_path # specify sparsezoo stub or path to local onnx file\\n name: any_name_you_want\\n\\n# - ... add as many endpoints as neeede\\n\")), mdx(\"p\", null, \"The Server is then launched with the following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server --config_file config.yaml\\n\")), mdx(\"p\", null, \"Clients interact with the Server via HTTP. Because the Server uses Pipelines internally,\\nusers can simply pass raw data to the Server and receive back post-processed predictions.\"), mdx(\"p\", null, \"For example, a user would do the following to query a Question Answering endpoint:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\"\n }, \"import requests\\n\\nurl = \\\"http://localhost:5543/predict\\\"\\n\\nobj = {\\n \\\"question\\\": \\\"Who is Mark?\\\", \\n \\\"context\\\": \\\"Mark is batman.\\\"\\n}\\n\\nresponse = requests.post(url, json=obj)\\n\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Additional Resources\")), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Get Started and \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/deploy-a-model\"\n }, \"Deploy A Model with DeepSparse Server\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Refer to \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/use-cases\"\n }, \"Use Cases\"), \" for detailed usage of each supported use case with Server\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"List of Supported Use Cases \", \"[Docs Coming Soon]\")), mdx(\"p\", null, \"The Server also has other useful utilites like Data Logging, Multi-Stream Inference, Multiple Model Inference and Dynamic Batch.\\nCheckout the documentation on the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/server\"\n }, \"Server Class\"), \" or the ad-hoc user guides:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/deepsparse-engine/scheduler\"\n }, \"Multi-Stream Scheduling Overview\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Example Using Multi-Stream in Pipelines \", \"[Docs Coming Soon]\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Data Logging in Pipelines \", \"[Docs Coming Soon]\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Dynamic Batch \", \"[Docs Coming Soon]\")), mdx(\"h3\", null, \"Engine\"), mdx(\"p\", null, \"Engine is the lowest supported level of interaction available with the runtime.\"), mdx(\"p\", null, \"This pathway enables users that want more control over the runtime or want to run pre-processing and post-processing\\nmanually to do so.\"), mdx(\"h3\", null, \"Engine Usage - Python API\"), mdx(\"p\", null, \"The Engine class is the workhorse for this pathway. Simply call the constructor with your desired parameters to\\ncreate an instance with the runtime. Once the Engine is initialized, just a pass lists of numpy arrays (which are a\\nbatch of input tensors - the same as would be passed to a PyTorch model) and the Engine will return a list of outputs.\"), mdx(\"p\", null, \"For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Engine\\nfrom deepsparse.utils import generate_random_inputs\\nonnx_filepath = \\\"path/to/onnx/model.onnx\\\"\\nbatch_size = 64\\n\\n# Generate random sample input\\ninputs = generate_random_inputs(onnx_filepath, batch_size)\\n\\n# Compile and run\\nengine = Engine(onnx_filepath, batch_size)\\noutputs = engine.run(inputs)\\n\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Additional Resources\")), mdx(\"p\", null, \"There is also a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"MultiModelEngine\"), \" available for users who want to interact directly with an Engine running\\nmultiple models (note: if you want to run multiple models on the same CPU, this pathway is strongly preferred.) \"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Checkout the \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/engine.py#L645\"\n }, \"code on GitHub for details\"))), mdx(\"p\", null, \"We also have a lower-level C++ API. Stay tuned for new documentation on this pathway or reachout\\nin \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Community Slack\"), \" for details of this.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#quick-tour","title":"Quick Tour","items":[{"url":"#1-optimize-a-model-for-inference-with-sparseml","title":"1. Optimize a Model for Inference with SparseML","items":[{"url":"#cli-scripts","title":"CLI Scripts"},{"url":"#python-api","title":"Python API"}]},{"url":"#2-deploy-on-cpus-with-deepsparse","title":"2. Deploy on CPUs with DeepSparse","items":[{"url":"#pipelines","title":"Pipelines"},{"url":"#server","title":"Server"},{"url":"#engine","title":"Engine"},{"url":"#engine-usage---python-api","title":"Engine Usage - Python API"}]}]}]},"parent":{"relativePath":"index/quick-tour.mdx"},"frontmatter":{"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"478d6817-c021-5181-922d-2689a65470c5","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/deepsparse/community/cli/page-data.json b/page-data/products/deepsparse/community/cli/page-data.json index 0c878589dec..7949ca54f33 100644 --- a/page-data/products/deepsparse/community/cli/page-data.json +++ b/page-data/products/deepsparse/community/cli/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/community/cli","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","title":"CLI","slug":"/products/deepsparse/community/cli","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/community/cli.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"CLI\",\n \"metaTitle\": \"DeepSparse CLI\",\n \"metaDescription\": \"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"CLI\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse CLIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#cli","title":"CLI"}]},"parent":{"relativePath":"products/deepsparse/community/cli.mdx"},"frontmatter":{"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/community/cli","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","title":"CLI","slug":"/products/deepsparse/community/cli","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/community/cli.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"CLI\",\n \"metaTitle\": \"DeepSparse CLI\",\n \"metaDescription\": \"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"CLI\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse CLIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#cli","title":"CLI"}]},"parent":{"relativePath":"products/deepsparse/community/cli.mdx"},"frontmatter":{"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/deepsparse/community/cpp-api/page-data.json b/page-data/products/deepsparse/community/cpp-api/page-data.json index 7fb1871a8de..e653b512bf5 100644 --- a/page-data/products/deepsparse/community/cpp-api/page-data.json +++ b/page-data/products/deepsparse/community/cpp-api/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/community/cpp-api","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","title":"C++ API","slug":"/products/deepsparse/community/cpp-api","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/community/cpp-api.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"C++ API\",\n \"metaTitle\": \"DeepSparse C++ API\",\n \"metaDescription\": \"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"C++ API\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation detailed exploration of the DeepSparse C++ APIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#c-api","title":"C++ API"}]},"parent":{"relativePath":"products/deepsparse/community/cpp-api.mdx"},"frontmatter":{"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/community/cpp-api","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","title":"C++ API","slug":"/products/deepsparse/community/cpp-api","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/community/cpp-api.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"C++ API\",\n \"metaTitle\": \"DeepSparse C++ API\",\n \"metaDescription\": \"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"C++ API\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation detailed exploration of the DeepSparse C++ APIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#c-api","title":"C++ API"}]},"parent":{"relativePath":"products/deepsparse/community/cpp-api.mdx"},"frontmatter":{"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/deepsparse/community/page-data.json b/page-data/products/deepsparse/community/page-data.json index 81adcc29957..aed2461cd51 100644 --- a/page-data/products/deepsparse/community/page-data.json +++ b/page-data/products/deepsparse/community/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/community","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","title":"Community Edition","slug":"/products/deepsparse/community","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/community.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Community Edition\",\n \"metaTitle\": \"DeepSparse Community Edition\",\n \"metaDescription\": \"Sparsity-aware neural network inference engine for GPU-class performance on CPUs\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"div\", {\n \"style\": {\n \"display\": \"flex\",\n \"flexDirection\": \"column\"\n }\n }, \"\\n \", mdx(\"h1\", {\n parentName: \"div\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"h1\",\n \"alt\": \"tool icon\",\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/icon-deepsparse.png\"\n }), \"\\n \\xA0\\xA0DeepSparse Community Edition\\n \"), \"\\n \", mdx(\"h3\", {\n parentName: \"div\"\n }, \" Sparsity-aware neural network inference engine for GPU-class performance on CPUs \"), \"\\n \", mdx(\"div\", {\n parentName: \"div\",\n \"style\": {\n \"display\": \"flex\",\n \"flexWrap\": \"wrap\"\n }\n }, \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Documentation\",\n \"src\": \"https://img.shields.io/badge/documentation-darkred?&style=for-the-badge&logo=read-the-docs\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Slack\",\n \"src\": \"https://img.shields.io/badge/slack-purple?style=for-the-badge&logo=slack\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/issues/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Support\",\n \"src\": \"https://img.shields.io/badge/support%20forums-navy?style=for-the-badge&logo=github\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/actions/workflows/quality-check.yaml\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Main\",\n \"src\": \"https://img.shields.io/github/workflow/status/neuralmagic/deepsparse/Quality%20Checks/main?label=build&style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/releases\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"GitHub release\",\n \"src\": \"https://img.shields.io/github/release/neuralmagic/deepsparse.svg?style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/CODE_OF_CONDUCT.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Contributor Covenant\",\n \"src\": \"https://img.shields.io/badge/Contributor%20Covenant-v2.1%20adopted-ff69b4.svg?color=yellow&style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://www.youtube.com/channel/UCo8dO_WMGYbWCRnj_Dxr4EA\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"YouTube\",\n \"src\": \"https://img.shields.io/badge/-YouTube-red?&style=for-the-badge&logo=youtube&logoColor=white\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://medium.com/limitlessai\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Medium\",\n \"src\": \"https://img.shields.io/badge/medium-%2312100E.svg?&style=for-the-badge&logo=medium&logoColor=white\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://twitter.com/neuralmagic\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Twitter\",\n \"src\": \"https://img.shields.io/twitter/follow/neuralmagic?color=darkgreen&label=Follow&style=social\",\n \"height\": 25\n }), \"\\n \"), \"\\n \")), mdx(\"p\", null, \"A CPU runtime that takes advantage of sparsity within neural networks to reduce compute. Read more about sparsification Read more about sparsification \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/user-guide/sparsification\"\n }, \"here\"), \".\"), mdx(\"p\", null, \"Neural Magic's DeepSparse Engine is able to integrate into popular deep learning libraries (e.g., Hugging Face, Ultralytics) allowing you to leverage DeepSparse for loading and deploying sparse models with ONNX.\\nONNX gives the flexibility to serve your model in a framework-agnostic environment.\\nSupport includes \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://pytorch.org/docs/stable/onnx.html\"\n }, \"PyTorch,\"), \" \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/tensorflow-onnx\"\n }, \"TensorFlow,\"), \" \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/keras-onnx\"\n }, \"Keras,\"), \" and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/onnxmltools\"\n }, \"many other frameworks\"), \".\"), mdx(\"p\", null, \"The DeepSparse Engine is available in two editions:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"#installation\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"The Community Edition\")), \" is open-source and free for evaluation, research, and non-production use with our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/engine-license-agreement/\"\n }, \"Engine Community License\"), \".\"), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/products/deepsparse-ent\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"The Enterprise Edition\")), \" requires a Trial License or \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/master-software-license-and-service-agreement/\"\n }, \"can be fully licensed\"), \" for production, commercial applications.\")), mdx(\"h2\", null, \"Features\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"\\uD83D\\uDD0C \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server\"\n }, \"DeepSparse Server\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"\\uD83D\\uDCDC \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark\"\n }, \"DeepSparse Benchmark\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"\\uD83D\\uDC69\\u200D\\uD83D\\uDCBB \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/examples\"\n }, \"NLP and Computer Vision Tasks Supported\"))), mdx(\"h2\", null, \"\\uD83E\\uDDF0 Hardware Support and System Requirements\"), mdx(\"p\", null, \"Review \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/source/hardware.html\"\n }, \"CPU Hardware Support for Various Architectures\"), \" to understand system requirements.\\nThe DeepSparse Engine works natively on Linux; Mac and Windows require running Linux in a Docker or virtual machine; it will not run natively on those operating systems.\"), mdx(\"p\", null, \"The DeepSparse Engine is tested on Python 3.7-3.10, ONNX 1.5.0-1.12.0, ONNX opset version 11+, and manylinux compliant.\\nUsing a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.python.org/3/library/venv.html\"\n }, \"virtual environment\"), \" is highly recommended.\"), mdx(\"h2\", null, \"Installation\"), mdx(\"p\", null, \"Install the DeepSparse Community Edition as follows:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse\\n\")), mdx(\"p\", null, \"See the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/get-started/install/deepsparse\"\n }, \"DeepSparse Community Installation Page\"), \" for further installation options.\"), mdx(\"p\", null, \"To trial or inquire about licensing for DeepSparse Enterprise Edition, see the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/products/deepsparse-enterprise\"\n }, \"DeepSparse Enterprise documentation\"), \".\"), mdx(\"h2\", null, \"Features\"), mdx(\"h3\", null, \"\\uD83D\\uDD0C DeepSparse Server\"), mdx(\"p\", null, \"The DeepSparse Server allows you to serve models and pipelines from the terminal. The server runs on top of the popular FastAPI web framework and Uvicorn web server. Install the server using the following command:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse[server]\\n\")), mdx(\"h4\", null, \"Single Model\"), mdx(\"p\", null, \"Once installed, the following example CLI command is available for running inference with a single BERT model:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task question_answering \\\\\\n --model_path \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"To look up arguments run: \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.server --help\"), \".\"), mdx(\"h4\", null, \"Multiple Models\"), mdx(\"p\", null, \"To serve multiple models in your deployment you can easily build a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \". In the example below, we define two BERT models in our configuration for the question answering task:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"num_cores: 1\\nnum_workers: 1\\nendpoints:\\n - task: question_answering\\n route: /predict/question_answering/base\\n model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none\\n batch_size: 1\\n - task: question_answering\\n route: /predict/question_answering/pruned_quant\\n model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\n batch_size: 1\\n\")), mdx(\"p\", null, \"Finally, after your \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \" file is built, run the server with the config file path as an argument:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server config config.yaml\\n\")), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server\"\n }, \"Getting Started with the DeepSparse Server\"), \" for more info.\"), mdx(\"h3\", null, \"\\uD83D\\uDCDC DeepSparse Benchmark\"), mdx(\"p\", null, \"The benchmark tool is available on your CLI to run expressive model benchmarks on the DeepSparse Engine with minimal parameters.\"), mdx(\"p\", null, \"Run \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.benchmark -h\"), \" to look up arguments:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\"\n }, \"deepsparse.benchmark [-h] [-b BATCH_SIZE] [-shapes INPUT_SHAPES]\\n [-ncores NUM_CORES] [-s {async,sync}] [-t TIME]\\n [-nstreams NUM_STREAMS] [-pin {none,core,numa}]\\n [-q] [-x EXPORT_PATH]\\n model_path\\n\\n\")), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark\"\n }, \"Getting Started with CLI Benchmarking\"), \" includes examples of select inference scenarios:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Synchronous (Single-stream) Scenario\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Asynchronous (Multi-stream) Scenario\")), mdx(\"h3\", null, \"\\uD83D\\uDC69\\u200D\\uD83D\\uDCBB NLP Inference Example\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\n# SparseZoo model stub or path to ONNX file\\nmodel_path = \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\\"\\n\\nqa_pipeline = Pipeline.create(\\n task=\\\"question-answering\\\",\\n model_path=model_path,\\n)\\n\\nmy_name = qa_pipeline(question=\\\"What's my name?\\\", context=\\\"My name is Snorlax\\\")\\n\")), mdx(\"p\", null, \"NLP Tutorials:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/examples/huggingface-transformers\"\n }, \"Getting Started with Hugging Face Transformers \\uD83E\\uDD17\"))), mdx(\"p\", null, \"Tasks Supported:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-named-entity-recognition/\"\n }, \"Token Classification: Named Entity Recognition\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-multi-class-text-classification/\"\n }, \"Text Classification: Multi-Class\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-binary-text-classification/\"\n }, \"Text Classification: Binary\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-sentiment-analysis/\"\n }, \"Text Classification: Sentiment Analysis\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-question-answering/\"\n }, \"Question Answering\"))), mdx(\"h3\", null, \"\\uD83E\\uDD89 SparseZoo ONNX vs. Custom ONNX Models\"), mdx(\"p\", null, \"DeepSparse can accept ONNX models from two sources:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"SparseZoo ONNX\"), \": our open-source collection of sparse models available for download. \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo\"\n }, \"SparseZoo\"), \" hosts inference-optimized models, trained on repeatable sparsification recipes using state-of-the-art techniques from \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml\"\n }, \"SparseML\"), \".\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Custom ONNX\"), \": your own ONNX model, can be dense or sparse. Plug in your model to compare performance with other solutions.\"))), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"> wget https://github.com/onnx/models/raw/main/vision/classification/mobilenet/model/mobilenetv2-7.onnx\\nSaving to: \\u2018mobilenetv2-7.onnx\\u2019\\n\")), mdx(\"p\", null, \"Custom ONNX Benchmark example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import compile_model\\nfrom deepsparse.utils import generate_random_inputs\\nonnx_filepath = \\\"mobilenetv2-7.onnx\\\"\\nbatch_size = 16\\n\\n# Generate random sample input\\ninputs = generate_random_inputs(onnx_filepath, batch_size)\\n\\n# Compile and run\\nengine = compile_model(onnx_filepath, batch_size)\\noutputs = engine.run(inputs)\\n\")), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse\"\n }, \"GitHub repository\"), \" includes package APIs along with examples to quickly get started benchmarking and inferencing sparse models.\"), mdx(\"h3\", null, \"Scheduling Single-Stream, Multi-Stream, and Elastic Inference\"), mdx(\"p\", null, \"The DeepSparse Engine offers up to three types of inferences based on your use case. Read more details here: \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/docs/source/scheduler.md\"\n }, \"Inference Types\"), \".\"), mdx(\"p\", null, \"1 \\u26A1 Single-stream scheduling: the latency/synchronous scenario, requests execute serially. \", \"[\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"default\"), \"]\"), mdx(\"img\", {\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/single-stream.png\",\n \"alt\": \"single stream diagram\"\n }), mdx(\"p\", null, \"Use Case: It's highly optimized for minimum per-request latency, using all of the system's resources provided to it on every request it gets.\"), mdx(\"p\", null, \"2 \\u26A1 Multi-stream scheduling: the throughput/asynchronous scenario, requests execute in parallel.\"), mdx(\"img\", {\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/multi-stream.png\",\n \"alt\": \"multi stream diagram\"\n }), mdx(\"p\", null, \"PRO TIP: The most common use cases for the multi-stream scheduler are where parallelism is low with respect to core count, and where requests need to be made asynchronously without time to batch them.\"), mdx(\"p\", null, \"3 \\u26A1 Elastic scheduling: requests execute in parallel, but not multiplexed on individual NUMA nodes.\"), mdx(\"p\", null, \"Use Case: A workload that might benefit from the elastic scheduler is one in which multiple requests need to be handled simultaneously, but where performance is hindered when those requests have to share an L3 cache.\"), mdx(\"h2\", null, \"Resources\"), mdx(\"h4\", null, \"Libraries\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/\"\n }, \"DeepSparse\"))), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/sparseml/\"\n }, \"SparseML\"))), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/sparsezoo/\"\n }, \"SparseZoo\"))), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/sparsify/\"\n }, \"Sparsify\")))), mdx(\"h4\", null, \"Versions\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://pypi.org/project/deepsparse\"\n }, \"DeepSparse\"), \" | stable\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://pypi.org/project/deepsparse-nightly/\"\n }, \"DeepSparse-Nightly\"), \" | nightly (dev)\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/releases\"\n }, \"GitHub\"), \" | releases\"))), mdx(\"h4\", null, \"Info\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.neuralmagic.com/blog/\"\n }, \"Blog\"))), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.neuralmagic.com/resources/\"\n }, \"Resources\")))), mdx(\"h2\", null, \"Community\"), mdx(\"h3\", null, \"Be Part of the Future... And the Future is Sparse!\"), mdx(\"p\", null, \"Contribute with code, examples, integrations, and documentation as well as bug reports and feature requests! \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/CONTRIBUTING.md\"\n }, \"Learn how here.\")), mdx(\"p\", null, \"For user help or questions about DeepSparse, sign up or log in to our \", mdx(\"strong\", {\n parentName: \"p\"\n }, mdx(\"a\", {\n parentName: \"strong\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Deep Sparse Community Slack\")), \". We are growing the community member by member and happy to see you there. Bugs, feature requests, or additional questions can also be posted to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/issues\"\n }, \"GitHub Issue Queue.\"), \" You can get the latest news, webinar and event invites, research papers, and other ML Performance tidbits by \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/subscribe/\"\n }, \"subscribing\"), \" to the Neural Magic community.\"), mdx(\"p\", null, \"For more general questions about Neural Magic, complete this \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"http://neuralmagic.com/contact/\"\n }, \"form.\")), mdx(\"h3\", null, \"License\"), mdx(\"p\", null, \"The Community Edition of the project's binary containing the DeepSparse Engine is licensed under the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/LICENSE-NEURALMAGIC\"\n }, \"Neural Magic Engine License.\"), \"\\nExample files and scripts included in this repository are licensed under the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/LICENSE\"\n }, \"Apache License Version 2.0\"), \" as noted.\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/products/deepsparse-ent\"\n }, \"The Enterprise Edition\"), \" requires a Trial License or \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/legal/master-software-license-and-service-agreement/\"\n }, \"can be fully licensed\"), \" for production, commercial applications.\"), mdx(\"h3\", null, \"Cite\"), mdx(\"p\", null, \"Find this project useful in your research or other communications? Please consider citing:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bibtex\"\n }, \"@InProceedings{\\n pmlr-v119-kurtz20a,\\n title = {Inducing and Exploiting Activation Sparsity for Fast Inference on Deep Neural Networks},\\n author = {Kurtz, Mark and Kopinsky, Justin and Gelashvili, Rati and Matveev, Alexander and Carr, John and Goin, Michael and Leiserson, William and Moore, Sage and Nell, Bill and Shavit, Nir and Alistarh, Dan},\\n booktitle = {Proceedings of the 37th International Conference on Machine Learning},\\n pages = {5533--5543},\\n year = {2020},\\n editor = {Hal Daum\\xE9 III and Aarti Singh},\\n volume = {119},\\n series = {Proceedings of Machine Learning Research},\\n address = {Virtual},\\n month = {13--18 Jul},\\n publisher = {PMLR},\\n pdf = {http://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf},\\n url = {http://proceedings.mlr.press/v119/kurtz20a.html}\\n}\\n\\n@article{DBLP:journals/corr/abs-2111-13445,\\n author = {Eugenia Iofinova and\\n Alexandra Peste and\\n Mark Kurtz and\\n Dan Alistarh},\\n title = {How Well Do Sparse Imagenet Models Transfer?},\\n journal = {CoRR},\\n volume = {abs/2111.13445},\\n year = {2021},\\n url = {https://arxiv.org/abs/2111.13445},\\n eprinttype = {arXiv},\\n eprint = {2111.13445},\\n timestamp = {Wed, 01 Dec 2021 15:16:43 +0100},\\n biburl = {https://dblp.org/rec/journals/corr/abs-2111-13445.bib},\\n bibsource = {dblp computer science bibliography, https://dblp.org}\\n}\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#features","title":"Features"},{"url":"#-hardware-support-and-system-requirements","title":"🧰 Hardware Support and System Requirements"},{"url":"#installation","title":"Installation"},{"url":"#features-1","title":"Features","items":[{"url":"#-deepsparse-server","title":"🔌 DeepSparse Server","items":[{"url":"#single-model","title":"Single Model"},{"url":"#multiple-models","title":"Multiple Models"}]},{"url":"#-deepsparse-benchmark","title":"📜 DeepSparse Benchmark"},{"url":"#-nlp-inference-example","title":"👩‍💻 NLP Inference Example"},{"url":"#-sparsezoo-onnx-vs-custom-onnx-models","title":"🦉 SparseZoo ONNX vs. Custom ONNX Models"},{"url":"#scheduling-single-stream-multi-stream-and-elastic-inference","title":"Scheduling Single-Stream, Multi-Stream, and Elastic Inference"}]},{"url":"#resources","title":"Resources","items":[{"items":[{"url":"#libraries","title":"Libraries"},{"url":"#versions","title":"Versions"},{"url":"#info","title":"Info"}]}]},{"url":"#community","title":"Community","items":[{"url":"#be-part-of-the-future-and-the-future-is-sparse","title":"Be Part of the Future... And the Future is Sparse!"},{"url":"#license","title":"License"},{"url":"#cite","title":"Cite"}]}]},"parent":{"relativePath":"products/deepsparse/community.mdx"},"frontmatter":{"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/community","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","title":"DeepSparse Community","slug":"/products/deepsparse/community","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/community.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"DeepSparse Community\",\n \"metaTitle\": \"DeepSparse Community\",\n \"metaDescription\": \"Sparsity-aware neural network inference engine for GPU-class performance on CPUs\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"div\", {\n \"style\": {\n \"display\": \"flex\",\n \"flexDirection\": \"column\"\n }\n }, \"\\n \", mdx(\"h1\", {\n parentName: \"div\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"h1\",\n \"alt\": \"tool icon\",\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/icon-deepsparse.png\"\n }), \"\\n \\xA0\\xA0DeepSparse Community\\n \"), \"\\n \", mdx(\"h3\", {\n parentName: \"div\"\n }, \"An inference runtime offering GPU-class performance on CPUs and APIs to integrate ML into your application\"), \"\\n \", mdx(\"div\", {\n parentName: \"div\",\n \"style\": {\n \"display\": \"flex\",\n \"flexWrap\": \"wrap\"\n }\n }, \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Documentation\",\n \"src\": \"https://img.shields.io/badge/documentation-darkred?&style=for-the-badge&logo=read-the-docs\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Slack\",\n \"src\": \"https://img.shields.io/badge/slack-purple?style=for-the-badge&logo=slack\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/issues/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Support\",\n \"src\": \"https://img.shields.io/badge/support%20forums-navy?style=for-the-badge&logo=github\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/actions/workflows/quality-check.yaml\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Main\",\n \"src\": \"https://img.shields.io/github/workflow/status/neuralmagic/deepsparse/Quality%20Checks/main?label=build&style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/releases\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"GitHub release\",\n \"src\": \"https://img.shields.io/github/release/neuralmagic/deepsparse.svg?style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/CODE_OF_CONDUCT.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Contributor Covenant\",\n \"src\": \"https://img.shields.io/badge/Contributor%20Covenant-v2.1%20adopted-ff69b4.svg?color=yellow&style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://www.youtube.com/channel/UCo8dO_WMGYbWCRnj_Dxr4EA\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"YouTube\",\n \"src\": \"https://img.shields.io/badge/-YouTube-red?&style=for-the-badge&logo=youtube&logoColor=white\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://medium.com/limitlessai\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Medium\",\n \"src\": \"https://img.shields.io/badge/medium-%2312100E.svg?&style=for-the-badge&logo=medium&logoColor=white\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://twitter.com/neuralmagic\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Twitter\",\n \"src\": \"https://img.shields.io/twitter/follow/neuralmagic?color=darkgreen&label=Follow&style=social\",\n \"height\": 25\n }), \"\\n \"), \"\\n \")), mdx(\"p\", null, \"DeepSparse is an inference runtime that offers GPU-class performance on CPUs by utilizing sparsity. DeepSparse accepts models in the ONNX format, giving you flexibility to serve your model in a framework-agnostic manner.\\nDeepSparse Community Edition is open-source and free for evaluation, research, and non-production use with our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/legal/engine-license-agreement/\"\n }, \"Engine Community License\"), \". (Alternatively, the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/products/deepsparse-ent\"\n }, \"Enterprise Edition\"), \" requires a Trial License or can be fully licensed for production, commercial applications.)\"), mdx(\"p\", null, \"Neural Magic's DeepSparse is able to integrate into popular deep learning libraries (e.g., Hugging Face, Ultralytics) allowing you to leverage DeepSparse for loading and deploying sparse models with ONNX.\\nONNX gives the flexibility to serve your model in a framework-agnostic environment.\\nSupport includes \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://pytorch.org/docs/stable/onnx.html\"\n }, \"PyTorch,\"), \" \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/tensorflow-onnx\"\n }, \"TensorFlow,\"), \" \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/keras-onnx\"\n }, \"Keras,\"), \" and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/onnxmltools\"\n }, \"many other frameworks\"), \".\"), mdx(\"p\", null, \"DeepSparse is available in two editions:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"#installation\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"DeepSparse Community\")), \" is open-source and free for evaluation, research, and non-production use with our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/engine-license-agreement/\"\n }, \"Engine Community License\"), \".\"), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/products/deepsparse-ent\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"DeepSparse Enterprise\")), \" requires a Trial License or \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/master-software-license-and-service-agreement/\"\n }, \"can be fully licensed\"), \" for production, commercial applications.\")), mdx(\"h2\", null, \"Features\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"\\uD83D\\uDD0C \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server\"\n }, \"DeepSparse Server\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"\\uD83D\\uDCDC \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark\"\n }, \"DeepSparse Benchmark\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"\\uD83D\\uDC69\\u200D\\uD83D\\uDCBB \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/examples\"\n }, \"NLP and Computer Vision Tasks Supported\"))), mdx(\"h2\", null, \"Hardware Support and System Requirements\"), mdx(\"p\", null, \"Review \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/source/hardware.html\"\n }, \"CPU Hardware Support for Various Architectures\"), \" to understand system requirements.\\nDeepSparse works natively on Linux. Mac and Windows require running Linux in a Docker or virtual machine; it will not run natively on those operating systems.\"), mdx(\"p\", null, \"DeepSparse is tested on Python 3.7-3.10, ONNX 1.5.0-1.12.0, ONNX opset version 11+, and manylinux compliant systems.\\nUsing a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.python.org/3/library/venv.html\"\n }, \"virtual environment\"), \" is highly recommended.\"), mdx(\"h2\", null, \"Installation\"), mdx(\"p\", null, \"Install DeepSparse Community with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"pip\"), \":\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse\\n\")), mdx(\"p\", null, \"See the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/get-started/install/deepsparse\"\n }, \"DeepSparse Community Installation page\"), \" for further installation options.\"), mdx(\"h2\", null, \"DeepSparse Community Features\"), mdx(\"h3\", null, \"DeepSparse Server\"), mdx(\"p\", null, \"The DeepSparse Server allows you to serve models and pipelines from the terminal. The server runs on top of the popular FastAPI web framework and Uvicorn web server.\"), mdx(\"p\", null, \"Install the server with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"pip\"), \":\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse[server]\\n\")), mdx(\"h4\", null, \"Single Model\"), mdx(\"p\", null, \"Once installed, the following example CLI command is available for running inference with a single BERT model:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task question_answering \\\\\\n --model_path \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"To look up arguments, run \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.server --help\"), \".\"), mdx(\"h4\", null, \"Multiple Models\"), mdx(\"p\", null, \"To serve multiple models in your deployment, you can easily build a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \". In the example below, we define two BERT models in our configuration for the question answering task:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"num_cores: 1\\nnum_workers: 1\\nendpoints:\\n - task: question_answering\\n route: /predict/question_answering/base\\n model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none\\n batch_size: 1\\n - task: question_answering\\n route: /predict/question_answering/pruned_quant\\n model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\n batch_size: 1\\n\")), mdx(\"p\", null, \"Finally, after your \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \" file is built, run the server with the configuration file path as an argument:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server config config.yaml\\n\")), mdx(\"p\", null, \"See \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server\"\n }, \"Getting Started with DeepSparse Server\"), \" for more info.\"), mdx(\"h3\", null, \"DeepSparse Benchmark\"), mdx(\"p\", null, \"The benchmark tool is available on your CLI to run expressive model benchmarks with DeepSparse.\"), mdx(\"p\", null, \"Run \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.benchmark -h\"), \" to look up arguments:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\"\n }, \"deepsparse.benchmark [-h] [-b BATCH_SIZE] [-shapes INPUT_SHAPES]\\n [-ncores NUM_CORES] [-s {async,sync}] [-t TIME]\\n [-nstreams NUM_STREAMS] [-pin {none,core,numa}]\\n [-q] [-x EXPORT_PATH]\\n model_path\\n\\n\")), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark\"\n }, \"Getting Started with CLI Benchmarking\"), \" includes examples of select inference scenarios:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Synchronous (Single-stream) Scenario\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Asynchronous (Multi-stream) Scenario\")), mdx(\"h3\", null, \"NLP and Computer Vision Tasks Supported\"), mdx(\"p\", null, \"An NLP inference example is:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\n# SparseZoo model stub or path to ONNX file\\nmodel_path = \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\\"\\n\\nqa_pipeline = Pipeline.create(\\n task=\\\"question-answering\\\",\\n model_path=model_path,\\n)\\n\\nmy_name = qa_pipeline(question=\\\"What's my name?\\\", context=\\\"My name is Snorlax\\\")\\n\")), mdx(\"p\", null, \"Refer also to \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/PIPELINES.md\"\n }, \"Using Pipelines\"), \".\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"For Image Classification tutorials, see \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/image_classification\"\n }, \"Image Classification Inference Pipelines\"), \".\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"For Object Detection tutorials, see \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/yolo\"\n }, \"YOLOv5 Inference Pipelines\"), \". \")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"For Segmentation tutorials, see \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/yolact\"\n }, \"YOLACT Inference Pipelines\"), \".\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"For NLP tutorials, see \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/examples/huggingface-transformers\"\n }, \"Getting Started with Hugging Face Transformers\"), \".\"))), mdx(\"p\", null, \"Supported NLP tasks include:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-named-entity-recognition/\"\n }, \"Token Classification: Named Entity Recognition\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-multi-class-text-classification/\"\n }, \"Text Classification: Multi-Class\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-binary-text-classification/\"\n }, \"Text Classification: Binary\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-sentiment-analysis/\"\n }, \"Text Classification: Sentiment Analysis\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-question-answering/\"\n }, \"Question Answering\"))), mdx(\"h3\", null, \"SparseZoo ONNX vs. Custom ONNX Models\"), mdx(\"p\", null, \"DeepSparse can accept ONNX models from two sources:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"SparseZoo ONNX\"), \": \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo\"\n }, \"SparseZoo\"), \" hosts open-source inference-optimized models, trained on repeatable sparsification recipes using state-of-the-art techniques from \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml\"\n }, \"SparseML\"), \". The ONNX representation of each model is available for download.\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Custom ONNX\"), \": DeepSparse allows you to use your own model in ONNX format. It can be dense or sparse. Plug in your model to compare performance with other solutions.\"))), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"> wget https://github.com/onnx/models/raw/main/vision/classification/mobilenet/model/mobilenetv2-7.onnx\\nSaving to: \\u2018mobilenetv2-7.onnx\\u2019\\n\")), mdx(\"p\", null, \"Here is a custom ONNX benchmark example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import compile_model\\nfrom deepsparse.utils import generate_random_inputs\\nonnx_filepath = \\\"mobilenetv2-7.onnx\\\"\\nbatch_size = 16\\n\\n# Generate random sample input\\ninputs = generate_random_inputs(onnx_filepath, batch_size)\\n\\n# Compile and run\\nengine = compile_model(onnx_filepath, batch_size)\\noutputs = engine.run(inputs)\\n\")), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse\"\n }, \"GitHub repository\"), \" includes package APIs along with examples to quickly get started benchmarking and inferencing sparse models.\"), mdx(\"h3\", null, \"Scheduling Single-Stream, Multi-Stream, and Elastic Inference\"), mdx(\"p\", null, \"DeepSparse Engine offers three inference modes based on your use case. See \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/docs/source/scheduler.md\"\n }, \"Inference Modes\"), \".\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"Single-stream scheduling (the default) is the latency/synchronous scenario. Requests execute serially.\"), mdx(\"undefined\", {\n parentName: \"li\"\n }, mdx(\"img\", {\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/single-stream.png\",\n \"alt\": \"single stream diagram\"\n }), \"\\nUse Case: It's highly optimized for minimum per-request latency, using all of the system's resources provided to it on every request it gets.\")), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"Multi-stream scheduling is the throughput/asynchronous scenario. Requests execute in parallel.\"), mdx(\"undefined\", {\n parentName: \"li\"\n }, mdx(\"img\", {\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/multi-stream.png\",\n \"alt\": \"multi stream diagram\"\n }), \"\\nUse Case: The most common use cases for the multi-stream scheduler are those in which parallelism is low with respect to core count, and requests need to be made asynchronously without time to batch them.\")), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"Elastic scheduling requests execute in parallel, but not multiplexed on individual NUMA nodes.\\nUse Case: A workload that might benefit from the elastic scheduler is one in which multiple requests need to be handled simultaneously, but where performance is hindered when those requests have to share an L3 cache.\"))), mdx(\"h2\", null, \"Resources\"), mdx(\"h4\", null, \"Libraries\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/\"\n }, \"DeepSparse\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/sparseml/\"\n }, \"SparseML\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/sparsezoo/\"\n }, \"SparseZoo\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/sparsify/\"\n }, \"Sparsify\"))), mdx(\"h4\", null, \"Versions\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://pypi.org/project/deepsparse\"\n }, \"DeepSparse\"), \" | stable\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://pypi.org/project/deepsparse-nightly/\"\n }, \"DeepSparse-Nightly\"), \" | nightly (dev)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/releases\"\n }, \"GitHub\"), \" | releases\")), mdx(\"h4\", null, \"Info\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://www.neuralmagic.com/blog/\"\n }, \"Blog\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://www.neuralmagic.com/resources/\"\n }, \"Resources\"))), mdx(\"h2\", null, \"Community\"), mdx(\"h3\", null, \"Be Part of the Future... And the Future is Sparse!\"), mdx(\"p\", null, \"Contribute with code, examples, integrations, and documentation as well as bug reports and feature requests! \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/CONTRIBUTING.md\"\n }, \"Learn how here.\")), mdx(\"p\", null, \"For user help or questions about DeepSparse, sign up or log into our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Neural Magic Community Slack\"), \". We are growing the community member by member and happy to see you there. Bugs, feature requests, or additional questions can also be posted to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/issues\"\n }, \"GitHub Issue Queue.\"), \" You can get the latest news, webinar and event invites, research papers, and other ML performance tidbits by \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/subscribe/\"\n }, \"subscribing\"), \" to the Neural Magic community.\"), mdx(\"p\", null, \"For more general questions about Neural Magic, complete this \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"http://neuralmagic.com/contact/\"\n }, \"form.\")), mdx(\"h3\", null, \"License\"), mdx(\"p\", null, \"DeepSparse Community is licensed under the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/LICENSE-NEURALMAGIC\"\n }, \"Neural Magic DeepSparse Community License.\"), \"\\nSome source code, example files, and scripts included in the DeepSparse GitHub repository or directory are licensed under the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/LICENSE\"\n }, \"Apache License Version 2.0\"), \" as noted.\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/products/deepsparse-ent\"\n }, \"DeepSparse Enterprise\"), \" requires a Trial License or \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/legal/master-software-license-and-service-agreement/\"\n }, \"can be fully licensed\"), \" for production, commercial applications.\"), mdx(\"h3\", null, \"Cite\"), mdx(\"p\", null, \"Find this project useful in your research or other communications? Please consider citing:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bibtex\"\n }, \"@InProceedings{\\n pmlr-v119-kurtz20a,\\n title = {Inducing and Exploiting Activation Sparsity for Fast Inference on Deep Neural Networks},\\n author = {Kurtz, Mark and Kopinsky, Justin and Gelashvili, Rati and Matveev, Alexander and Carr, John and Goin, Michael and Leiserson, William and Moore, Sage and Nell, Bill and Shavit, Nir and Alistarh, Dan},\\n booktitle = {Proceedings of the 37th International Conference on Machine Learning},\\n pages = {5533--5543},\\n year = {2020},\\n editor = {Hal Daum\\xE9 III and Aarti Singh},\\n volume = {119},\\n series = {Proceedings of Machine Learning Research},\\n address = {Virtual},\\n month = {13--18 Jul},\\n publisher = {PMLR},\\n pdf = {http://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf},\\n url = {http://proceedings.mlr.press/v119/kurtz20a.html}\\n}\\n\\n@article{DBLP:journals/corr/abs-2111-13445,\\n author = {Eugenia Iofinova and\\n Alexandra Peste and\\n Mark Kurtz and\\n Dan Alistarh},\\n title = {How Well Do Sparse Imagenet Models Transfer?},\\n journal = {CoRR},\\n volume = {abs/2111.13445},\\n year = {2021},\\n url = {https://arxiv.org/abs/2111.13445},\\n eprinttype = {arXiv},\\n eprint = {2111.13445},\\n timestamp = {Wed, 01 Dec 2021 15:16:43 +0100},\\n biburl = {https://dblp.org/rec/journals/corr/abs-2111-13445.bib},\\n bibsource = {dblp computer science bibliography, https://dblp.org}\\n}\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#features","title":"Features"},{"url":"#hardware-support-and-system-requirements","title":"Hardware Support and System Requirements"},{"url":"#installation","title":"Installation"},{"url":"#deepsparse-community-features","title":"DeepSparse Community Features","items":[{"url":"#deepsparse-server","title":"DeepSparse Server","items":[{"url":"#single-model","title":"Single Model"},{"url":"#multiple-models","title":"Multiple Models"}]},{"url":"#deepsparse-benchmark","title":"DeepSparse Benchmark"},{"url":"#nlp-and-computer-vision-tasks-supported","title":"NLP and Computer Vision Tasks Supported"},{"url":"#sparsezoo-onnx-vs-custom-onnx-models","title":"SparseZoo ONNX vs. Custom ONNX Models"},{"url":"#scheduling-single-stream-multi-stream-and-elastic-inference","title":"Scheduling Single-Stream, Multi-Stream, and Elastic Inference"}]},{"url":"#resources","title":"Resources","items":[{"items":[{"url":"#libraries","title":"Libraries"},{"url":"#versions","title":"Versions"},{"url":"#info","title":"Info"}]}]},{"url":"#community","title":"Community","items":[{"url":"#be-part-of-the-future-and-the-future-is-sparse","title":"Be Part of the Future... And the Future is Sparse!"},{"url":"#license","title":"License"},{"url":"#cite","title":"Cite"}]}]},"parent":{"relativePath":"products/deepsparse/community.mdx"},"frontmatter":{"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/deepsparse/community/python-api/page-data.json b/page-data/products/deepsparse/community/python-api/page-data.json index 89a3310cb81..202ee04d912 100644 --- a/page-data/products/deepsparse/community/python-api/page-data.json +++ b/page-data/products/deepsparse/community/python-api/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/community/python-api","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","title":"Python API","slug":"/products/deepsparse/community/python-api","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/community/python-api.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Python API\",\n \"metaTitle\": \"DeepSparse Python API\",\n \"metaDescription\": \"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Python API\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse Python APIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#python-api","title":"Python API"}]},"parent":{"relativePath":"products/deepsparse/community/python-api.mdx"},"frontmatter":{"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/community/python-api","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","title":"Python API","slug":"/products/deepsparse/community/python-api","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/community/python-api.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Python API\",\n \"metaTitle\": \"DeepSparse Python API\",\n \"metaDescription\": \"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Python API\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse Python APIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#python-api","title":"Python API"}]},"parent":{"relativePath":"products/deepsparse/community/python-api.mdx"},"frontmatter":{"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/deepsparse/enterprise/cli/page-data.json b/page-data/products/deepsparse/enterprise/cli/page-data.json index d13a080afc1..ff8883e23f6 100644 --- a/page-data/products/deepsparse/enterprise/cli/page-data.json +++ b/page-data/products/deepsparse/enterprise/cli/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/enterprise/cli","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","title":"CLI","slug":"/products/deepsparse/enterprise/cli","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/enterprise/cli.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"CLI\",\n \"metaTitle\": \"DeepSparse CLI\",\n \"metaDescription\": \"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"CLI\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse CLIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#cli","title":"CLI"}]},"parent":{"relativePath":"products/deepsparse/enterprise/cli.mdx"},"frontmatter":{"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/enterprise/cli","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","title":"CLI","slug":"/products/deepsparse/enterprise/cli","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/enterprise/cli.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"CLI\",\n \"metaTitle\": \"DeepSparse CLI\",\n \"metaDescription\": \"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"CLI\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse CLIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#cli","title":"CLI"}]},"parent":{"relativePath":"products/deepsparse/enterprise/cli.mdx"},"frontmatter":{"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/deepsparse/enterprise/cpp-api/page-data.json b/page-data/products/deepsparse/enterprise/cpp-api/page-data.json index 5f8de2a2e64..5753aded610 100644 --- a/page-data/products/deepsparse/enterprise/cpp-api/page-data.json +++ b/page-data/products/deepsparse/enterprise/cpp-api/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/enterprise/cpp-api","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","title":"C++ API","slug":"/products/deepsparse/enterprise/cpp-api","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/enterprise/cpp-api.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"C++ API\",\n \"metaTitle\": \"DeepSparse C++ API\",\n \"metaDescription\": \"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"C++ API\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation detailed exploration of the DeepSparse C++ APIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#c-api","title":"C++ API"}]},"parent":{"relativePath":"products/deepsparse/enterprise/cpp-api.mdx"},"frontmatter":{"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/enterprise/cpp-api","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","title":"C++ API","slug":"/products/deepsparse/enterprise/cpp-api","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/enterprise/cpp-api.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"C++ API\",\n \"metaTitle\": \"DeepSparse C++ API\",\n \"metaDescription\": \"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"C++ API\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation detailed exploration of the DeepSparse C++ APIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#c-api","title":"C++ API"}]},"parent":{"relativePath":"products/deepsparse/enterprise/cpp-api.mdx"},"frontmatter":{"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/deepsparse/enterprise/page-data.json b/page-data/products/deepsparse/enterprise/page-data.json index 15eb6eed1d9..baf961655f7 100644 --- a/page-data/products/deepsparse/enterprise/page-data.json +++ b/page-data/products/deepsparse/enterprise/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/enterprise","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","title":"Enterprise Edition","slug":"/products/deepsparse/enterprise","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/enterprise.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Enterprise Edition\",\n \"metaTitle\": \"DeepSparse Enterprise Edition\",\n \"metaDescription\": \"Sparsity-aware neural network inference engine for GPU-class performance on CPUs\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"div\", {\n \"style\": {\n \"display\": \"flex\",\n \"flexDirection\": \"column\"\n }\n }, \"\\n \", mdx(\"h1\", {\n parentName: \"div\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"h1\",\n \"alt\": \"tool icon\",\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/icon-deepsparse.png\"\n }), \"\\n \\xA0\\xA0DeepSparse Enterprise Edition\\n \"), \"\\n \", mdx(\"h3\", {\n parentName: \"div\"\n }, \" Sparsity-aware neural network inference engine for GPU-class performance on CPUs \"), \"\\n \", mdx(\"div\", {\n parentName: \"div\",\n \"style\": {\n \"display\": \"flex\",\n \"flexWrap\": \"wrap\"\n }\n }, \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Documentation\",\n \"src\": \"https://img.shields.io/badge/documentation-darkred?&style=for-the-badge&logo=read-the-docs\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Slack\",\n \"src\": \"https://img.shields.io/badge/slack-purple?style=for-the-badge&logo=slack\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/issues/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Support\",\n \"src\": \"https://img.shields.io/badge/support%20forums-navy?style=for-the-badge&logo=github\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/actions/workflows/quality-check.yaml\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Main\",\n \"src\": \"https://img.shields.io/github/workflow/status/neuralmagic/deepsparse/Quality%20Checks/main?label=build&style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/releases\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"GitHub release\",\n \"src\": \"https://img.shields.io/github/release/neuralmagic/deepsparse.svg?style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/CODE_OF_CONDUCT.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Contributor Covenant\",\n \"src\": \"https://img.shields.io/badge/Contributor%20Covenant-v2.1%20adopted-ff69b4.svg?color=yellow&style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://www.youtube.com/channel/UCo8dO_WMGYbWCRnj_Dxr4EA\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"YouTube\",\n \"src\": \"https://img.shields.io/badge/-YouTube-red?&style=for-the-badge&logo=youtube&logoColor=white\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://medium.com/limitlessai\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Medium\",\n \"src\": \"https://img.shields.io/badge/medium-%2312100E.svg?&style=for-the-badge&logo=medium&logoColor=white\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://twitter.com/neuralmagic\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Twitter\",\n \"src\": \"https://img.shields.io/twitter/follow/neuralmagic?color=darkgreen&label=Follow&style=social\",\n \"height\": 25\n }), \"\\n \"), \"\\n \")), mdx(\"p\", null, \"A CPU runtime that takes advantage of sparsity within neural networks to reduce compute. Read \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/user-guide/sparsification\"\n }, \"more about sparsification\"), \".\"), mdx(\"p\", null, \"Neural Magic's DeepSparse Engine is able to integrate into popular deep learning libraries (e.g., Hugging Face, Ultralytics) allowing you to leverage DeepSparse for loading and deploying sparse models with ONNX.\\nONNX gives the flexibility to serve your model in a framework-agnostic environment.\\nSupport includes \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://pytorch.org/docs/stable/onnx.html\"\n }, \"PyTorch,\"), \" \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/tensorflow-onnx\"\n }, \"TensorFlow,\"), \" \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/keras-onnx\"\n }, \"Keras,\"), \" and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/onnxmltools\"\n }, \"many other frameworks\"), \".\"), mdx(\"p\", null, \"The DeepSparse Engine is available in two editions:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/products/deepsparse\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"The Community Edition\")), \" is open-source and free for evaluation, research, and non-production use with our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/engine-license-agreement/\"\n }, \"Engine Community License\"), \".\"), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"#installation\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"The Enterprise Edition\")), \" requires a Trial License or \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/master-software-license-and-service-agreement/\"\n }, \"can be fully licensed\"), \" for production, commercial applications.\")), mdx(\"h2\", null, \"Features\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"\\uD83D\\uDD0C \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server\"\n }, \"DeepSparse Server\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"\\uD83D\\uDCDC \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark\"\n }, \"DeepSparse Benchmark\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"\\uD83D\\uDC69\\u200D\\uD83D\\uDCBB \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/examples\"\n }, \"NLP and Computer Vision Tasks Supported\"))), mdx(\"h2\", null, \"\\uD83E\\uDDF0 Hardware Support and System Requirements\"), mdx(\"p\", null, \"Review \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"user-guide/deepsparse-engine/hardware-support\"\n }, \"Supported Hardware for the DeepSparse Engine\"), \" to understand system requirements.\\nThe DeepSparse Engine works natively on Linux; Mac and Windows require running Linux in a Docker or virtual machine; it will not run natively on those operating systems.\"), mdx(\"p\", null, \"The DeepSparse Engine is tested on Python 3.7-3.10, ONNX 1.5.0-1.12.0, ONNX opset version 11+, and manylinux compliant.\\nUsing a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.python.org/3/library/venv.html\"\n }, \"virtual environment\"), \" is highly recommended.\"), mdx(\"h2\", null, \"Installation\"), mdx(\"p\", null, \"Install the Enterprise Edition as follows:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse-ent\\n\")), mdx(\"p\", null, \"See the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse-ent\"\n }, \"DeepSparse Enterprise Installation Page\"), \" for further installation options.\"), mdx(\"h2\", null, \"Getting a License\"), mdx(\"p\", null, \"The DeepSparse Enterprise Edition requires a valid license to run the engine and can be licensed for production, commercial applications.\\nThere are two options available:\"), mdx(\"h3\", null, \"90-Day Enterprise Trial License\"), mdx(\"p\", null, \"To try out the DeepSparse Enterprise Edition and get a Neural Magic Trial License, complete our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/deepsparse-engine-free-trial\"\n }, \"registration form\"), \".\\nUpon submission, the license will be emailed to you and your 90-day term starts right then.\"), mdx(\"h3\", null, \"Enterprise Edition License\"), mdx(\"p\", null, \"To learn more about DeepSparse Enterprise Edition pricing, \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/deepsparse-engine/#form\"\n }, \"contact our Sales team\"), \" to discuss your use case further for a custom quote.\"), mdx(\"h2\", null, \"Installing a License\"), mdx(\"p\", null, \"Once you have obtained a license, you will need to initialize it to be able to run the DeepSparse Enterprise Edition.\\nYou can initialize your license by running the command:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.license or \\n\")), mdx(\"p\", null, \"To initialize a license on a machine:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, \"Confirm you have deepsparse-ent installed in a fresh virtual environment.\", mdx(\"ul\", {\n parentName: \"li\"\n }, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Note: Installing deepsparse and deepsparse-ent on the same virtual environment may result in unsupported behaviors.\"))), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Run \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.license\"), \" with the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"\"), \" or \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"path/to/license.txt\"), \" as an argument as follows:\", mdx(\"ul\", {\n parentName: \"li\"\n }, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.license \")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.license ./license.txt\")))), mdx(\"li\", {\n parentName: \"ol\"\n }, \"If successful, \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.license\"), \" will write the license file to \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"~/.config/neuralmagic/license.txt\"), \". You may overwrite this path by setting the environment variable \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"NM_CONFIG_DIR\"), \" (before and after running the script) with the following command:\", mdx(\"ul\", {\n parentName: \"li\"\n }, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"export NM_CONFIG_DIR=path/to/license.txt\")))), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Once the license is authenticated, you should see a splash message indicating that you are now running DeepSparse Enterprise Edition.\")), mdx(\"p\", null, \"If you encounter issues initializing your DeepSparse Enterprise Edition License, contact \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"mailto:license@neuralmagic.com\"\n }, \"license@neuralmagic.com\"), \" for help.\"), mdx(\"h2\", null, \"Validating a License\"), mdx(\"p\", null, \"Once you have initialized your license, you may want to check if it is still valid before running a workload on DeepSparse Enterprise Edition. To confirm your license is still active with the DeepSparse Enterprise Edition, run the command:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.validate_license\\n\")), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.validate_license\"), \" can be run with no arguments, which will reference an existing environment variable (if set), or with one argument that is a reference to the license and can be referenced in the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.validate_license\"), \" command as \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"path/to/license.txt\"), \".\"), mdx(\"p\", null, \"To validate a license on a machine:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, \"If you have successfully run \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.license\"), \", \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.validate_license\"), \" can be used to validate that the license file is in the correct location:\", mdx(\"ul\", {\n parentName: \"li\"\n }, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Run the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.validate_license\"), \" with no arguments. If the referenced license is valid, you should get the DeepSparse Enterprise Edition splash screen printed out in your terminal window.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"If the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"NM_CONFIG_DIR\"), \" environment variable was set when creating the license, ensure this variable is still set to the same value.\"))), mdx(\"li\", {\n parentName: \"ol\"\n }, \"If you want to supply the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"path/to/license.txt\"), \":\", mdx(\"ul\", {\n parentName: \"li\"\n }, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Run the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.validate_license\"), \" with \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"path/to/license.txt\"), \" as an argument as follows:\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.validate_license --license_path path/to/license.txt\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"If the referenced license is valid, you should get the DeepSparse Enterprise Edition splash screen printed out in your terminal window.\")))), mdx(\"p\", null, \"If you encounter issues validating your DeepSparse Enterprise Edition License, contact \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"mailto:license@neuralmagic.com\"\n }, \"license@neuralmagic.com\"), \" for help.\"), mdx(\"h2\", null, \"Features\"), mdx(\"h3\", null, \"\\uD83D\\uDD0C DeepSparse Server\"), mdx(\"p\", null, \"The DeepSparse Server allows you to serve models and pipelines from the terminal. The server runs on top of the popular FastAPI web framework and Uvicorn web server. Install the server using the following command:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse-ent[server]\\n\")), mdx(\"h4\", null, \"Single Model\"), mdx(\"p\", null, \"Once installed, the following example CLI command is available for running inference with a single BERT model:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task question_answering \\\\\\n --model_path \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"To look up arguments run: \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.server --help\"), \".\"), mdx(\"h4\", null, \"Multiple Models\"), mdx(\"p\", null, \"To serve multiple models in your deployment you can easily build a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \". In the example below, we define two BERT models in our configuration for the question answering task:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"num_cores: 1\\nnum_workers: 1\\nendpoints:\\n - task: question_answering\\n route: /predict/question_answering/base\\n model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none\\n batch_size: 1\\n - task: question_answering\\n route: /predict/question_answering/pruned_quant\\n model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\n batch_size: 1\\n\")), mdx(\"p\", null, \"Finally, after your \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \" file is built, run the server with the config file path as an argument:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server config config.yaml\\n\")), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server\"\n }, \"Getting Started with the DeepSparse Server\"), \" for more info.\"), mdx(\"h3\", null, \"\\uD83D\\uDCDC DeepSparse Benchmark\"), mdx(\"p\", null, \"The benchmark tool is available on your CLI to run expressive model benchmarks on the DeepSparse Engine with minimal parameters.\"), mdx(\"p\", null, \"Run \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.benchmark -h\"), \" to look up arguments:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\"\n }, \"deepsparse.benchmark [-h] [-b BATCH_SIZE] [-shapes INPUT_SHAPES]\\n [-ncores NUM_CORES] [-s {async,sync}] [-t TIME]\\n [-nstreams NUM_STREAMS] [-pin {none,core,numa}]\\n [-q] [-x EXPORT_PATH]\\n model_path\\n\\n\")), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark\"\n }, \"Getting Started with CLI Benchmarking\"), \" includes examples of select inference scenarios:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Synchronous (Single-stream) Scenario\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Asynchronous (Multi-stream) Scenario\")), mdx(\"h3\", null, \"\\uD83D\\uDC69\\u200D\\uD83D\\uDCBB NLP Inference Example\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\n# SparseZoo model stub or path to ONNX file\\nmodel_path = \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\\"\\n\\nqa_pipeline = Pipeline.create(\\n task=\\\"question-answering\\\",\\n model_path=model_path,\\n)\\n\\nmy_name = qa_pipeline(question=\\\"What's my name?\\\", context=\\\"My name is Snorlax\\\")\\n\")), mdx(\"p\", null, \"NLP Tutorials:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/examples/huggingface-transformers\"\n }, \"Getting Started with Hugging Face Transformers \\uD83E\\uDD17\"))), mdx(\"p\", null, \"Tasks Supported:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-named-entity-recognition/\"\n }, \"Token Classification: Named Entity Recognition\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-multi-class-text-classification/\"\n }, \"Text Classification: Multi-Class\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-binary-text-classification/\"\n }, \"Text Classification: Binary\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-sentiment-analysis/\"\n }, \"Text Classification: Sentiment Analysis\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-question-answering/\"\n }, \"Question Answering\"))), mdx(\"h3\", null, \"\\uD83E\\uDD89 SparseZoo ONNX vs. Custom ONNX Models\"), mdx(\"p\", null, \"DeepSparse can accept ONNX models from two sources:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"SparseZoo ONNX\"), \": our open-source collection of sparse models available for download. \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo\"\n }, \"SparseZoo\"), \" hosts inference-optimized models, trained on repeatable sparsification recipes using state-of-the-art techniques from \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml\"\n }, \"SparseML\"), \".\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Custom ONNX\"), \": your own ONNX model, can be dense or sparse. Plug in your model to compare performance with other solutions.\"))), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"> wget https://github.com/onnx/models/raw/main/vision/classification/mobilenet/model/mobilenetv2-7.onnx\\nSaving to: \\u2018mobilenetv2-7.onnx\\u2019\\n\")), mdx(\"p\", null, \"Custom ONNX Benchmark example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import compile_model\\nfrom deepsparse.utils import generate_random_inputs\\nonnx_filepath = \\\"mobilenetv2-7.onnx\\\"\\nbatch_size = 16\\n\\n# Generate random sample input\\ninputs = generate_random_inputs(onnx_filepath, batch_size)\\n\\n# Compile and run\\nengine = compile_model(onnx_filepath, batch_size)\\noutputs = engine.run(inputs)\\n\")), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse\"\n }, \"GitHub repository\"), \" includes package APIs along with examples to quickly get started benchmarking and inferencing sparse models.\"), mdx(\"h3\", null, \"Scheduling Single-Stream, Multi-Stream, and Elastic Inference\"), mdx(\"p\", null, \"The DeepSparse Engine offers up to three types of inferences based on your use case. Read more details here: \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/docs/source/scheduler.md\"\n }, \"Inference Types\"), \".\"), mdx(\"p\", null, \"1 \\u26A1 Single-stream scheduling: the latency/synchronous scenario, requests execute serially. \", \"[\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"default\"), \"]\"), mdx(\"img\", {\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/single-stream.png\",\n \"alt\": \"single stream diagram\"\n }), mdx(\"p\", null, \"Use Case: It's highly optimized for minimum per-request latency, using all of the system's resources provided to it on every request it gets.\"), mdx(\"p\", null, \"2 \\u26A1 Multi-stream scheduling: the throughput/asynchronous scenario, requests execute in parallel.\"), mdx(\"img\", {\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/multi-stream.png\",\n \"alt\": \"multi stream diagram\"\n }), mdx(\"p\", null, \"PRO TIP: The most common use cases for the multi-stream scheduler are where parallelism is low with respect to core count, and where requests need to be made asynchronously without time to batch them.\"), mdx(\"p\", null, \"3 \\u26A1 Elastic scheduling: requests execute in parallel, but not multiplexed on individual NUMA nodes.\"), mdx(\"p\", null, \"Use Case: A workload that might benefit from the elastic scheduler is one in which multiple requests need to be handled simultaneously, but where performance is hindered when those requests have to share an L3 cache.\"), mdx(\"h2\", null, \"Resources\"), mdx(\"h4\", null, \"Libraries\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/\"\n }, \"DeepSparse\"))), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/sparseml/\"\n }, \"SparseML\"))), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/sparsezoo/\"\n }, \"SparseZoo\"))), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/sparsify/\"\n }, \"Sparsify\")))), mdx(\"h4\", null, \"Versions\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://pypi.org/project/deepsparse\"\n }, \"DeepSparse\"), \" | stable\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://pypi.org/project/deepsparse-nightly/\"\n }, \"DeepSparse-Nightly\"), \" | nightly (dev)\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/releases\"\n }, \"GitHub\"), \" | releases\"))), mdx(\"h4\", null, \"Info\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.neuralmagic.com/blog/\"\n }, \"Blog\"))), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.neuralmagic.com/resources/\"\n }, \"Resources\")))), mdx(\"h3\", null, \"License\"), mdx(\"p\", null, \"The Community Edition of the project's binary containing the DeepSparse Engine is licensed under the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/LICENSE-NEURALMAGIC\"\n }, \"Neural Magic Engine License.\"), \"\\nExample files and scripts included in this repository are licensed under the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/LICENSE\"\n }, \"Apache License Version 2.0\"), \" as noted.\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/products/deepsparse-ent\"\n }, \"The Enterprise Edition\"), \" requires a Trial License or \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/legal/master-software-license-and-service-agreement/\"\n }, \"can be fully licensed\"), \" for production, commercial applications.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#features","title":"Features"},{"url":"#-hardware-support-and-system-requirements","title":"🧰 Hardware Support and System Requirements"},{"url":"#installation","title":"Installation"},{"url":"#getting-a-license","title":"Getting a License","items":[{"url":"#90-day-enterprise-trial-license","title":"90-Day Enterprise Trial License"},{"url":"#enterprise-edition-license","title":"Enterprise Edition License"}]},{"url":"#installing-a-license","title":"Installing a License"},{"url":"#validating-a-license","title":"Validating a License"},{"url":"#features-1","title":"Features","items":[{"url":"#-deepsparse-server","title":"🔌 DeepSparse Server","items":[{"url":"#single-model","title":"Single Model"},{"url":"#multiple-models","title":"Multiple Models"}]},{"url":"#-deepsparse-benchmark","title":"📜 DeepSparse Benchmark"},{"url":"#-nlp-inference-example","title":"👩‍💻 NLP Inference Example"},{"url":"#-sparsezoo-onnx-vs-custom-onnx-models","title":"🦉 SparseZoo ONNX vs. Custom ONNX Models"},{"url":"#scheduling-single-stream-multi-stream-and-elastic-inference","title":"Scheduling Single-Stream, Multi-Stream, and Elastic Inference"}]},{"url":"#resources","title":"Resources","items":[{"items":[{"url":"#libraries","title":"Libraries"},{"url":"#versions","title":"Versions"},{"url":"#info","title":"Info"}]},{"url":"#license","title":"License"}]}]},"parent":{"relativePath":"products/deepsparse/enterprise.mdx"},"frontmatter":{"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/enterprise","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","title":"DeepSparse Enterprise","slug":"/products/deepsparse/enterprise","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/enterprise.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"DeepSparse Enterprise\",\n \"metaTitle\": \"DeepSparse Enterprise\",\n \"metaDescription\": \"Sparsity-aware neural network inference engine for GPU-class performance on CPUs\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"div\", {\n \"style\": {\n \"display\": \"flex\",\n \"flexDirection\": \"column\"\n }\n }, \"\\n \", mdx(\"h1\", {\n parentName: \"div\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"h1\",\n \"alt\": \"tool icon\",\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/icon-deepsparse.png\"\n }), \"\\n \\xA0\\xA0DeepSparse Enterprise\\n \"), \"\\n \", mdx(\"h3\", {\n parentName: \"div\"\n }, \" An inference runtime offering GPU-class performance on CPUs and APIs to integrate ML into your application\"), \"\\n \", mdx(\"div\", {\n parentName: \"div\",\n \"style\": {\n \"display\": \"flex\",\n \"flexWrap\": \"wrap\"\n }\n }, \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://docs.neuralmagic.com/products/deepsparse/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Documentation\",\n \"src\": \"https://img.shields.io/badge/documentation-darkred?&style=for-the-badge&logo=read-the-docs\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Slack\",\n \"src\": \"https://img.shields.io/badge/slack-purple?style=for-the-badge&logo=slack\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/issues/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Support\",\n \"src\": \"https://img.shields.io/badge/support%20forums-navy?style=for-the-badge&logo=github\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/actions/workflows/quality-check.yaml\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Main\",\n \"src\": \"https://img.shields.io/github/workflow/status/neuralmagic/deepsparse/Quality%20Checks/main?label=build&style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/releases\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"GitHub release\",\n \"src\": \"https://img.shields.io/github/release/neuralmagic/deepsparse.svg?style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/CODE_OF_CONDUCT.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Contributor Covenant\",\n \"src\": \"https://img.shields.io/badge/Contributor%20Covenant-v2.1%20adopted-ff69b4.svg?color=yellow&style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://www.youtube.com/channel/UCo8dO_WMGYbWCRnj_Dxr4EA\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"YouTube\",\n \"src\": \"https://img.shields.io/badge/-YouTube-red?&style=for-the-badge&logo=youtube&logoColor=white\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://medium.com/limitlessai\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Medium\",\n \"src\": \"https://img.shields.io/badge/medium-%2312100E.svg?&style=for-the-badge&logo=medium&logoColor=white\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://twitter.com/neuralmagic\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Twitter\",\n \"src\": \"https://img.shields.io/twitter/follow/neuralmagic?color=darkgreen&label=Follow&style=social\",\n \"height\": 25\n }), \"\\n \"), \"\\n \")), mdx(\"p\", null, \"DeepSparse is an inference runtime that offers GPU-class performance on CPUs by utilizing sparsity. DeepSparse accepts models in the ONNX format, giving you flexibility to serve your model in a framework-agnostic manner.\\nDeepSparse Enterprise requires a Trial License or \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/legal/master-software-license-and-service-agreement/\"\n }, \"can be fully licensed\"), \" for production, commercial applications. (Alternatively, the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/products/deepsparse\"\n }, \"The Community Edition\"), \" is open-source and free for evaluation, research, and non-production.)\"), mdx(\"p\", null, \"Neural Magic's DeepSparse is able to integrate into popular deep learning libraries (e.g., Hugging Face, Ultralytics) allowing you to leverage DeepSparse for loading and deploying sparse models with ONNX.\\nONNX gives the flexibility to serve your model in a framework-agnostic environment.\\nSupport includes \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://pytorch.org/docs/stable/onnx.html\"\n }, \"PyTorch,\"), \" \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/tensorflow-onnx\"\n }, \"TensorFlow,\"), \" \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/keras-onnx\"\n }, \"Keras,\"), \" and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/onnxmltools\"\n }, \"many other frameworks\"), \".\"), mdx(\"p\", null, \"DeepSparse is available in two editions:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/products/deepsparse\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"DeepSparse Community\")), \" is open-source and free for evaluation, research, and non-production use with our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/engine-license-agreement/\"\n }, \"DeepSparse Community License\"), \".\"), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"#installation\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"DeepSparse Enterprise\")), \" requires a Trial License or \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/legal/master-software-license-and-service-agreement/\"\n }, \"can be fully licensed\"), \" for production, commercial applications.\")), mdx(\"h2\", null, \"Features\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"\\uD83D\\uDD0C \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server\"\n }, \"DeepSparse Server\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"\\uD83D\\uDCDC \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark\"\n }, \"DeepSparse Benchmark\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"\\uD83D\\uDC69\\u200D\\uD83D\\uDCBB \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/examples\"\n }, \"NLP and Computer Vision Tasks Supported\"))), mdx(\"h2\", null, \"Hardware Support and System Requirements\"), mdx(\"p\", null, \"Review \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deepsparse-engine/hardware-support\"\n }, \"Supported Hardware for DeepSparse\"), \" to understand system requirements.\\nDeepSparse works natively on Linux. Mac and Windows require running Linux in a Docker or virtual machine; it will not run natively on those operating systems.\"), mdx(\"p\", null, \"DeepSparse is tested on Python 3.7-3.10, ONNX 1.5.0-1.12.0, ONNX opset version 11+, and manylinux compliant systems.\\nUsing a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.python.org/3/library/venv.html\"\n }, \"virtual environment\"), \" is highly recommended.\"), mdx(\"h2\", null, \"Installation\"), mdx(\"p\", null, \"Install DeepSparse Enterprise with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"pip\"), \":\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse-ent\\n\")), mdx(\"p\", null, \"See the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse-ent\"\n }, \"DeepSparse Enterprise Installation page\"), \" for further installation options.\"), mdx(\"h2\", null, \"Getting a License\"), mdx(\"p\", null, \"DeepSparse Enterprise requires a valid license to run the engine and can be licensed for production, commercial applications.\\nThere are two options available:\"), mdx(\"h3\", null, \"90-Day Enterprise Trial License\"), mdx(\"p\", null, \"To try out DeepSparse Enterprise and get a Neural Magic Trial License, complete our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/deepsparse-engine-free-trial\"\n }, \"registration form\"), \".\\nUpon submission, the license will be emailed to you and your 90-day term starts right then.\"), mdx(\"h3\", null, \"DeepSparse Enterprise License\"), mdx(\"p\", null, \"To learn more about DeepSparse Enterprise pricing, \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/deepsparse-engine/#form\"\n }, \"contact our Sales team\"), \" to discuss your use case further for a custom quote.\"), mdx(\"h2\", null, \"Installing a License\"), mdx(\"p\", null, \"Once you have obtained a license, you will need to initialize it to be able to run DeepSparse Enterprise.\\nYou can initialize your license by running:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.license or \\n\")), mdx(\"p\", null, \"To initialize a license on a machine:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, \"Confirm you have deepsparse-ent installed in a fresh virtual environment.\", mdx(\"ul\", {\n parentName: \"li\"\n }, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Installing deepsparse and deepsparse-ent on the same virtual environment may result in unsupported behaviors.\"))), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Run \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.license\"), \" with the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"\"), \" or \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"path/to/license.txt\"), \" as an argument:\", mdx(\"ul\", {\n parentName: \"li\"\n }, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.license \")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.license ./license.txt\")))), mdx(\"li\", {\n parentName: \"ol\"\n }, \"If successful, \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.license\"), \" will write the license file to \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"~/.config/neuralmagic/license.txt\"), \". You may overwrite this path by setting the environment variable \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"NM_CONFIG_DIR\"), \" (before and after running the script) with the following command:\", mdx(\"ul\", {\n parentName: \"li\"\n }, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"export NM_CONFIG_DIR=path/to/license.txt\")))), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Once the license is authenticated, you should see a splash message indicating that you are now running DeepSparse Enterprise.\")), mdx(\"p\", null, \"If you encounter issues initializing your DeepSparse Enterprise License, contact \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"mailto:license@neuralmagic.com\"\n }, \"license@neuralmagic.com\"), \" for help.\"), mdx(\"h2\", null, \"Validating a License\"), mdx(\"p\", null, \"Once you have initialized your license, you may want to check that it is still valid before running a workload on DeepSparse Enterprise. To confirm your license is still active with DeepSparse Enterprise, run the command:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.validate_license\\n\")), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.validate_license\"), \" can be run with no arguments, which will reference an existing environment variable (if set), or with one argument that is a reference to the license and can be referenced in the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.validate_license\"), \" command as \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"path/to/license.txt\"), \".\"), mdx(\"p\", null, \"To validate a license on a machine:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, \"If you have successfully run \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.license\"), \", \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.validate_license\"), \" can be used to validate that the license file is in the correct location:\", mdx(\"ul\", {\n parentName: \"li\"\n }, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Run the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.validate_license\"), \" with no arguments. If the referenced license is valid, the DeepSparse Enterprise splash screen should display in your terminal window.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"If the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"NM_CONFIG_DIR\"), \" environment variable was set when creating the license, ensure this variable is still set to the same value.\"))), mdx(\"li\", {\n parentName: \"ol\"\n }, \"If you want to supply the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"path/to/license.txt\"), \":\", mdx(\"ul\", {\n parentName: \"li\"\n }, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Run \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.validate_license\"), \" with \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"path/to/license.txt\"), \" as an argument as:\\n\", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"deepsparse.validate_license --license_path path/to/license.txt\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"If the referenced license is valid, the DeepSparse Enterprise splash screen should display in your terminal window.\")))), mdx(\"h2\", null, \"DeepSparse Enterprise Features\"), mdx(\"h3\", null, \"DeepSparse Server\"), mdx(\"p\", null, \"The DeepSparse Server allows you to serve models and pipelines from the terminal. The server runs on top of the popular FastAPI web framework and Uvicorn web server.\"), mdx(\"p\", null, \"Install the server with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"pip\"), \":\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"pip install deepsparse-ent[server]\\n\")), mdx(\"h4\", null, \"Single Model\"), mdx(\"p\", null, \"Once installed, the following example CLI command is available for running inference with a single BERT model:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task question_answering \\\\\\n --model_path \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"To look up arguments run, \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.server --help\"), \".\"), mdx(\"h4\", null, \"Multiple Models\"), mdx(\"p\", null, \"To serve multiple models in your deployment you can easily build a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \". In the example below, we define two BERT models in our configuration for the question answering task:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"num_cores: 1\\nnum_workers: 1\\nendpoints:\\n - task: question_answering\\n route: /predict/question_answering/base\\n model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none\\n batch_size: 1\\n - task: question_answering\\n route: /predict/question_answering/pruned_quant\\n model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\n batch_size: 1\\n\")), mdx(\"p\", null, \"Finally, after your \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \" file is built, run the server with the configuration file path as an argument:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server config config.yaml\\n\")), mdx(\"p\", null, \"See \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server\"\n }, \"Getting Started with DeepSparse Server\"), \" for more information.\"), mdx(\"h3\", null, \"DeepSparse Benchmark\"), mdx(\"p\", null, \"The benchmark tool is available on your CLI to run expressive model benchmarks with DeepSparse.\"), mdx(\"p\", null, \"Run \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.benchmark -h\"), \" to look up arguments:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\"\n }, \"deepsparse.benchmark [-h] [-b BATCH_SIZE] [-shapes INPUT_SHAPES]\\n [-ncores NUM_CORES] [-s {async,sync}] [-t TIME]\\n [-nstreams NUM_STREAMS] [-pin {none,core,numa}]\\n [-q] [-x EXPORT_PATH]\\n model_path\\n\\n\")), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark\"\n }, \"Getting Started with CLI Benchmarking\"), \" includes examples of select inference scenarios:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Synchronous (Single-stream) Scenario\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Asynchronous (Multi-stream) Scenario\")), mdx(\"h3\", null, \"NLP and Computer Vision Tasks Supported\"), mdx(\"p\", null, \"An NLP inference example is:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\n# SparseZoo model stub or path to ONNX file\\nmodel_path = \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\\"\\n\\nqa_pipeline = Pipeline.create(\\n task=\\\"question-answering\\\",\\n model_path=model_path,\\n)\\n\\nmy_name = qa_pipeline(question=\\\"What's my name?\\\", context=\\\"My name is Snorlax\\\")\\n\")), mdx(\"p\", null, \"Refer also to \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/PIPELINES.md\"\n }, \"NLP and Computer Vision Tasks Supported\"), \".\"), mdx(\"p\", null, \"For NLP tutorials, see \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/examples/huggingface-transformers\"\n }, \"Getting Started with Hugging Face Transformers\"), \".\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"For Image Classification tutorials, see \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/image_classification\"\n }, \"Image Classification Inference Pipelines\"), \".\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"For Object Detection tutorials, see \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/yolo\"\n }, \"YOLOv5 Inference Pipelines\"), \". \")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"For Segmentation tutorials, see \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/yolact\"\n }, \"YOLACT Inference Pipelines\"), \".\"))), mdx(\"p\", null, \"Supported NLP tasks include:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-named-entity-recognition/\"\n }, \"Token Classification: Named Entity Recognition\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-multi-class-text-classification/\"\n }, \"Text Classification: Multi-Class\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-binary-text-classification/\"\n }, \"Text Classification: Binary\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-sentiment-analysis/\"\n }, \"Text Classification: Sentiment Analysis\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-question-answering/\"\n }, \"Question Answering\"))), mdx(\"h3\", null, \"SparseZoo ONNX vs. Custom ONNX Models\"), mdx(\"p\", null, \"DeepSparse can accept ONNX models from two sources:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"SparseZoo ONNX\"), \": \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo\"\n }, \"SparseZoo\"), \" hosts open-source inference-optimized models, trained on repeatable sparsification recipes using state-of-the-art techniques from \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml\"\n }, \"SparseML\"), \". The ONNX representation of each model is available for download.\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Custom ONNX\"), \": DeepSparse allows you to use your own model in ONNX format. It can be dense or sparse. Plug in your model to compare performance with other solutions.\"))), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"> wget https://github.com/onnx/models/raw/main/vision/classification/mobilenet/model/mobilenetv2-7.onnx\\nSaving to: \\u2018mobilenetv2-7.onnx\\u2019\\n\")), mdx(\"p\", null, \"Here is a custom ONNX Benchmark example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import compile_model\\nfrom deepsparse.utils import generate_random_inputs\\nonnx_filepath = \\\"mobilenetv2-7.onnx\\\"\\nbatch_size = 16\\n\\n# Generate random sample input\\ninputs = generate_random_inputs(onnx_filepath, batch_size)\\n\\n# Compile and run\\nengine = compile_model(onnx_filepath, batch_size)\\noutputs = engine.run(inputs)\\n\")), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse\"\n }, \"GitHub repository\"), \" includes package APIs along with examples to quickly get started benchmarking and inferencing sparse models.\"), mdx(\"h3\", null, \"Scheduling Single-Stream, Multi-Stream, and Elastic Inference\"), mdx(\"p\", null, \"DeepSparse offers three inference modes based on your use case. Refer also to \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/docs/source/scheduler.md\"\n }, \"Inference Modes\"), \".\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"Single-stream scheduling (the default) is the latency/synchronous scenario. Requests execute serially.\"), mdx(\"undefined\", {\n parentName: \"li\"\n }, mdx(\"img\", {\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/single-stream.png\",\n \"alt\": \"single stream diagram\"\n }), \"\\nUse Case: It's highly optimized for minimum per-request latency, using all of the system's resources provided to it on every request it gets.\")), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"Multi-stream scheduling is the throughput/asynchronous scenario. Requests execute in parallel.\"), mdx(\"undefined\", {\n parentName: \"li\"\n }, mdx(\"img\", {\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/multi-stream.png\",\n \"alt\": \"multi stream diagram\"\n }), \"\\nUse Case: The most common use cases for the multi-stream scheduler are those in which parallelism is low with respect to core count, and requests need to be made asynchronously without time to batch them.\")), mdx(\"li\", {\n parentName: \"ol\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"Elastic scheduling requests execute in parallel, but not multiplexed on individual NUMA nodes.\\nUse Case: A workload that might benefit from the elastic scheduler is one in which multiple requests need to be handled simultaneously, but where performance is hindered when those requests have to share an L3 cache.\"))), mdx(\"h2\", null, \"Resources\"), mdx(\"h4\", null, \"Libraries\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/products/deepsparse/\"\n }, \"DeepSparse\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/products/sparseml/\"\n }, \"SparseML\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/products/sparsezoo/\"\n }, \"SparseZoo\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/products/sparsify/\"\n }, \"Sparsify\"))), mdx(\"h4\", null, \"Versions\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://pypi.org/project/deepsparse\"\n }, \"DeepSparse\"), \" | stable\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://pypi.org/project/deepsparse-nightly/\"\n }, \"DeepSparse-Nightly\"), \" | nightly (dev)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/releases\"\n }, \"GitHub\"), \" | releases\")), mdx(\"h4\", null, \"Info\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://www.neuralmagic.com/blog/\"\n }, \"Blog\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://www.neuralmagic.com/resources/\"\n }, \"Resources\"))), mdx(\"h3\", null, \"License\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/products/deepsparse-ent\"\n }, \"DeepSparse Enterprise\"), \" requires a Trial License or \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/legal/master-software-license-and-service-agreement/\"\n }, \"can be fully licensed\"), \" for production, commercial applications.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#features","title":"Features"},{"url":"#hardware-support-and-system-requirements","title":"Hardware Support and System Requirements"},{"url":"#installation","title":"Installation"},{"url":"#getting-a-license","title":"Getting a License","items":[{"url":"#90-day-enterprise-trial-license","title":"90-Day Enterprise Trial License"},{"url":"#deepsparse-enterprise-license","title":"DeepSparse Enterprise License"}]},{"url":"#installing-a-license","title":"Installing a License"},{"url":"#validating-a-license","title":"Validating a License"},{"url":"#deepsparse-enterprise-features","title":"DeepSparse Enterprise Features","items":[{"url":"#deepsparse-server","title":"DeepSparse Server","items":[{"url":"#single-model","title":"Single Model"},{"url":"#multiple-models","title":"Multiple Models"}]},{"url":"#deepsparse-benchmark","title":"DeepSparse Benchmark"},{"url":"#nlp-and-computer-vision-tasks-supported","title":"NLP and Computer Vision Tasks Supported"},{"url":"#sparsezoo-onnx-vs-custom-onnx-models","title":"SparseZoo ONNX vs. Custom ONNX Models"},{"url":"#scheduling-single-stream-multi-stream-and-elastic-inference","title":"Scheduling Single-Stream, Multi-Stream, and Elastic Inference"}]},{"url":"#resources","title":"Resources","items":[{"items":[{"url":"#libraries","title":"Libraries"},{"url":"#versions","title":"Versions"},{"url":"#info","title":"Info"}]},{"url":"#license","title":"License"}]}]},"parent":{"relativePath":"products/deepsparse/enterprise.mdx"},"frontmatter":{"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/deepsparse/enterprise/python-api/page-data.json b/page-data/products/deepsparse/enterprise/python-api/page-data.json index 99674124b94..ec543e86bd1 100644 --- a/page-data/products/deepsparse/enterprise/python-api/page-data.json +++ b/page-data/products/deepsparse/enterprise/python-api/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/enterprise/python-api","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","title":"Python API","slug":"/products/deepsparse/enterprise/python-api","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/enterprise/python-api.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Python API\",\n \"metaTitle\": \"DeepSparse Python API\",\n \"metaDescription\": \"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Python API\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse Python APIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#python-api","title":"Python API"}]},"parent":{"relativePath":"products/deepsparse/enterprise/python-api.mdx"},"frontmatter":{"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse/enterprise/python-api","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","title":"Python API","slug":"/products/deepsparse/enterprise/python-api","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse/enterprise/python-api.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Python API\",\n \"metaTitle\": \"DeepSparse Python API\",\n \"metaDescription\": \"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Python API\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse Python APIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#python-api","title":"Python API"}]},"parent":{"relativePath":"products/deepsparse/enterprise/python-api.mdx"},"frontmatter":{"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/deepsparse/page-data.json b/page-data/products/deepsparse/page-data.json index e6f7764ef42..6222647f348 100644 --- a/page-data/products/deepsparse/page-data.json +++ b/page-data/products/deepsparse/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","title":"DeepSparse","slug":"/products/deepsparse","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"DeepSparse\",\n \"metaTitle\": \"DeepSparse\",\n \"metaDescription\": \"Sparsity-aware neural network inference engine for GPU-class performance on CPUs\",\n \"index\": 1000\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"div\", {\n \"style\": {\n \"display\": \"flex\",\n \"flexDirection\": \"column\"\n }\n }, \"\\n \", mdx(\"h1\", {\n parentName: \"div\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"h1\",\n \"alt\": \"tool icon\",\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/icon-deepsparse.png\"\n }), \"\\n \\xA0\\xA0DeepSparse\\n \"), \"\\n \", mdx(\"h3\", {\n parentName: \"div\"\n }, \" Sparsity-aware neural network inference engine for GPU-class performance on CPUs \"), \"\\n \", mdx(\"div\", {\n parentName: \"div\",\n \"style\": {\n \"display\": \"flex\",\n \"flexWrap\": \"wrap\"\n }\n }, \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Documentation\",\n \"src\": \"https://img.shields.io/badge/documentation-darkred?&style=for-the-badge&logo=read-the-docs\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Slack\",\n \"src\": \"https://img.shields.io/badge/slack-purple?style=for-the-badge&logo=slack\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/issues/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Support\",\n \"src\": \"https://img.shields.io/badge/support%20forums-navy?style=for-the-badge&logo=github\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/actions/workflows/quality-check.yaml\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Main\",\n \"src\": \"https://img.shields.io/github/workflow/status/neuralmagic/deepsparse/Quality%20Checks/main?label=build&style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/releases\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"GitHub release\",\n \"src\": \"https://img.shields.io/github/release/neuralmagic/deepsparse.svg?style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/CODE_OF_CONDUCT.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Contributor Covenant\",\n \"src\": \"https://img.shields.io/badge/Contributor%20Covenant-v2.1%20adopted-ff69b4.svg?color=yellow&style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://www.youtube.com/channel/UCo8dO_WMGYbWCRnj_Dxr4EA\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"YouTube\",\n \"src\": \"https://img.shields.io/badge/-YouTube-red?&style=for-the-badge&logo=youtube&logoColor=white\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://medium.com/limitlessai\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Medium\",\n \"src\": \"https://img.shields.io/badge/medium-%2312100E.svg?&style=for-the-badge&logo=medium&logoColor=white\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://twitter.com/neuralmagic\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Twitter\",\n \"src\": \"https://img.shields.io/twitter/follow/neuralmagic?color=darkgreen&label=Follow&style=social\",\n \"height\": 25\n }), \"\\n \"), \"\\n \")), mdx(\"p\", null, \"A CPU runtime that takes advantage of sparsity within neural networks to reduce compute. Read \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/user-guide/sparsification\"\n }, \"more about sparsification\"), \".\"), mdx(\"p\", null, \"Neural Magic's DeepSparse Engine is able to integrate into popular deep learning libraries (e.g., Hugging Face, Ultralytics) allowing you to leverage DeepSparse for loading and deploying sparse models with ONNX.\\nONNX gives the flexibility to serve your model in a framework-agnostic environment.\\nSupport includes \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://pytorch.org/docs/stable/onnx.html\"\n }, \"PyTorch,\"), \" \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/tensorflow-onnx\"\n }, \"TensorFlow,\"), \" \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/keras-onnx\"\n }, \"Keras,\"), \" and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/onnxmltools\"\n }, \"many other frameworks\"), \".\"), mdx(\"h2\", null, \"Editions\"), mdx(\"p\", null, \"The DeepSparse Engine is available in two editions:\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./community\",\n heading: \"DeepSparse Community Edition\",\n mdxType: \"LinkCard\"\n }, \"The Community Edition is open-source and free for evaluation, research, and non-production use.\"), mdx(LinkCard, {\n href: \"./enterprise\",\n heading: \"DeepSparse Enterprise Edition\",\n mdxType: \"LinkCard\"\n }, \"The Enterprise Edition requires a Trial License or can be fully licensed for production, commercial applications.\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#editions","title":"Editions"}]},"parent":{"relativePath":"products/deepsparse.mdx"},"frontmatter":{"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/deepsparse","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","title":"DeepSparse","slug":"/products/deepsparse","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/deepsparse.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"DeepSparse\",\n \"metaTitle\": \"DeepSparse\",\n \"metaDescription\": \"Sparsity-aware neural network inference engine for GPU-class performance on CPUs\",\n \"index\": 0\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"div\", {\n \"style\": {\n \"display\": \"flex\",\n \"flexDirection\": \"column\"\n }\n }, \"\\n \", mdx(\"h1\", {\n parentName: \"div\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"h1\",\n \"alt\": \"tool icon\",\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/icon-deepsparse.png\"\n }), \"\\n \\xA0\\xA0DeepSparse\\n \"), \"\\n \", mdx(\"h3\", {\n parentName: \"div\"\n }, \" Sparsity-aware neural network inference engine for GPU-class performance on CPUs \"), \"\\n \", mdx(\"div\", {\n parentName: \"div\",\n \"style\": {\n \"display\": \"flex\",\n \"flexWrap\": \"wrap\"\n }\n }, \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Documentation\",\n \"src\": \"https://img.shields.io/badge/documentation-darkred?&style=for-the-badge&logo=read-the-docs\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Slack\",\n \"src\": \"https://img.shields.io/badge/slack-purple?style=for-the-badge&logo=slack\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/issues/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Support\",\n \"src\": \"https://img.shields.io/badge/support%20forums-navy?style=for-the-badge&logo=github\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/actions/workflows/quality-check.yaml\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Main\",\n \"src\": \"https://img.shields.io/github/workflow/status/neuralmagic/deepsparse/Quality%20Checks/main?label=build&style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/releases\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"GitHub release\",\n \"src\": \"https://img.shields.io/github/release/neuralmagic/deepsparse.svg?style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/CODE_OF_CONDUCT.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Contributor Covenant\",\n \"src\": \"https://img.shields.io/badge/Contributor%20Covenant-v2.1%20adopted-ff69b4.svg?color=yellow&style=for-the-badge\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://www.youtube.com/channel/UCo8dO_WMGYbWCRnj_Dxr4EA\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"YouTube\",\n \"src\": \"https://img.shields.io/badge/-YouTube-red?&style=for-the-badge&logo=youtube&logoColor=white\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://medium.com/limitlessai\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Medium\",\n \"src\": \"https://img.shields.io/badge/medium-%2312100E.svg?&style=for-the-badge&logo=medium&logoColor=white\",\n \"height\": 25\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"div\",\n \"href\": \"https://twitter.com/neuralmagic\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Twitter\",\n \"src\": \"https://img.shields.io/twitter/follow/neuralmagic?color=darkgreen&label=Follow&style=social\",\n \"height\": 25\n }), \"\\n \"), \"\\n \")), mdx(\"p\", null, \"DeepSparse is a CPU runtime that takes advantage of sparsity within neural networks to reduce compute. Read \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/user-guide/sparsification\"\n }, \"more about sparsification\"), \".\"), mdx(\"p\", null, \"Neural Magic's DeepSparse is able to integrate into popular deep learning libraries (e.g., Hugging Face, Ultralytics) allowing you to leverage DeepSparse for loading and deploying sparse models with ONNX.\\nONNX gives the flexibility to serve your model in a framework-agnostic environment.\\nSupport includes \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://pytorch.org/docs/stable/onnx.html\"\n }, \"PyTorch,\"), \" \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/tensorflow-onnx\"\n }, \"TensorFlow,\"), \" \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/keras-onnx\"\n }, \"Keras,\"), \" and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/onnxmltools\"\n }, \"many other frameworks\"), \".\"), mdx(\"h2\", null, \"Editions\"), mdx(\"p\", null, \"DeepSparse is available in two editions:\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./community\",\n heading: \"DeepSparse Community\",\n mdxType: \"LinkCard\"\n }, \"DeepSparse Community is open-source and free for evaluation, research, and non-production use.\"), mdx(LinkCard, {\n href: \"./enterprise\",\n heading: \"DeepSparse Enterprise\",\n mdxType: \"LinkCard\"\n }, \"DeepSparse Enterprise requires a Trial License or can be fully licensed for production, commercial applications.\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#editions","title":"Editions"}]},"parent":{"relativePath":"products/deepsparse.mdx"},"frontmatter":{"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs","index":0,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/page-data.json b/page-data/products/page-data.json index 8f7c7df2b81..8c8cec75dc7 100644 --- a/page-data/products/page-data.json +++ b/page-data/products/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","title":"Products","slug":"/products","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Products\",\n \"metaTitle\": \"Products\",\n \"metaDescription\": \"Products\",\n \"index\": 4000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Products\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#products","title":"Products"}]},"parent":{"relativePath":"products.mdx"},"frontmatter":{"metaTitle":"Products","metaDescription":"Products","index":4000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","title":"Products","slug":"/products","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Products\",\n \"metaTitle\": \"Products\",\n \"metaDescription\": \"Products\",\n \"index\": 4000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Products\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#products","title":"Products"}]},"parent":{"relativePath":"products.mdx"},"frontmatter":{"metaTitle":"Products","metaDescription":"Products","index":4000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/sparseml/cli/page-data.json b/page-data/products/sparseml/cli/page-data.json index 2e77a3a7008..972c86a6eac 100644 --- a/page-data/products/sparseml/cli/page-data.json +++ b/page-data/products/sparseml/cli/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/sparseml/cli","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","title":"CLI","slug":"/products/sparseml/cli","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/sparseml/cli.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"CLI\",\n \"metaTitle\": \"SparseML CLI\",\n \"metaDescription\": \"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"CLI\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the SparseML CLIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#cli","title":"CLI"}]},"parent":{"relativePath":"products/sparseml/cli.mdx"},"frontmatter":{"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/sparseml/cli","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","title":"CLI","slug":"/products/sparseml/cli","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/sparseml/cli.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"CLI\",\n \"metaTitle\": \"SparseML CLI\",\n \"metaDescription\": \"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"CLI\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the SparseML CLIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#cli","title":"CLI"}]},"parent":{"relativePath":"products/sparseml/cli.mdx"},"frontmatter":{"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/sparseml/page-data.json b/page-data/products/sparseml/page-data.json index 6720aaea7be..be129128d9a 100644 --- a/page-data/products/sparseml/page-data.json +++ b/page-data/products/sparseml/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/sparseml","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","title":"SparseML","slug":"/products/sparseml","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/sparseml.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"SparseML\",\n \"metaTitle\": \"SparseML\",\n \"metaDescription\": \"Sparsity-aware neural network inference engine for GPU-class performance on CPUs\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"SparseML\"), mdx(\"h3\", null, \"Libraries enabling creation of sparse deep-neural networks trained on your data with just a few lines of code\"), mdx(\"p\", null, \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/sparseml/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Documentation\",\n \"src\": \"https://img.shields.io/badge/documentation-darkred?&style=for-the-badge&logo=read-the-docs\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/slack-purple?style=for-the-badge&logo=slack\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/issues\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/support%20forums-navy?style=for-the-badge&logo=github\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/actions/workflows/test-check.yaml\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Main\",\n \"src\": \"https://img.shields.io/github/workflow/status/neuralmagic/sparseml/Test%20Checks/main?label=build&style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/releases\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"GitHub release\",\n \"src\": \"https://img.shields.io/github/release/neuralmagic/sparseml.svg?style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/LICENSE\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"GitHub\",\n \"src\": \"https://img.shields.io/github/license/neuralmagic/sparseml.svg?color=lightgray&style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/CODE_OF_CONDUCT.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Contributor Covenant\",\n \"src\": \"https://img.shields.io/badge/Contributor%20Covenant-v2.1%20adopted-ff69b4.svg?color=yellow&style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.youtube.com/channel/UCo8dO_WMGYbWCRnj_Dxr4EA\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/-YouTube-red?&style=for-the-badge&logo=youtube&logoColor=white\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://medium.com/limitlessai\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/medium-%2312100E.svg?&style=for-the-badge&logo=medium&logoColor=white\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://twitter.com/neuralmagic\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/twitter/follow/neuralmagic?color=darkgreen&label=Follow&style=social\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n\"), mdx(\"h2\", null, \"Overview\"), mdx(\"p\", null, \"SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that enable you to create sparse models trained on your data.\"), mdx(\"p\", null, \"SparseML provides two options to accomplish this goal:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparse Transfer Learning\"), \": Fine-tune state-of-the-art pre-sparsified models from the SparseZoo onto your dataset while preserving sparsity.\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparsifying from Scratch\"), \": Apply state-of-the-art \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/sparsification\"\n }, \"sparsification\"), \" algorithms such as pruning and quantization to any neural network.\"))), mdx(\"p\", null, \"These options are useful for different situations:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparse Transfer Learning\"), \" is the easiest path to creating a sparse model trained on your data. Pull down a sparse model from SparseZoo and point our training scripts at your data without any hyperparameter search. This is the recommended pathway for supported use cases like Image Classification, Object Detection, and several NLP tasks.\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparsifying from Scratch\"), \" gives you the flexibility to prune any neural network for any use case, but requires more training epochs and hand-tuning hyperparameters.\"))), mdx(\"p\", null, \"Each of these avenues use YAML-based \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"recipes\"), \" that simplify integration with popular deep learning libraries and framrworks.\"), mdx(\"undefined\", null, mdx(\"img\", {\n \"src\": \"https://docs.neuralmagic.com/docs/source/infographics/sparseml.png\",\n \"alt\": \"SparseML Flow\"\n }), \"\\n \\n \\n## Highlights\"), mdx(\"h3\", null, \"Integrations\"), mdx(\"p\", null, \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/pytorch\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/highlights/sparseml/pytorch-torchvision.png\",\n \"alt\": \"Integration - PyTorch: MobileNetV1, ResNet-50\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/ultralytics-yolov3\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/highlights/sparseml/ultralytics-yolov3.png\",\n \"alt\": \"Integration - Ultralytics: YOLOv3\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/ultralytics-yolov5\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/highlights/sparseml/ultralytics-yolov5.png\",\n \"alt\": \"Integration - Ultralytics: YOLOv5\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/huggingface-transformers\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/highlights/sparseml/huggingface-transformers.png\",\n \"alt\": \"Integration - Hugging Face: BERT\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/rwightman-timm\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/highlights/sparseml/rwightman-timm.png\",\n \"alt\": \"Integration - rwightman: ResNet-50\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n\"), mdx(\"h3\", null, \"Creating Sparse Models\"), mdx(\"p\", null, \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/pytorch/notebooks/classification.ipynb\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/tutorials/classification_resnet-50.png\",\n \"alt\": \"Creating Sparse ResNet-50\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/ultralytics-yolov3/tutorials/sparsifying_yolov3_using_recipes.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/tutorials/detection_yolov3.png\",\n \"alt\": \"Creating Sparse YOLOv3\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/ultralytics-yolov5/tutorials/sparsifying_yolov5_using_recipes.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/tutorials/detection_yolov5.png\",\n \"alt\": \"Creating Sparse YOLOv5\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/huggingface-transformers/tutorials/sparsifying_bert_using_recipes.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/tutorials/nlp_bert.png\",\n \"alt\": \"Creating Sparse BERT\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n\"), mdx(\"h3\", null, \"Transfer Learning from Sparse Models\"), mdx(\"p\", null, \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/pytorch/notebooks/sparse_quantized_transfer_learning.ipynb\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/tutorials/classification_resnet-50.png\",\n \"alt\": \"Transfer Learn - ResNet-50\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov3/tutorials/yolov3_sparse_transfer_learning.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/tutorials/detection_yolov3.png\",\n \"alt\": \"Transfer Learn - YOLOv3\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/tutorials/yolov5_sparse_transfer_learning.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/tutorials/detection_yolov5.png\",\n \"alt\": \"Transfer Learn - YOLOv5\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n\"), mdx(\"h2\", null, \"Tutorials\"), mdx(\"h3\", null, \"\\uD83D\\uDDBC\\uFE0F Computer Vision\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/tutorials/sparsifying_pytorch_models_using_recipes.md\"\n }, \"Sparsifying PyTorch Models Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov3/tutorials/sparsifying_yolov3_using_recipes.md\"\n }, \"Sparsifying YOLOv3 Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/tutorials/sparsifying_yolov5_using_recipes.md\"\n }, \"Sparsifying YOLOv5 Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/dbolya-yolact/tutorials/sparsifying_yolact_using_recipes.md\"\n }, \"Sparsifying YOLACT Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/tutorials/classification_sparse_transfer_learning_tutorial.md\"\n }, \"Sparse Transfer Learning for Image Classification\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov3/tutorials/yolov3_sparse_transfer_learning.md\"\n }, \"Sparse Transfer Learning With YOLOv3\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/tutorials/yolov5_sparse_transfer_learning.md\"\n }, \"Sparse Transfer Learning With YOLOv5\"))), mdx(\"p\", null, \"\\u2003\", \" \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Notebooks\")), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/keras/notebooks/classification.ipynb\"\n }, \"Keras Image Classification Model Pruning Using SparseML\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/notebooks/classification.ipynb\"\n }, \"PyTorch Image Classification Model Pruning Using SparseML\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/notebooks/detection.ipynb\"\n }, \"PyTorch Image Detection Model Pruning Using SparseML\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/notebooks/sparse_quantized_transfer_learning.ipynb\"\n }, \"Sparse-Quantized Transfer Learning in PyTorch Using SparseML\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/notebooks/torchvision.ipynb\"\n }, \"Torchvision Classification Model Pruning Using SparseML\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/tensorflow_v1/notebooks/classification.ipynb\"\n }, \"TensorFlow v1 Classification Model Pruning Using SparseML\"))), mdx(\"h3\", null, \"\\uD83D\\uDCF0 NLP\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/huggingface-transformers/tutorials/sparsifying_bert_using_recipes.md\"\n }, \"Sparsifying BERT Models Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/huggingface-transformers/tutorials/bert_sparse_transfer_learning.md\"\n }, \"Sparse Transfer Learning With BERT\"))), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"See the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Installation Page\"), \" for install instructions.\"), mdx(\"h2\", null, \"Quick Tour\"), mdx(\"p\", null, \"SparseML enables you to create a sparse model with \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparse Transfer Learning\"), \" and \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparsification from Scratch\"), \".\"), mdx(\"p\", null, \"To enable flexibility, ease of use, and repeatability, each piece of functionality is accomplished via recipes.\\nThe recipes encode the instructions needed for modifying the model and/or training process as a list of modifiers.\\nExample modifiers can be anything from setting the learning rate for the optimizer to gradual magnitude pruning.\\nThe files are written in \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://yaml.org/\"\n }, \"YAML\"), \" and stored in YAML or \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.markdownguide.org/\"\n }, \"markdown\"), \" files using \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://assemble.io/docs/YAML-front-matter.html\"\n }, \"YAML front matter.\"), \" The rest of the SparseML system is coded to parse the recipes into a native format for the desired framework and apply the modifications to the model and training pipeline.\"), mdx(\"p\", null, \"To give a sense of the flavor of what recipes encode, some examples are below:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"Recipes for \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparse Transfer Learning\"), \" usually include the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"!ConstantPruningModifier\"), \", which instructs SparseML to maintian the starting level of sparsity while fine-tuning.\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"Recipes for \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparsification from Scratch\"), \" usually include the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"!GMPruningModifier\"), \", which instructs SparseML to iteratively prune the layers of the model to certain levels (e.g. 80%) over which epochs.\"))), mdx(\"p\", null, \"Recipes are then integrated into deep learning training workflows in one of two ways:\"), mdx(\"h4\", null, \"For Supported Use Cases: CLI\"), mdx(\"p\", null, \"SparseML provides command line scripts that accept recipes as arguments and perform Sparse Transfer Learning and Sparsification from Scratch. We highly\\nreccomended using the command line scripts. Appending \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--help\"), \" to the commands demonstrates the full list of arguments.\"), mdx(\"p\", null, \"For example, the following command kicks off \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparse Transfer Learning\"), \" from pre-sparsified YOLOv5 onto the VOC dataset using the pre-made recipes in the SparseZoo:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.yolov5.train \\\\\\n --data VOC.yaml \\\\\\n --cfg models_v5.0/yolov5l.yaml \\\\\\n --weights zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95?recipe_type=transfer \\\\\\n --hyp data/hyps/hyp.finetune.yaml \\\\\\n --recipe zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95?recipe_type=transfer\\n\")), mdx(\"p\", null, \"For example, the following command kicks off \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparsification of a dense YOLOv5 model from Scratch\"), \" using the pre-made recipes in the SparseZoo:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.yolov5.train \\\\\\n --cfg models_v5.0/yolov5l.yaml \\\\\\n --weights yolov5l.pt \\\\\\n --data coco.yaml \\\\\\n --hyp data/hyps/hyp.scratch.yaml \\\\\\n --recipe zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95\\n\")), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/use-cases/natural-language-processing/question-answering\"\n }, \"See more details\"), \" on the above as well as examples for more supported use cases.\"), mdx(\"h4\", null, \"For Custom Use Cases / Supported Use Cases: Python Integration\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager\"), \" class is used to modify the standard training workflows for both Sparse Transfer Learning\\nand Sparsification from Scratch. It can be used in PyTorch and TensorFlow/Keras.\"), mdx(\"p\", null, \"The manager classes works by overriding the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"optimizers\"), \" to encode sparsity logic.\\nManagers can apply recipes in one shot or training aware ways.\\nOne shot is invoked by calling \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \".apply(...)\"), \" on the manager while training aware requires calls into \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"initialize(...)\"), \" (optional), \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"modify(...)\"), \", and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"finalize(...)\"), \".\\nThis means only a few lines of code need to be added to begin transfer learning or sparsifying from scratch with pruning and quantization.\"), mdx(\"p\", null, \"For example, the following applies a recipe in a training-aware manner:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"model = Model() # model definition\\noptimizer = Optimizer() # optimizer definition\\ntrain_data = TrainData() # train data definition\\nbatch_size = BATCH_SIZE # training batch size\\nsteps_per_epoch = len(train_data) // batch_size\\n\\nfrom sparseml.pytorch.optim import ScheduledModifierManager\\nmanager = ScheduledModifierManager.from_yaml(PATH_TO_RECIPE)\\noptimizer = manager.modify(model, optimizer, steps_per_epoch)\\n\\n# ... PyTorch training loop as usual ...\\n\\nmanager.finalize(model)\\n\")), mdx(\"p\", null, \"Instead of training aware, the following example code shows how to execute a recipe in a one shot manner:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"model = Model() # model definition\\n\\nfrom sparseml.pytorch.optim import ScheduledModifierManager\\nmanager = ScheduledModifierManager.from_yaml(PATH_TO_RECIPE)\\nmanager.apply(model)\\n\")), mdx(\"p\", null, \"More information on the codebase and contained processes can be found in the SparseML docs:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/transfer-a-sparsified-model\"\n }, \"Sparse Transfer Learning\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/sparsify-a-model\"\n }, \"Sparsification Code\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/recipes\"\n }, \"Sparsification Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/sparsification\"\n }, \"Exporting to ONNX\"))), mdx(\"h2\", null, \"Resources\"), mdx(\"h3\", null, \"Learning More\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Documentation: \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/sparseml/\"\n }, \"SparseML,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/sparsezoo/\"\n }, \"SparseZoo,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/sparsify/\"\n }, \"Sparsify,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/\"\n }, \"DeepSparse\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Neural Magic: \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://www.neuralmagic.com/blog/\"\n }, \"Blog,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://www.neuralmagic.com/resources/\"\n }, \"Resources\"))), mdx(\"h3\", null, \"Release History\"), mdx(\"p\", null, \"Official builds are hosted on PyPI\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"stable: \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://pypi.org/project/sparseml/\"\n }, \"sparseml\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"nightly (dev): \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://pypi.org/project/sparseml-nightly/\"\n }, \"sparseml-nightly\"))), mdx(\"p\", null, \"Additionally, more information can be found via \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/releases\"\n }, \"GitHub Releases.\")), mdx(\"h3\", null, \"License\"), mdx(\"p\", null, \"The project is licensed under the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/LICENSE\"\n }, \"Apache License Version 2.0.\")), mdx(\"h2\", null, \"Community\"), mdx(\"h3\", null, \"Contribute\"), mdx(\"p\", null, \"We appreciate contributions to the code, examples, integrations, and documentation as well as bug reports and feature requests! \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/CONTRIBUTING.md\"\n }, \"Learn how here.\")), mdx(\"h3\", null, \"Join\"), mdx(\"p\", null, \"For user help or questions about SparseML, sign up or log in to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"Deep Sparse Community Slack\")), \". We are growing the community member by member and happy to see you there. Bugs, feature requests, or additional questions can also be posted to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/issues\"\n }, \"GitHub Issue Queue.\")), mdx(\"p\", null, \"You can get the latest news, webinar and event invites, research papers, and other ML Performance tidbits by \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/subscribe/\"\n }, \"subscribing\"), \" to the Neural Magic community.\"), mdx(\"p\", null, \"For more general questions about Neural Magic, please fill out this \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"http://neuralmagic.com/contact/\"\n }, \"form.\")), mdx(\"h3\", null, \"Cite\"), mdx(\"p\", null, \"Find this project useful in your research or other communications? Please consider citing:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bibtex\"\n }, \"@InProceedings{\\n pmlr-v119-kurtz20a,\\n title = {Inducing and Exploiting Activation Sparsity for Fast Inference on Deep Neural Networks},\\n author = {Kurtz, Mark and Kopinsky, Justin and Gelashvili, Rati and Matveev, Alexander and Carr, John and Goin, Michael and Leiserson, William and Moore, Sage and Nell, Bill and Shavit, Nir and Alistarh, Dan},\\n booktitle = {Proceedings of the 37th International Conference on Machine Learning},\\n pages = {5533--5543},\\n year = {2020},\\n editor = {Hal Daum\\xE9 III and Aarti Singh},\\n volume = {119},\\n series = {Proceedings of Machine Learning Research},\\n address = {Virtual},\\n month = {13--18 Jul},\\n publisher = {PMLR},\\n pdf = {http://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf},\\n url = {http://proceedings.mlr.press/v119/kurtz20a.html},\\n abstract = {Optimizing convolutional neural networks for fast inference has recently become an extremely active area of research. One of the go-to solutions in this context is weight pruning, which aims to reduce computational and memory footprint by removing large subsets of the connections in a neural network. Surprisingly, much less attention has been given to exploiting sparsity in the activation maps, which tend to be naturally sparse in many settings thanks to the structure of rectified linear (ReLU) activation functions. In this paper, we present an in-depth analysis of methods for maximizing the sparsity of the activations in a trained neural network, and show that, when coupled with an efficient sparse-input convolution algorithm, we can leverage this sparsity for significant performance gains. To induce highly sparse activation maps without accuracy loss, we introduce a new regularization technique, coupled with a new threshold-based sparsification method based on a parameterized activation function called Forced-Activation-Threshold Rectified Linear Unit (FATReLU). We examine the impact of our methods on popular image classification models, showing that most architectures can adapt to significantly sparser activation maps without any accuracy loss. Our second contribution is showing that these these compression gains can be translated into inference speedups: we provide a new algorithm to enable fast convolution operations over networks with sparse activations, and show that it can enable significant speedups for end-to-end inference on a range of popular models on the large-scale ImageNet image classification task on modern Intel CPUs, with little or no retraining cost.}\\n}\\n\")), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bibtex\"\n }, \"@misc{\\n singh2020woodfisher,\\n title={WoodFisher: Efficient Second-Order Approximation for Neural Network Compression},\\n author={Sidak Pal Singh and Dan Alistarh},\\n year={2020},\\n eprint={2004.14340},\\n archivePrefix={arXiv},\\n primaryClass={cs.LG}\\n}\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparseml","title":"SparseML","items":[{"items":[{"url":"#libraries-enabling-creation-of-sparse-deep-neural-networks-trained-on-your-data-with-just-a-few-lines-of-code","title":"Libraries enabling creation of sparse deep-neural networks trained on your data with just a few lines of code"}]},{"url":"#overview","title":"Overview","items":[{"url":"#integrations","title":"Integrations"},{"url":"#creating-sparse-models","title":"Creating Sparse Models"},{"url":"#transfer-learning-from-sparse-models","title":"Transfer Learning from Sparse Models"}]},{"url":"#tutorials","title":"Tutorials","items":[{"url":"#️-computer-vision","title":"🖼️ Computer Vision"},{"url":"#-nlp","title":"📰 NLP"}]},{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#quick-tour","title":"Quick Tour","items":[{"items":[{"url":"#for-supported-use-cases-cli","title":"For Supported Use Cases: CLI"},{"url":"#for-custom-use-cases--supported-use-cases-python-integration","title":"For Custom Use Cases / Supported Use Cases: Python Integration"}]}]},{"url":"#resources","title":"Resources","items":[{"url":"#learning-more","title":"Learning More"},{"url":"#release-history","title":"Release History"},{"url":"#license","title":"License"}]},{"url":"#community","title":"Community","items":[{"url":"#contribute","title":"Contribute"},{"url":"#join","title":"Join"},{"url":"#cite","title":"Cite"}]}]}]},"parent":{"relativePath":"products/sparseml.mdx"},"frontmatter":{"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/sparseml","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","title":"SparseML","slug":"/products/sparseml","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/sparseml.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"SparseML\",\n \"metaTitle\": \"SparseML\",\n \"metaDescription\": \"Sparsity-aware neural network inference engine for GPU-class performance on CPUs\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"SparseML\"), mdx(\"h3\", null, \"Libraries enabling creation of sparse deep-neural networks trained on your data with just a few lines of code\"), mdx(\"p\", null, \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/sparseml/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Documentation\",\n \"src\": \"https://img.shields.io/badge/documentation-darkred?&style=for-the-badge&logo=read-the-docs\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/slack-purple?style=for-the-badge&logo=slack\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/issues\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/support%20forums-navy?style=for-the-badge&logo=github\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/actions/workflows/test-check.yaml\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Main\",\n \"src\": \"https://img.shields.io/github/workflow/status/neuralmagic/sparseml/Test%20Checks/main?label=build&style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/releases\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"GitHub release\",\n \"src\": \"https://img.shields.io/github/release/neuralmagic/sparseml.svg?style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/LICENSE\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"GitHub\",\n \"src\": \"https://img.shields.io/github/license/neuralmagic/sparseml.svg?color=lightgray&style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/CODE_OF_CONDUCT.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Contributor Covenant\",\n \"src\": \"https://img.shields.io/badge/Contributor%20Covenant-v2.1%20adopted-ff69b4.svg?color=yellow&style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.youtube.com/channel/UCo8dO_WMGYbWCRnj_Dxr4EA\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/-YouTube-red?&style=for-the-badge&logo=youtube&logoColor=white\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://medium.com/limitlessai\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/medium-%2312100E.svg?&style=for-the-badge&logo=medium&logoColor=white\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://twitter.com/neuralmagic\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/twitter/follow/neuralmagic?color=darkgreen&label=Follow&style=social\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n\"), mdx(\"p\", null, \"SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that enable you to create sparse models trained on your data.\"), mdx(\"p\", null, \"SparseML provides two options to accomplish this goal. Each option is useful for different situations:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparse Transfer Learning\"), \"\\u2014\", \"Fine-tune state-of-the-art pre-sparsified models from the SparseZoo onto your dataset while preserving sparsity. This is the easiest path to creating a sparse model trained on your data. Pull down a sparse model from SparseZoo and point our training scripts at your data without any hyperparameter search. This is the recommended pathway for supported use cases like Image Classification, Object Detection, and several NLP tasks.\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparsifying from Scratch\"), \"@mdash;Apply state-of-the-art \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/sparsification\"\n }, \"sparsification\"), \" algorithms such as pruning and quantization to any neural network. This gives you the flexibility to prune any neural network for any use case, but requires more training epochs and hand-tuning hyperparameters.\"))), mdx(\"p\", null, \"Each of these avenues uses YAML-based \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"recipes\"), \" that simplify integration with popular deep learning libraries and framrworks.\"), mdx(\"undefined\", null, mdx(\"img\", {\n \"src\": \"https://docs.neuralmagic.com/docs/source/infographics/sparseml.png\",\n \"alt\": \"SparseML Flow\"\n }), \"\\n \\n## Highlights\"), mdx(\"h3\", null, \"Integrations\"), mdx(\"p\", null, \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/pytorch\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/highlights/sparseml/pytorch-torchvision.png\",\n \"alt\": \"Integration - PyTorch: MobileNetV1, ResNet-50\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/ultralytics-yolov3\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/highlights/sparseml/ultralytics-yolov3.png\",\n \"alt\": \"Integration - Ultralytics: YOLOv3\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/ultralytics-yolov5\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/highlights/sparseml/ultralytics-yolov5.png\",\n \"alt\": \"Integration - Ultralytics: YOLOv5\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/huggingface-transformers\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/highlights/sparseml/huggingface-transformers.png\",\n \"alt\": \"Integration - Hugging Face: BERT\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/rwightman-timm\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/highlights/sparseml/rwightman-timm.png\",\n \"alt\": \"Integration - rwightman: ResNet-50\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n\"), mdx(\"h3\", null, \"Creating Sparse Models\"), mdx(\"p\", null, \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/pytorch/notebooks/classification.ipynb\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/tutorials/classification_resnet-50.png\",\n \"alt\": \"Creating Sparse ResNet-50\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/ultralytics-yolov3/tutorials/sparsifying_yolov3_using_recipes.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/tutorials/detection_yolov3.png\",\n \"alt\": \"Creating Sparse YOLOv3\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/ultralytics-yolov5/tutorials/sparsifying_yolov5_using_recipes.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/tutorials/detection_yolov5.png\",\n \"alt\": \"Creating Sparse YOLOv5\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/huggingface-transformers/tutorials/sparsifying_bert_using_recipes.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/tutorials/nlp_bert.png\",\n \"alt\": \"Creating Sparse BERT\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n\"), mdx(\"h3\", null, \"Transfer Learning from Sparse Models\"), mdx(\"p\", null, \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/tree/main/integrations/pytorch/notebooks/sparse_quantized_transfer_learning.ipynb\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/tutorials/classification_resnet-50.png\",\n \"alt\": \"Transfer Learn - ResNet-50\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov3/tutorials/yolov3_sparse_transfer_learning.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/tutorials/detection_yolov3.png\",\n \"alt\": \"Transfer Learn - YOLOv3\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/tutorials/yolov5_sparse_transfer_learning.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/tutorials/detection_yolov5.png\",\n \"alt\": \"Transfer Learn - YOLOv5\",\n \"width\": \"136px\"\n }), \"\\n \"), \"\\n\"), mdx(\"h2\", null, \"Tutorials\"), mdx(\"h3\", null, \"Computer Vision\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/tutorials/sparsifying_pytorch_models_using_recipes.md\"\n }, \"Sparsifying PyTorch Models Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov3/tutorials/sparsifying_yolov3_using_recipes.md\"\n }, \"Sparsifying YOLOv3 Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/tutorials/sparsifying_yolov5_using_recipes.md\"\n }, \"Sparsifying YOLOv5 Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/dbolya-yolact/tutorials/sparsifying_yolact_using_recipes.md\"\n }, \"Sparsifying YOLACT Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/tutorials/classification_sparse_transfer_learning_tutorial.md\"\n }, \"Sparse Transfer Learning for Image Classification\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov3/tutorials/yolov3_sparse_transfer_learning.md\"\n }, \"Sparse Transfer Learning With YOLOv3\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/tutorials/yolov5_sparse_transfer_learning.md\"\n }, \"Sparse Transfer Learning With YOLOv5\"))), mdx(\"p\", null, \"\\u2003\", \" \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Notebooks\")), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/keras/notebooks/classification.ipynb\"\n }, \"Keras Image Classification Model Pruning Using SparseML\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/notebooks/classification.ipynb\"\n }, \"PyTorch Image Classification Model Pruning Using SparseML\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/notebooks/detection.ipynb\"\n }, \"PyTorch Image Detection Model Pruning Using SparseML\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/notebooks/sparse_quantized_transfer_learning.ipynb\"\n }, \"Sparse-Quantized Transfer Learning in PyTorch Using SparseML\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/notebooks/torchvision.ipynb\"\n }, \"Torchvision Classification Model Pruning Using SparseML\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/tensorflow_v1/notebooks/classification.ipynb\"\n }, \"TensorFlow v1 Classification Model Pruning Using SparseML\"))), mdx(\"h3\", null, \"NLP\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/huggingface-transformers/tutorials/sparsifying_bert_using_recipes.md\"\n }, \"Sparsifying BERT Models Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/huggingface-transformers/tutorials/bert_sparse_transfer_learning.md\"\n }, \"Sparse Transfer Learning With BERT\"))), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"See the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Installation page\"), \" for installation instructions.\"), mdx(\"h2\", null, \"Quick Tour\"), mdx(\"p\", null, \"SparseML enables you to create a sparse model with \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparse Transfer Learning\"), \" and \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparsification from Scratch\"), \".\"), mdx(\"p\", null, \"To enable flexibility, ease of use, and repeatability, each piece of functionality is accomplished via recipes.\\nThe recipes encode the instructions needed for modifying the model and/or training process as a list of modifiers.\\nExample modifiers can be anything from setting the learning rate for the optimizer to gradual magnitude pruning.\\nThe files are written in \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://yaml.org/\"\n }, \"YAML\"), \" and stored in YAML or \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.markdownguide.org/\"\n }, \"Markdown\"), \" files using \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://assemble.io/docs/YAML-front-matter.html\"\n }, \"YAML front matter.\"), \" The rest of the SparseML system is coded to parse the recipes into a native format for the desired framework and apply the modifications to the model and training pipeline.\"), mdx(\"p\", null, \"To give a sense of the flavor of what recipes encode, some examples are:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"Recipes for \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparse Transfer Learning\"), \" usually include the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"!ConstantPruningModifier\"), \", which instructs SparseML to maintian the starting level of sparsity while fine-tuning.\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, \"Recipes for \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparsification from Scratch\"), \" usually include the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"!GMPruningModifier\"), \", which instructs SparseML to iteratively prune the layers of the model to certain levels (e.g., 80%) over which epochs.\"))), mdx(\"p\", null, \"Recipes are then integrated into deep learning training workflows in one of two ways:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"For supported use cases: CLI\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"For custom use cases / supported use cases: Python integration\")), mdx(\"h4\", null, \"Supported Use Cases: CLI\"), mdx(\"p\", null, \"SparseML provides command line scripts that accept recipes as arguments and perform sparse transfer learning and sparsification from scratch. We highly\\nreccomended using the command line scripts. Appending \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--help\"), \" to the commands demonstrates the full list of arguments.\"), mdx(\"p\", null, \"For example, the following command kicks off \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparse Transfer Learning\"), \" from pre-sparsified YOLOv5 onto the VOC dataset using the pre-made recipes in the SparseZoo:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.yolov5.train \\\\\\n --data VOC.yaml \\\\\\n --cfg models_v5.0/yolov5l.yaml \\\\\\n --weights zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95?recipe_type=transfer \\\\\\n --hyp data/hyps/hyp.finetune.yaml \\\\\\n --recipe zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95?recipe_type=transfer\\n\")), mdx(\"p\", null, \"In the next example, the command kicks off \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Sparsification of a dense YOLOv5 model from scratch\"), \" using the pre-made recipes in the SparseZoo:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.yolov5.train \\\\\\n --cfg models_v5.0/yolov5l.yaml \\\\\\n --weights yolov5l.pt \\\\\\n --data coco.yaml \\\\\\n --hyp data/hyps/hyp.scratch.yaml \\\\\\n --recipe zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95\\n\")), mdx(\"p\", null, \"See \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/use-cases/natural-language-processing/question-answering\"\n }, \"more details\"), \" on the above as well as examples for more supported use cases.\"), mdx(\"h4\", null, \"Custom Use Cases / Supported Use Cases: Python Integration\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager\"), \" class is used to modify the standard training workflows for both sparse transfer learning\\nand sparsification from scratch. It can be used in PyTorch and TensorFlow/Keras.\"), mdx(\"p\", null, \"The manager classes work by overriding the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"optimizers\"), \" to encode sparsity logic.\\nManagers can apply recipes in one-shot or training-aware ways.\\nOne-shot is invoked by calling \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \".apply(...)\"), \" on the manager while training-aware requires calls into \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"initialize(...)\"), \" (optional), \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"modify(...)\"), \", and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"finalize(...)\"), \".\\nThis means only a few lines of code need to be added to begin transfer learning or sparsifying from scratch with pruning and quantization.\"), mdx(\"p\", null, \"For example, the following applies a recipe in a training-aware manner:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"model = Model() # model definition\\noptimizer = Optimizer() # optimizer definition\\ntrain_data = TrainData() # train data definition\\nbatch_size = BATCH_SIZE # training batch size\\nsteps_per_epoch = len(train_data) // batch_size\\n\\nfrom sparseml.pytorch.optim import ScheduledModifierManager\\nmanager = ScheduledModifierManager.from_yaml(PATH_TO_RECIPE)\\noptimizer = manager.modify(model, optimizer, steps_per_epoch)\\n\\n# ... PyTorch training loop as usual ...\\n\\nmanager.finalize(model)\\n\")), mdx(\"p\", null, \"Instead of training-aware, the following example code shows how to execute a recipe in a one-shot manner:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"model = Model() # model definition\\n\\nfrom sparseml.pytorch.optim import ScheduledModifierManager\\nmanager = ScheduledModifierManager.from_yaml(PATH_TO_RECIPE)\\nmanager.apply(model)\\n\")), mdx(\"p\", null, \"More information on the code base and contained processes can be found in the SparseML documentation:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/transfer-a-sparsified-model\"\n }, \"Sparse Transfer Learning\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/sparsify-a-model\"\n }, \"Sparsification Code\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/recipes\"\n }, \"Sparsification Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/sparsification\"\n }, \"Exporting to ONNX\"))), mdx(\"h2\", null, \"Resources\"), mdx(\"h3\", null, \"Learning More\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Documentation: \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/sparseml/\"\n }, \"SparseML,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/sparsezoo/\"\n }, \"SparseZoo,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/sparsify/\"\n }, \"Sparsify,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/\"\n }, \"DeepSparse\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Neural Magic: \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://www.neuralmagic.com/blog/\"\n }, \"Blog,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://www.neuralmagic.com/resources/\"\n }, \"Resources\"))), mdx(\"h3\", null, \"Release History\"), mdx(\"p\", null, \"Official builds are hosted on PyPI\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Stable: \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://pypi.org/project/sparseml/\"\n }, \"sparseml\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Nightly (dev): \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://pypi.org/project/sparseml-nightly/\"\n }, \"sparseml-nightly\"))), mdx(\"p\", null, \"Additionally, more information can be found via \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/releases\"\n }, \"GitHub Releases.\")), mdx(\"h3\", null, \"License\"), mdx(\"p\", null, \"The project is licensed under the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/LICENSE\"\n }, \"Apache License Version 2.0.\")), mdx(\"h2\", null, \"Community\"), mdx(\"h3\", null, \"Contribute\"), mdx(\"p\", null, \"We appreciate contributions to the code, examples, integrations, and documentation as well as bug reports and feature requests! \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/CONTRIBUTING.md\"\n }, \"Learn how here.\")), mdx(\"h3\", null, \"Join\"), mdx(\"p\", null, \"For user help or questions about SparseML, sign up or log into our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Neural Magic Community Slack\"), \". We are growing the community member by member and happy to see you there. Bugs, feature requests, or additional questions can also be posted to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/issues\"\n }, \"GitHub Issue Queue.\")), mdx(\"p\", null, \"You can get the latest news, webinar and event invites, research papers, and other ML performance tidbits by \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/subscribe/\"\n }, \"subscribing\"), \" to the Neural Magic community.\"), mdx(\"p\", null, \"For more general questions about Neural Magic, please fill out this \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"http://neuralmagic.com/contact/\"\n }, \"form.\")), mdx(\"h3\", null, \"Cite\"), mdx(\"p\", null, \"Find this project useful in your research or other communications? Please consider citing:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bibtex\"\n }, \"@InProceedings{\\n pmlr-v119-kurtz20a,\\n title = {Inducing and Exploiting Activation Sparsity for Fast Inference on Deep Neural Networks},\\n author = {Kurtz, Mark and Kopinsky, Justin and Gelashvili, Rati and Matveev, Alexander and Carr, John and Goin, Michael and Leiserson, William and Moore, Sage and Nell, Bill and Shavit, Nir and Alistarh, Dan},\\n booktitle = {Proceedings of the 37th International Conference on Machine Learning},\\n pages = {5533--5543},\\n year = {2020},\\n editor = {Hal Daum\\xE9 III and Aarti Singh},\\n volume = {119},\\n series = {Proceedings of Machine Learning Research},\\n address = {Virtual},\\n month = {13--18 Jul},\\n publisher = {PMLR},\\n pdf = {http://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf},\\n url = {http://proceedings.mlr.press/v119/kurtz20a.html},\\n abstract = {Optimizing convolutional neural networks for fast inference has recently become an extremely active area of research. One of the go-to solutions in this context is weight pruning, which aims to reduce computational and memory footprint by removing large subsets of the connections in a neural network. Surprisingly, much less attention has been given to exploiting sparsity in the activation maps, which tend to be naturally sparse in many settings thanks to the structure of rectified linear (ReLU) activation functions. In this paper, we present an in-depth analysis of methods for maximizing the sparsity of the activations in a trained neural network, and show that, when coupled with an efficient sparse-input convolution algorithm, we can leverage this sparsity for significant performance gains. To induce highly sparse activation maps without accuracy loss, we introduce a new regularization technique, coupled with a new threshold-based sparsification method based on a parameterized activation function called Forced-Activation-Threshold Rectified Linear Unit (FATReLU). We examine the impact of our methods on popular image classification models, showing that most architectures can adapt to significantly sparser activation maps without any accuracy loss. Our second contribution is showing that these these compression gains can be translated into inference speedups: we provide a new algorithm to enable fast convolution operations over networks with sparse activations, and show that it can enable significant speedups for end-to-end inference on a range of popular models on the large-scale ImageNet image classification task on modern Intel CPUs, with little or no retraining cost.}\\n}\\n\")), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bibtex\"\n }, \"@misc{\\n singh2020woodfisher,\\n title={WoodFisher: Efficient Second-Order Approximation for Neural Network Compression},\\n author={Sidak Pal Singh and Dan Alistarh},\\n year={2020},\\n eprint={2004.14340},\\n archivePrefix={arXiv},\\n primaryClass={cs.LG}\\n}\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparseml","title":"SparseML","items":[{"items":[{"url":"#libraries-enabling-creation-of-sparse-deep-neural-networks-trained-on-your-data-with-just-a-few-lines-of-code","title":"Libraries enabling creation of sparse deep-neural networks trained on your data with just a few lines of code"},{"url":"#integrations","title":"Integrations"},{"url":"#creating-sparse-models","title":"Creating Sparse Models"},{"url":"#transfer-learning-from-sparse-models","title":"Transfer Learning from Sparse Models"}]},{"url":"#tutorials","title":"Tutorials","items":[{"url":"#computer-vision","title":"Computer Vision"},{"url":"#nlp","title":"NLP"}]},{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#quick-tour","title":"Quick Tour","items":[{"items":[{"url":"#supported-use-cases-cli","title":"Supported Use Cases: CLI"},{"url":"#custom-use-cases--supported-use-cases-python-integration","title":"Custom Use Cases / Supported Use Cases: Python Integration"}]}]},{"url":"#resources","title":"Resources","items":[{"url":"#learning-more","title":"Learning More"},{"url":"#release-history","title":"Release History"},{"url":"#license","title":"License"}]},{"url":"#community","title":"Community","items":[{"url":"#contribute","title":"Contribute"},{"url":"#join","title":"Join"},{"url":"#cite","title":"Cite"}]}]}]},"parent":{"relativePath":"products/sparseml.mdx"},"frontmatter":{"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/sparseml/python-api/page-data.json b/page-data/products/sparseml/python-api/page-data.json index 4205f6e2919..c4936916cba 100644 --- a/page-data/products/sparseml/python-api/page-data.json +++ b/page-data/products/sparseml/python-api/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/sparseml/python-api","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","title":"Python API","slug":"/products/sparseml/python-api","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/sparseml/python-api.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Python API\",\n \"metaTitle\": \"SparseML Python API\",\n \"metaDescription\": \"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Python API\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the SparseML Python APIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#python-api","title":"Python API"}]},"parent":{"relativePath":"products/sparseml/python-api.mdx"},"frontmatter":{"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/sparseml/python-api","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","title":"Python API","slug":"/products/sparseml/python-api","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/sparseml/python-api.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Python API\",\n \"metaTitle\": \"SparseML Python API\",\n \"metaDescription\": \"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Python API\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the SparseML Python APIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#python-api","title":"Python API"}]},"parent":{"relativePath":"products/sparseml/python-api.mdx"},"frontmatter":{"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/sparsezoo/cli/page-data.json b/page-data/products/sparsezoo/cli/page-data.json index 0ef2abffe40..44bc4b5419f 100644 --- a/page-data/products/sparsezoo/cli/page-data.json +++ b/page-data/products/sparsezoo/cli/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/sparsezoo/cli","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","title":"CLI","slug":"/products/sparsezoo/cli","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/sparsezoo/cli.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"CLI\",\n \"metaTitle\": \"SparseML CLI\",\n \"metaDescription\": \"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"CLI\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the SparseZoo CLIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#cli","title":"CLI"}]},"parent":{"relativePath":"products/sparsezoo/cli.mdx"},"frontmatter":{"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/sparsezoo/cli","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","title":"CLI","slug":"/products/sparsezoo/cli","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/sparsezoo/cli.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"CLI\",\n \"metaTitle\": \"SparseML CLI\",\n \"metaDescription\": \"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"CLI\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the SparseZoo CLIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#cli","title":"CLI"}]},"parent":{"relativePath":"products/sparsezoo/cli.mdx"},"frontmatter":{"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/sparsezoo/models/page-data.json b/page-data/products/sparsezoo/models/page-data.json index 30d65002de0..3cb88ec4e66 100644 --- a/page-data/products/sparsezoo/models/page-data.json +++ b/page-data/products/sparsezoo/models/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/sparsezoo/models","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","title":"Models","slug":"/products/sparsezoo/models","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/sparsezoo/models.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Models\",\n \"metaTitle\": \"Models\",\n \"metaDescription\": \"Models\",\n \"targetURL\": \"https://sparsezoo.neuralmagic.com/\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Sparse Models\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparse-models","title":"Sparse Models"}]},"parent":{"relativePath":"products/sparsezoo/models.mdx"},"frontmatter":{"metaTitle":"Models","metaDescription":"Models","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/sparsezoo/models","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","title":"Models","slug":"/products/sparsezoo/models","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/sparsezoo/models.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Models\",\n \"metaTitle\": \"Models\",\n \"metaDescription\": \"Models\",\n \"targetURL\": \"https://sparsezoo.neuralmagic.com/\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Sparse Models\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparse-models","title":"Sparse Models"}]},"parent":{"relativePath":"products/sparsezoo/models.mdx"},"frontmatter":{"metaTitle":"Models","metaDescription":"Models","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/sparsezoo/page-data.json b/page-data/products/sparsezoo/page-data.json index 1afb199c50b..6d103425f42 100644 --- a/page-data/products/sparsezoo/page-data.json +++ b/page-data/products/sparsezoo/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/sparsezoo","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","title":"SparseZoo","slug":"/products/sparsezoo","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/sparsezoo.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"SparseZoo\",\n \"metaTitle\": \"SparseZoo\",\n \"metaDescription\": \"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes\",\n \"index\": 4000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"SparseZoo\"), mdx(\"h3\", null, \"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes\"), mdx(\"p\", null, \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/sparsezoo\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Documentation\",\n \"src\": \"https://img.shields.io/badge/documentation-darkred?&style=for-the-badge&logo=read-the-docs\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/slack-purple?style=for-the-badge&logo=slack\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/issues\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/support%20forums-navy?style=for-the-badge&logo=github\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/actions/workflows/test-check.yaml\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Main\",\n \"src\": \"https://img.shields.io/github/workflow/status/neuralmagic/sparsezoo/Test%20Checks/main?label=build&style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/releases\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"GitHub release\",\n \"src\": \"https://img.shields.io/github/release/neuralmagic/sparsezoo.svg?style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/blob/main/LICENSE\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"GitHub\",\n \"src\": \"https://img.shields.io/github/license/neuralmagic/sparsezoo.svg?color=lightgray&style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/blob/main/CODE_OF_CONDUCT.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Contributor Covenant\",\n \"src\": \"https://img.shields.io/badge/Contributor%20Covenant-v2.1%20adopted-ff69b4.svg?color=yellow&style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.youtube.com/channel/UCo8dO_WMGYbWCRnj_Dxr4EA\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/-YouTube-red?&style=for-the-badge&logo=youtube&logoColor=white\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://medium.com/limitlessai\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/medium-%2312100E.svg?&style=for-the-badge&logo=medium&logoColor=white\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://twitter.com/neuralmagic\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/twitter/follow/neuralmagic?color=darkgreen&label=Follow&style=social\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n\"), mdx(\"h2\", null, \"Overview\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"SparseZoo is a constantly-growing repository\"), \" of sparsified (pruned and pruned-quantized) models with matching sparsification recipes for neural networks.\\nIt simplifies and accelerates your time-to-value in building performant deep learning models with a collection of inference-optimized models and recipes to prototype from.\\nRead \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/sparsification\"\n }, \"more about sparsification.\")), mdx(\"p\", null, \"Available via API and hosted in the cloud, the SparseZoo contains both baseline and models sparsified to different degrees of inference performance vs. baseline loss recovery.\\nRecipe-driven approaches built around sparsification algorithms allow you to use the models as given, transfer-learn from the models onto private datasets, or transfer the recipes to your architectures.\"), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo\"\n }, \"GitHub repository\"), \" contains the Python API code to handle the connection and authentication to the cloud.\"), mdx(\"img\", {\n \"alt\": \"SparseZoo Flow\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/infographics/sparsezoo.png\",\n \"width\": \"960px\"\n }), mdx(\"h2\", null, \"Highlights\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/blob/main/docs/source/models.md\"\n }, \"Model Stub Architecture Overview\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/blob/main/docs/source/recipes.md\"\n }, \"Available Model Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"sparsezoo.neuralmagic.com\"))), mdx(\"h2\", null, \"Installation\"), mdx(\"p\", null, \"See the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparsezoo\"\n }, \"SparseZoo Installation Page\"), \" for installation instructions.\"), mdx(\"h2\", null, \"Quick Tour\"), mdx(\"p\", null, \"The SparseZoo Python API enables you to search and download sparsified models. Code examples are given below.\\nWe encourage users to load SparseZoo models by copying a stub directly from a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"(https://sparsezoo.neuralmagic.com/)\"\n }, \"model page\"), \".\"), mdx(\"h3\", null, \"Introduction to Model Class Object\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Model\"), \" is a fundamental object that serves as a main interface with the SparseZoo library.\\nIt represents a SparseZoo model, together with all its directories and files.\"), mdx(\"h4\", null, \"Creating a Model Class Object From SparseZoo Stub\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparsezoo import Model\\n\\nstub = \\\"zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none\\\"\\n\\nmodel = Model(stub)\\nprint(str(model))\\n\\n>> Model(stub=zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none)\\n\")), mdx(\"h4\", null, \"Creating a Model Class Object From Local Model Directory\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparsezoo import Model\\n\\ndirectory = \\\".../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0\\\"\\n\\nmodel = Model(directory)\\nprint(str(model))\\n\\n>> Model(directory=.../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0)\\n\")), mdx(\"h4\", null, \"Manually Specifying the Model Download Path\"), mdx(\"p\", null, \"Unless specified otherwise, the model created from the SparseZoo stub is saved to the local sparsezoo cache directory.\\nThis can be overridden by passing the optional \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"download_path\"), \" argument to the constructor:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparsezoo import Model\\n\\nstub = \\\"zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none\\\"\\ndownload_directory = \\\"./model_download_directory\\\"\\n\\nmodel = Model(stub, download_path = download_directory)\\n\")), mdx(\"h4\", null, \"Downloading the Model Files\"), mdx(\"p\", null, \"Once the model is initialized from a stub, it may be downloaded either by calling the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"download()\"), \" method or by invoking a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"path\"), \" property. Both pathways are universal for all the files in SparseZoo. Invoking the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"path\"), \" property will always trigger file download unless the file has already been downloaded.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"# method 1\\nmodel.download()\\n\\n# method 2\\nmodel_path = model.path\\n\")), mdx(\"h4\", null, \"Inspecting the Contents of the SparseZoo Model\"), mdx(\"p\", null, \"We call the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"available_files\"), \" method to inspect which files are present in the SparseZoo model. Then, we select a file by calling the appropriate attribute:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"model.available_files\\n\\n>> {'training': Directory(name=training),\\n>> 'deployment': Directory(name=deployment),\\n>> 'sample_inputs': Directory(name=sample_inputs.tar.gz),\\n>> 'sample_outputs': {'framework': Directory(name=sample_outputs.tar.gz)},\\n>> 'sample_labels': Directory(name=sample_labels.tar.gz),\\n>> 'model_card': File(name=model.md),\\n>> 'recipes': Directory(name=recipe),\\n>> 'onnx_model': File(name=model.onnx)}\\n\")), mdx(\"p\", null, \"Then, we might take a closer look at the contents of the SparseZoo model:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"model_card = model.model_card\\nprint(model_card)\\n\\n>> File(name=model.md)\\n\")), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"model_card_path = model.model_card.path\\nprint(model_card_path)\\n\\n>> .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/model.md\\n\")), mdx(\"h3\", null, \"Model, Directory, and File\"), mdx(\"p\", null, \"In general, every file in the SparseZoo model shares a set of attributes: \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"name\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"path\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"URL\"), \", and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"parent\"), \":\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"name\"), \" serves as an identifier of the file/directory\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"path\"), \" points to the location of the file/directory\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"URL\"), \" specifies the server address of the file/directory in question\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"parent\"), \" points to the location of the parent directory of the file/directory in question\")), mdx(\"p\", null, \"A directory is a unique type of file that contains other files. For that reason, it has an additional \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"files\"), \" attribute.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"print(model.onnx_model)\\n\\n>> File(name=model.onnx)\\n\\nprint(f\\\"File name: {model.onnx_model.name}\\\\n\\\"\\n f\\\"File path: {model.onnx_model.path}\\\\n\\\"\\n f\\\"File URL: {model.onnx_model.url}\\\\n\\\"\\n f\\\"Parent directory: {model.onnx_model.parent_directory}\\\")\\n\\n>> File name: model.onnx\\n>> File path: .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/model.onnx\\n>> File URL: https://models.neuralmagic.com/cv-classification/...\\n>> Parent directory: .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0\\n\")), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"print(model.recipes)\\n\\n>> Directory(name=recipe)\\n\\nprint(f\\\"File name: {model.recipes.name}\\\\n\\\"\\n f\\\"Contains: {[file.name for file in model.recipes.files]}\\\\n\\\"\\n f\\\"File path: {model.recipes.path}\\\\n\\\"\\n f\\\"File URL: {model.recipes.url}\\\\n\\\"\\n f\\\"Parent directory: {model.recipes.parent_directory}\\\")\\n\\n>> File name: recipe\\n>> Contains: ['recipe_original.md', 'recipe_transfer-classification.md']\\n>> File path: /home/user/.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/recipe\\n>> File URL: None\\n>> Parent directory: /home/user/.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0\\n\")), mdx(\"h3\", null, \"Selecting Checkpoint-Specific Data\"), mdx(\"p\", null, \"A SparseZoo model may contain several checkpoints. The model may contain a checkpoint that had been saved before the model was quantized - that checkpoint would be used for transfer learning. Another checkpoint might have been saved after the quantization step - that one is usually directly used for inference.\"), mdx(\"p\", null, \"The recipes may also vary depending on the use case. We may want to access a recipe that was used to sparsify the dense model (\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"recipe_original\"), \") or the one that enables us to sparse transfer learn from the already sparsified model (\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"recipe_transfer\"), \").\"), mdx(\"p\", null, \"There are two ways to access those specific files.\"), mdx(\"h4\", null, \"Accessing Recipes (Through Python API)\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"available_recipes = model.recipes.available\\nprint(available_recipes)\\n\\n>> ['original', 'transfer-classification']\\n\\ntransfer_recipe = model.recipes[\\\"transfer-classification\\\"]\\nprint(transfer_recipe)\\n\\n>> File(name=recipe_transfer-classification.md)\\n\\noriginal_recipe = model.recipes.default # recipe defaults to `original`\\noriginal_recipe_path = original_recipe.path # downloads the recipe and returns its path\\nprint(original_recipe_path)\\n\\n>> .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/recipe/recipe_original.md\\n\")), mdx(\"h4\", null, \"Accessing Checkpoints (Through Python API)\"), mdx(\"p\", null, \"In general, we are expecting the following checkpoints to be included in the model:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"checkpoint_prepruning\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"checkpoint_postpruning\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"checkpoint_preqat\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"checkpoint_postqat\"))), mdx(\"p\", null, \"The checkpoint that the model defaults to is the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"preqat\"), \" state (just before the quantization step).\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparsezoo import Model\\n\\nstub = \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_quant_3layers-aggressive_84\\\"\\n\\nmodel = Model(stub)\\navailable_checkpoints = model.training.available\\nprint(available_checkpoints)\\n\\n>> ['preqat']\\n\\npreqat_checkpoint = model.training.default # recipe defaults to `preqat`\\npreqat_checkpoint_path = preqat_checkpoint.path # downloads the checkpoint and returns its path\\nprint(preqat_checkpoint_path)\\n\\n>> .../.cache/sparsezoo/0857c6f2-13c1-43c9-8db8-8f89a548dccd/training\\n\\n[print(file.name) for file in preqat_checkpoint.files]\\n\\n>> vocab.txt\\n>> special_tokens_map.json\\n>> pytorch_model.bin\\n>> config.json\\n>> training_args.bin\\n>> tokenizer_config.json\\n>> trainer_state.json\\n>> tokenizer.json\\n\")), mdx(\"h4\", null, \"Accessing Recipes (Through Stub String Arguments)\"), mdx(\"p\", null, \"You can also directly request a specific recipe/checkpoint type by appending the appropriate URL query arguments to the stub:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparsezoo import Model\\n\\nstub = \\\"zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none?recipe=transfer\\\"\\n\\nmodel = Model(stub)\\n\\n# Inspect which files are present.\\n# Note that the available recipes are restricted\\n# according to the specified URL query arguments\\nprint(model.recipes.available)\\n\\n>> ['transfer-classification']\\n\\ntransfer_recipe = model.recipes.default # Now the recipes default to the one selected by the stub string arguments\\nprint(transfer_recipe)\\n\\n>> File(name=recipe_transfer-classification.md)\\n\")), mdx(\"h3\", null, \"Accessing Sample Data\"), mdx(\"p\", null, \"The user may easily request a sample batch of data that represents the inputs and outputs of the model.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"sample_data = model.sample_batch(batch_size = 10)\\n\\nprint(sample_data['sample_inputs'][0].shape)\\n>> (10, 3, 224, 224) # (batch_size, num_channels, image_dim, image_dim)\\n\\nprint(sample_data['sample_outputs'][0].shape)\\n>> (10, 1000) # (batch_size, num_classes)\\n\")), mdx(\"h3\", null, \"Model Search\"), mdx(\"p\", null, \"The function \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"search_models\"), \" enables the user to quickly filter the contents of SparseZoo repository to find the stubs of interest:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparsezoo import search_models\\n\\nargs = {\\n \\\"domain\\\": \\\"cv\\\",\\n \\\"sub_domain\\\": \\\"segmentation\\\",\\n \\\"architecture\\\": \\\"yolact\\\",\\n}\\n\\nmodels = search_models(**args)\\n[print(model) for model in models]\\n\\n>> Model(stub=zoo:cv/segmentation/yolact-darknet53/pytorch/dbolya/coco/pruned82_quant-none)\\n>> Model(stub=zoo:cv/segmentation/yolact-darknet53/pytorch/dbolya/coco/pruned90-none)\\n>> Model(stub=zoo:cv/segmentation/yolact-darknet53/pytorch/dbolya/coco/base-none)\\n\")), mdx(\"h3\", null, \"Environmental Variables\"), mdx(\"p\", null, \"Users can specify the directory where models (temporarily during download) and its required credentials will be saved in your working machine.\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"SPARSEZOO_MODELS_PATH\"), \" is the path where the downloaded models will be saved temporarily. Default \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"~/.cache/sparsezoo/\"), \"\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"SPARSEZOO_CREDENTIALS_PATH\"), \" is the path where \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"credentials.yaml\"), \" will be saved. Default \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"~/.cache/sparsezoo/\")), mdx(\"h3\", null, \"Console Scripts\"), mdx(\"p\", null, \"In addition to the Python APIs, a console script entry point is installed with the package \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparsezoo\"), \".\\nThis enables easy interaction straight from your console/terminal.\"), mdx(\"h4\", null, \"Downloading\"), mdx(\"p\", null, \"Download command help\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\",\n \"metastring\": \"script\",\n \"script\": true\n }, \"sparsezoo.download -h\\n\")), mdx(\"br\", null), \"Download ResNet-50 Model\", mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\",\n \"metastring\": \"script\",\n \"script\": true\n }, \"sparsezoo.download zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/base-none\\n\")), mdx(\"br\", null), \"Download pruned and quantized ResNet-50 Model\", mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\",\n \"metastring\": \"script\",\n \"script\": true\n }, \"sparsezoo.download zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned_quant-moderate\\n\")), mdx(\"h4\", null, \"Searching\"), mdx(\"p\", null, \"Search command help\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\",\n \"metastring\": \"script\",\n \"script\": true\n }, \"sparsezoo search -h\\n\")), mdx(\"br\", null), \"Searching for all classification MobileNetV1 models in the computer vision domain\", mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\",\n \"metastring\": \"script\",\n \"script\": true\n }, \"sparsezoo search --domain cv --sub-domain classification --architecture mobilenet_v1\\n\")), mdx(\"br\", null), \"Searching for all ResNet-50 models\", mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\",\n \"metastring\": \"script\",\n \"script\": true\n }, \"sparsezoo search --domain cv --sub-domain classification \\\\\\n--architecture resnet_v1 --sub-architecture 50\\n\")), mdx(\"p\", null, \"For a more in-depth read, check out \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/sparsezoo/\"\n }, \"SparseZoo documentation.\")), mdx(\"h2\", null, \"Resources\"), mdx(\"h3\", null, \"Learning More\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Documentation: \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/sparseml/\"\n }, \"SparseML,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/sparsezoo/\"\n }, \"SparseZoo,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/sparsify/\"\n }, \"Sparsify,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/\"\n }, \"DeepSparse\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Neural Magic: \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://www.neuralmagic.com/blog/\"\n }, \"Blog,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://www.neuralmagic.com/resources/\"\n }, \"Resources\"))), mdx(\"h3\", null, \"Release History\"), mdx(\"p\", null, \"Official builds are hosted on PyPI\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"stable: \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://pypi.org/project/sparsezoo/\"\n }, \"sparsezoo\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"nightly (dev): \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://pypi.org/project/sparsezoo-nightly/\"\n }, \"sparsezoo-nightly\"))), mdx(\"p\", null, \"Additionally, more information can be found via \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/releases\"\n }, \"GitHub Releases.\")), mdx(\"h3\", null, \"License\"), mdx(\"p\", null, \"The project is licensed under the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/blob/main/LICENSE\"\n }, \"Apache License Version 2.0.\")), mdx(\"h2\", null, \"Community\"), mdx(\"h3\", null, \"Contribute\"), mdx(\"p\", null, \"We appreciate contributions to the code, examples, integrations, and documentation as well as bug reports and feature requests! \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/blob/main/CONTRIBUTING.md\"\n }, \"Learn how here.\")), mdx(\"h3\", null, \"Join\"), mdx(\"p\", null, \"For user help or questions about SparseZoo, sign up or log in to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, mdx(\"strong\", {\n parentName: \"a\"\n }, \"Deep Sparse Community Slack\")), \". We are growing the community member by member and happy to see you there. Bugs, feature requests, or additional questions can also be posted to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/issues\"\n }, \"GitHub Issue Queue.\")), mdx(\"p\", null, \"You can get the latest news, webinar and event invites, research papers, and other ML Performance tidbits by \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/subscribe/\"\n }, \"subscribing\"), \" to the Neural Magic community.\"), mdx(\"p\", null, \"For more general questions about Neural Magic, please fill out this \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"http://neuralmagic.com/contact/\"\n }, \"form.\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparsezoo","title":"SparseZoo","items":[{"items":[{"url":"#neural-network-model-repository-for-highly-sparse-and-sparse-quantized-models-with-matching-sparsification-recipes","title":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}]},{"url":"#overview","title":"Overview"},{"url":"#highlights","title":"Highlights"},{"url":"#installation","title":"Installation"},{"url":"#quick-tour","title":"Quick Tour","items":[{"url":"#introduction-to-model-class-object","title":"Introduction to Model Class Object","items":[{"url":"#creating-a-model-class-object-from-sparsezoo-stub","title":"Creating a Model Class Object From SparseZoo Stub"},{"url":"#creating-a-model-class-object-from-local-model-directory","title":"Creating a Model Class Object From Local Model Directory"},{"url":"#manually-specifying-the-model-download-path","title":"Manually Specifying the Model Download Path"},{"url":"#downloading-the-model-files","title":"Downloading the Model Files"},{"url":"#inspecting-the-contents-of-the-sparsezoo-model","title":"Inspecting the Contents of the SparseZoo Model"}]},{"url":"#model-directory-and-file","title":"Model, Directory, and File"},{"url":"#selecting-checkpoint-specific-data","title":"Selecting Checkpoint-Specific Data","items":[{"url":"#accessing-recipes-through-python-api","title":"Accessing Recipes (Through Python API)"},{"url":"#accessing-checkpoints-through-python-api","title":"Accessing Checkpoints (Through Python API)"},{"url":"#accessing-recipes-through-stub-string-arguments","title":"Accessing Recipes (Through Stub String Arguments)"}]},{"url":"#accessing-sample-data","title":"Accessing Sample Data"},{"url":"#model-search","title":"Model Search"},{"url":"#environmental-variables","title":"Environmental Variables"},{"url":"#console-scripts","title":"Console Scripts","items":[{"url":"#downloading","title":"Downloading"},{"url":"#searching","title":"Searching"}]}]},{"url":"#resources","title":"Resources","items":[{"url":"#learning-more","title":"Learning More"},{"url":"#release-history","title":"Release History"},{"url":"#license","title":"License"}]},{"url":"#community","title":"Community","items":[{"url":"#contribute","title":"Contribute"},{"url":"#join","title":"Join"}]}]}]},"parent":{"relativePath":"products/sparsezoo.mdx"},"frontmatter":{"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes","index":4000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/sparsezoo","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","title":"SparseZoo","slug":"/products/sparsezoo","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/sparsezoo.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"SparseZoo\",\n \"metaTitle\": \"SparseZoo\",\n \"metaDescription\": \"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"SparseZoo\"), mdx(\"h3\", null, \"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes\"), mdx(\"p\", null, \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/products/sparsezoo\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Documentation\",\n \"src\": \"https://img.shields.io/badge/documentation-darkred?&style=for-the-badge&logo=read-the-docs\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ/\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/slack-purple?style=for-the-badge&logo=slack\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/issues\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/support%20forums-navy?style=for-the-badge&logo=github\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/actions/workflows/test-check.yaml\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Main\",\n \"src\": \"https://img.shields.io/github/workflow/status/neuralmagic/sparsezoo/Test%20Checks/main?label=build&style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/releases\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"GitHub release\",\n \"src\": \"https://img.shields.io/github/release/neuralmagic/sparsezoo.svg?style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/blob/main/LICENSE\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"GitHub\",\n \"src\": \"https://img.shields.io/github/license/neuralmagic/sparsezoo.svg?color=lightgray&style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/blob/main/CODE_OF_CONDUCT.md\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"alt\": \"Contributor Covenant\",\n \"src\": \"https://img.shields.io/badge/Contributor%20Covenant-v2.1%20adopted-ff69b4.svg?color=yellow&style=for-the-badge\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.youtube.com/channel/UCo8dO_WMGYbWCRnj_Dxr4EA\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/-YouTube-red?&style=for-the-badge&logo=youtube&logoColor=white\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://medium.com/limitlessai\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/badge/medium-%2312100E.svg?&style=for-the-badge&logo=medium&logoColor=white\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://twitter.com/neuralmagic\"\n }, \"\\n \", mdx(\"img\", {\n parentName: \"a\",\n \"src\": \"https://img.shields.io/twitter/follow/neuralmagic?color=darkgreen&label=Follow&style=social\",\n \"height\": \"{25}\"\n }), \"\\n \"), \"\\n\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"SparseZoo is a constantly-growing repository\"), \" of sparsified (pruned and pruned-quantized) models with matching sparsification recipes for neural networks.\\nSparseZoo simplifies and accelerates your time-to-value in building performant deep learning models with a collection of inference-optimized models and recipes from which to prototype.\\nRead \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/sparsification\"\n }, \"more about sparsification.\")), mdx(\"p\", null, \"Available via API and hosted in the cloud, the SparseZoo contains both baseline and models sparsified to different degrees of inference performance versus baseline loss recovery.\\nRecipe-driven approaches built around sparsification algorithms allow you to use the models as given, transfer-learn from the models onto private datasets, or transfer the recipes to your architectures.\"), mdx(\"p\", null, \"The \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo\"\n }, \"GitHub repository\"), \" contains the Python API code to handle the connection and authentication to the cloud.\"), mdx(\"img\", {\n \"alt\": \"SparseZoo Flow\",\n \"src\": \"https://docs.neuralmagic.com/docs/source/infographics/sparsezoo.png\",\n \"width\": \"960px\"\n }), mdx(\"h2\", null, \"Highlights\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/blob/main/docs/source/models.md\"\n }, \"Model Stub Architecture Overview\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/blob/main/docs/source/recipes.md\"\n }, \"Available Model Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"sparsezoo.neuralmagic.com\"))), mdx(\"h2\", null, \"Installation\"), mdx(\"p\", null, \"See the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparsezoo\"\n }, \"SparseZoo Installation page\"), \" for installation instructions.\"), mdx(\"h2\", null, \"Quick Tour\"), mdx(\"p\", null, \"The SparseZoo Python API enables you to search and download sparsified models. Code examples are given below.\\nWe encourage users to load SparseZoo models by copying a stub directly from a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com/\"\n }, \"model page\"), \".\"), mdx(\"h3\", null, \"Introduction to Model Class Object\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Model\"), \" is a fundamental object that serves as a main interface with the SparseZoo library.\\nIt represents a SparseZoo model, together with all its directories and files.\"), mdx(\"h4\", null, \"Creating a Model Class Object From SparseZoo Stub\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparsezoo import Model\\n\\nstub = \\\"zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none\\\"\\n\\nmodel = Model(stub)\\nprint(str(model))\\n\\n>> Model(stub=zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none)\\n\")), mdx(\"h4\", null, \"Creating a Model Class Object From Local Model Directory\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparsezoo import Model\\n\\ndirectory = \\\".../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0\\\"\\n\\nmodel = Model(directory)\\nprint(str(model))\\n\\n>> Model(directory=.../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0)\\n\")), mdx(\"h4\", null, \"Manually Specifying the Model Download Path\"), mdx(\"p\", null, \"Unless specified otherwise, the model created from the SparseZoo stub is saved to the local SparseZoo cache directory.\\nThis can be overridden by passing the optional \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"download_path\"), \" argument to the constructor:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparsezoo import Model\\n\\nstub = \\\"zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none\\\"\\ndownload_directory = \\\"./model_download_directory\\\"\\n\\nmodel = Model(stub, download_path = download_directory)\\n\")), mdx(\"h4\", null, \"Downloading the Model Files\"), mdx(\"p\", null, \"Once the model is initialized from a stub, it may be downloaded either by calling the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"download()\"), \" method or by invoking a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"path\"), \" property. Both pathways are universal for all the files in SparseZoo. Invoking the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"path\"), \" property will always trigger file download unless the file has already been downloaded.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"# method 1\\nmodel.download()\\n\\n# method 2\\nmodel_path = model.path\\n\")), mdx(\"h4\", null, \"Inspecting the Contents of the SparseZoo Model\"), mdx(\"p\", null, \"We call the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"available_files\"), \" method to inspect which files are present in the SparseZoo model. Then, we select a file by calling the appropriate attribute:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"model.available_files\\n\\n>> {'training': Directory(name=training),\\n>> 'deployment': Directory(name=deployment),\\n>> 'sample_inputs': Directory(name=sample_inputs.tar.gz),\\n>> 'sample_outputs': {'framework': Directory(name=sample_outputs.tar.gz)},\\n>> 'sample_labels': Directory(name=sample_labels.tar.gz),\\n>> 'model_card': File(name=model.md),\\n>> 'recipes': Directory(name=recipe),\\n>> 'onnx_model': File(name=model.onnx)}\\n\")), mdx(\"p\", null, \"We might take a closer look at the contents of the SparseZoo model:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"model_card = model.model_card\\nprint(model_card)\\n\\n>> File(name=model.md)\\n\")), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"model_card_path = model.model_card.path\\nprint(model_card_path)\\n\\n>> .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/model.md\\n\")), mdx(\"h3\", null, \"Model, Directory, and File\"), mdx(\"p\", null, \"In general, every file in the SparseZoo model shares a set of attributes: \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"name\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"path\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"URL\"), \", and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"parent\"), \":\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"name\"), \" serves as an identifier of the file/directory.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"path\"), \" points to the location of the file/directory.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"URL\"), \" specifies the server address of the file/directory in question.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"parent\"), \" points to the location of the parent directory of the file/directory in question.\")), mdx(\"p\", null, \"A directory is a unique type of file that contains other files. For that reason, it has an additional \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"files\"), \" attribute.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"print(model.onnx_model)\\n\\n>> File(name=model.onnx)\\n\\nprint(f\\\"File name: {model.onnx_model.name}\\\\n\\\"\\n f\\\"File path: {model.onnx_model.path}\\\\n\\\"\\n f\\\"File URL: {model.onnx_model.url}\\\\n\\\"\\n f\\\"Parent directory: {model.onnx_model.parent_directory}\\\")\\n\\n>> File name: model.onnx\\n>> File path: .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/model.onnx\\n>> File URL: https://models.neuralmagic.com/cv-classification/...\\n>> Parent directory: .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0\\n\")), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"print(model.recipes)\\n\\n>> Directory(name=recipe)\\n\\nprint(f\\\"File name: {model.recipes.name}\\\\n\\\"\\n f\\\"Contains: {[file.name for file in model.recipes.files]}\\\\n\\\"\\n f\\\"File path: {model.recipes.path}\\\\n\\\"\\n f\\\"File URL: {model.recipes.url}\\\\n\\\"\\n f\\\"Parent directory: {model.recipes.parent_directory}\\\")\\n\\n>> File name: recipe\\n>> Contains: ['recipe_original.md', 'recipe_transfer-classification.md']\\n>> File path: /home/user/.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/recipe\\n>> File URL: None\\n>> Parent directory: /home/user/.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0\\n\")), mdx(\"h3\", null, \"Selecting Checkpoint-Specific Data\"), mdx(\"p\", null, \"A SparseZoo model may contain several checkpoints. The model may contain a checkpoint that had been saved before the model was quantized. That checkpoint would be used for transfer learning. Another checkpoint might have been saved after the quantization step. That one usually is used directly for inference.\"), mdx(\"p\", null, \"The recipes may also vary depending on the use case. We may want to access a recipe that was used to sparsify the dense model (\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"recipe_original\"), \") or the one that enables us to sparse transfer learn from the already sparsified model (\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"recipe_transfer\"), \").\"), mdx(\"p\", null, \"There are three ways to access those specific files:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Accessing recipes (through Python API)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Accessing checkpoints (through Python API)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Accessing recipies (through stub string arguments)\")), mdx(\"h4\", null, \"Accessing Recipes (Through Python API)\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"available_recipes = model.recipes.available\\nprint(available_recipes)\\n\\n>> ['original', 'transfer-classification']\\n\\ntransfer_recipe = model.recipes[\\\"transfer-classification\\\"]\\nprint(transfer_recipe)\\n\\n>> File(name=recipe_transfer-classification.md)\\n\\noriginal_recipe = model.recipes.default # recipe defaults to `original`\\noriginal_recipe_path = original_recipe.path # downloads the recipe and returns its path\\nprint(original_recipe_path)\\n\\n>> .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/recipe/recipe_original.md\\n\")), mdx(\"h4\", null, \"Accessing Checkpoints (Through Python API)\"), mdx(\"p\", null, \"In general, we are expecting the following checkpoints to be included in the model:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"checkpoint_prepruning\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"checkpoint_postpruning\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"checkpoint_preqat\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"checkpoint_postqat\"))), mdx(\"p\", null, \"The checkpoint that the model defaults to is the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"preqat\"), \" state (just before the quantization step).\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparsezoo import Model\\n\\nstub = \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_quant_3layers-aggressive_84\\\"\\n\\nmodel = Model(stub)\\navailable_checkpoints = model.training.available\\nprint(available_checkpoints)\\n\\n>> ['preqat']\\n\\npreqat_checkpoint = model.training.default # recipe defaults to `preqat`\\npreqat_checkpoint_path = preqat_checkpoint.path # downloads the checkpoint and returns its path\\nprint(preqat_checkpoint_path)\\n\\n>> .../.cache/sparsezoo/0857c6f2-13c1-43c9-8db8-8f89a548dccd/training\\n\\n[print(file.name) for file in preqat_checkpoint.files]\\n\\n>> vocab.txt\\n>> special_tokens_map.json\\n>> pytorch_model.bin\\n>> config.json\\n>> training_args.bin\\n>> tokenizer_config.json\\n>> trainer_state.json\\n>> tokenizer.json\\n\")), mdx(\"h4\", null, \"Accessing Recipes (Through Stub String Arguments)\"), mdx(\"p\", null, \"You can also directly request a specific recipe/checkpoint type by appending the appropriate URL query arguments to the stub:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparsezoo import Model\\n\\nstub = \\\"zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none?recipe=transfer\\\"\\n\\nmodel = Model(stub)\\n\\n# Inspect which files are present.\\n# Note that the available recipes are restricted\\n# according to the specified URL query arguments\\nprint(model.recipes.available)\\n\\n>> ['transfer-classification']\\n\\ntransfer_recipe = model.recipes.default # Now the recipes default to the one selected by the stub string arguments\\nprint(transfer_recipe)\\n\\n>> File(name=recipe_transfer-classification.md)\\n\")), mdx(\"h3\", null, \"Accessing Sample Data\"), mdx(\"p\", null, \"You may easily request a sample batch of data that represents the inputs and outputs of the model.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"sample_data = model.sample_batch(batch_size = 10)\\n\\nprint(sample_data['sample_inputs'][0].shape)\\n>> (10, 3, 224, 224) # (batch_size, num_channels, image_dim, image_dim)\\n\\nprint(sample_data['sample_outputs'][0].shape)\\n>> (10, 1000) # (batch_size, num_classes)\\n\")), mdx(\"h3\", null, \"Model Search\"), mdx(\"p\", null, \"The function \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"search_models\"), \" enables you to quickly filter the contents of the SparseZoo repository to find the stubs of interest:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparsezoo import search_models\\n\\nargs = {\\n \\\"domain\\\": \\\"cv\\\",\\n \\\"sub_domain\\\": \\\"segmentation\\\",\\n \\\"architecture\\\": \\\"yolact\\\",\\n}\\n\\nmodels = search_models(**args)\\n[print(model) for model in models]\\n\\n>> Model(stub=zoo:cv/segmentation/yolact-darknet53/pytorch/dbolya/coco/pruned82_quant-none)\\n>> Model(stub=zoo:cv/segmentation/yolact-darknet53/pytorch/dbolya/coco/pruned90-none)\\n>> Model(stub=zoo:cv/segmentation/yolact-darknet53/pytorch/dbolya/coco/base-none)\\n\")), mdx(\"h3\", null, \"Environmental Variables\"), mdx(\"p\", null, \"You can specify the directory where models and required credentials will be saved (temporarily during download) in your working machine.\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"SPARSEZOO_MODELS_PATH\"), \" is the path where the downloaded models will be saved temporarily. Default \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"~/.cache/sparsezoo/\"), \"\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"SPARSEZOO_CREDENTIALS_PATH\"), \" is the path where \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"credentials.yaml\"), \" will be saved. The default is \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"~/.cache/sparsezoo/\"), \".\"), mdx(\"h3\", null, \"Console Scripts\"), mdx(\"p\", null, \"In addition to the Python APIs, a console script entry point is installed with the package \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparsezoo\"), \".\\nThis enables easy interaction straight from your console/terminal.\"), mdx(\"h4\", null, \"Downloading\"), mdx(\"p\", null, \"Download command help:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\",\n \"metastring\": \"script\",\n \"script\": true\n }, \"sparsezoo.download -h\\n\")), mdx(\"br\", null), \"Download ResNet-50 model:\", mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\",\n \"metastring\": \"script\",\n \"script\": true\n }, \"sparsezoo.download zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/base-none\\n\")), mdx(\"br\", null), \"Download pruned and quantized ResNet-50 model:\", mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\",\n \"metastring\": \"script\",\n \"script\": true\n }, \"sparsezoo.download zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned_quant-moderate\\n\")), mdx(\"h4\", null, \"Searching\"), mdx(\"p\", null, \"Search command help:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\",\n \"metastring\": \"script\",\n \"script\": true\n }, \"sparsezoo search -h\\n\")), mdx(\"br\", null), \"Search for all classification MobileNetV1 models in the computer vision domain:\", mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\",\n \"metastring\": \"script\",\n \"script\": true\n }, \"sparsezoo search --domain cv --sub-domain classification --architecture mobilenet_v1\\n\")), mdx(\"br\", null), \"Search for all ResNet-50 models:\", mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-shell\",\n \"metastring\": \"script\",\n \"script\": true\n }, \"sparsezoo search --domain cv --sub-domain classification \\\\\\n--architecture resnet_v1 --sub-architecture 50\\n\")), mdx(\"h2\", null, \"Resources\"), mdx(\"h3\", null, \"Learning More\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Documentation: \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/products/sparseml/\"\n }, \"SparseML,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/products/sparsezoo/\"\n }, \"SparseZoo,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/products/sparsify/\"\n }, \"Sparsify,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.neuralmagic.com/products/deepsparse/\"\n }, \"DeepSparse\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Neural Magic: \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://www.neuralmagic.com/blog/\"\n }, \"Blog,\"), \" \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://www.neuralmagic.com/resources/\"\n }, \"Resources\"))), mdx(\"h3\", null, \"Release History\"), mdx(\"p\", null, \"Official builds are hosted on PyPI\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Stable: \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://pypi.org/project/sparsezoo/\"\n }, \"sparsezoo\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Nightly (dev): \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://pypi.org/project/sparsezoo-nightly/\"\n }, \"sparsezoo-nightly\"))), mdx(\"p\", null, \"Additionally, more information can be found via \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/releases\"\n }, \"GitHub Releases\"), \".\"), mdx(\"h3\", null, \"License\"), mdx(\"p\", null, \"The project is licensed under the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/blob/main/LICENSE\"\n }, \"Apache License Version 2.0\"), \".\"), mdx(\"h2\", null, \"Community\"), mdx(\"h3\", null, \"Contribute\"), mdx(\"p\", null, \"We appreciate contributions to the code, examples, integrations, and documentation as well as bug reports and feature requests! \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/blob/main/CONTRIBUTING.md\"\n }, \"Learn how here.\")), mdx(\"h3\", null, \"Join\"), mdx(\"p\", null, \"For user help or questions about SparseZoo, sign up or log into our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Neural Magic Community Slack\"), \". We are growing the community member by member and happy to see you there. Bugs, feature requests, or additional questions can also be posted to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo/issues\"\n }, \"GitHub Issue Queue.\")), mdx(\"p\", null, \"You can get the latest news, webinar and event invites, research papers, and other ML Performance tidbits by \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/subscribe/\"\n }, \"subscribing\"), \" to the Neural Magic community.\"), mdx(\"p\", null, \"For more general questions about Neural Magic, please fill out this \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"http://neuralmagic.com/contact/\"\n }, \"form.\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparsezoo","title":"SparseZoo","items":[{"items":[{"url":"#neural-network-model-repository-for-highly-sparse-and-sparse-quantized-models-with-matching-sparsification-recipes","title":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}]},{"url":"#highlights","title":"Highlights"},{"url":"#installation","title":"Installation"},{"url":"#quick-tour","title":"Quick Tour","items":[{"url":"#introduction-to-model-class-object","title":"Introduction to Model Class Object","items":[{"url":"#creating-a-model-class-object-from-sparsezoo-stub","title":"Creating a Model Class Object From SparseZoo Stub"},{"url":"#creating-a-model-class-object-from-local-model-directory","title":"Creating a Model Class Object From Local Model Directory"},{"url":"#manually-specifying-the-model-download-path","title":"Manually Specifying the Model Download Path"},{"url":"#downloading-the-model-files","title":"Downloading the Model Files"},{"url":"#inspecting-the-contents-of-the-sparsezoo-model","title":"Inspecting the Contents of the SparseZoo Model"}]},{"url":"#model-directory-and-file","title":"Model, Directory, and File"},{"url":"#selecting-checkpoint-specific-data","title":"Selecting Checkpoint-Specific Data","items":[{"url":"#accessing-recipes-through-python-api","title":"Accessing Recipes (Through Python API)"},{"url":"#accessing-checkpoints-through-python-api","title":"Accessing Checkpoints (Through Python API)"},{"url":"#accessing-recipes-through-stub-string-arguments","title":"Accessing Recipes (Through Stub String Arguments)"}]},{"url":"#accessing-sample-data","title":"Accessing Sample Data"},{"url":"#model-search","title":"Model Search"},{"url":"#environmental-variables","title":"Environmental Variables"},{"url":"#console-scripts","title":"Console Scripts","items":[{"url":"#downloading","title":"Downloading"},{"url":"#searching","title":"Searching"}]}]},{"url":"#resources","title":"Resources","items":[{"url":"#learning-more","title":"Learning More"},{"url":"#release-history","title":"Release History"},{"url":"#license","title":"License"}]},{"url":"#community","title":"Community","items":[{"url":"#contribute","title":"Contribute"},{"url":"#join","title":"Join"}]}]}]},"parent":{"relativePath":"products/sparsezoo.mdx"},"frontmatter":{"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/products/sparsezoo/python-api/page-data.json b/page-data/products/sparsezoo/python-api/page-data.json index 2b6434e63d8..cb25b71dcea 100644 --- a/page-data/products/sparsezoo/python-api/page-data.json +++ b/page-data/products/sparsezoo/python-api/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/products/sparsezoo/python-api","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","title":"Python API","slug":"/products/sparsezoo/python-api","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/sparsezoo/python-api.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Python API\",\n \"metaTitle\": \"SparseML Python API\",\n \"metaDescription\": \"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Python API\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the SparseML Python APIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#python-api","title":"Python API"}]},"parent":{"relativePath":"products/sparsezoo/python-api.mdx"},"frontmatter":{"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/products/sparsezoo/python-api","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","title":"Python API","slug":"/products/sparsezoo/python-api","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/products/sparsezoo/python-api.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Python API\",\n \"metaTitle\": \"SparseML Python API\",\n \"metaDescription\": \"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Python API\"), mdx(\"p\", null, \"Stay tuned for our next release adding documentation enabling detailed exploration of the SparseML Python APIs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#python-api","title":"Python API"}]},"parent":{"relativePath":"products/sparsezoo/python-api.mdx"},"frontmatter":{"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/deploying-deepsparse/aws-sagemaker/page-data.json b/page-data/use-cases/deploying-deepsparse/aws-sagemaker/page-data.json deleted file mode 100644 index ae3ef5bb52d..00000000000 --- a/page-data/use-cases/deploying-deepsparse/aws-sagemaker/page-data.json +++ /dev/null @@ -1 +0,0 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases/deploying-deepsparse/aws-sagemaker","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","title":"AWS SageMaker","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/deploying-deepsparse/aws-sagemaker.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"AWS SageMaker\",\n \"metaTitle\": \"Deploying with DeepSparse on AWS SageMaker\",\n \"metaDescription\": \"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploying with DeepSparse on AWS SageMaker\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.aws.amazon.com/sagemaker/index.html\"\n }, \"Amazon SageMaker\"), \"\\noffers an easy-to-use infrastructure for deploying deep learning models at scale.\\nThis directory provides a guided example for deploying a\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse\"\n }, \"DeepSparse\"), \" inference server on SageMaker for the question answering NLP task.\\nDeployments benefit from both sparse-CPU acceleration with\\nDeepSparse and automatic scaling from SageMaker.\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"The listed steps can be easily completed using a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"python\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"bash\"), \". The following\\ncredentials, tools, and libraries are also required:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html\"\n }, \"AWS CLI\"), \" version 2.X that is \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html\"\n }, \"configured\"), \". Double check if the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"region\"), \" that is configured in your AWS CLI matches the region in the SparseMaker class found in the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"endpoint.py\"), \" file. Currently, the default region being used is \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"us-east-1\"), \".\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html\"\n }, \"ARN\"), \" of your AWS role requires access to full SageMaker permissions.\", mdx(\"ul\", {\n parentName: \"li\"\n }, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"AmazonSageMakerFullAccess\")))), mdx(\"li\", {\n parentName: \"ul\"\n }, \"In the following steps, we will refer to this as \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ROLE_ARN\"), \". It should take the form \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"\\\"arn:aws:iam::XXX:role/service-role/XXX\\\"\"), \". In addition to role permissions, make sure the AWS user who configured the AWS CLI configuration has ECR/SageMaker permissions.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.docker.com/get-docker/\"\n }, \"Docker and the \", mdx(\"inlineCode\", {\n parentName: \"a\"\n }, \"docker\"), \" cli\"), \".\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"boto3\"), \" python AWS sdk (\", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"pip install boto3\"), \").\")), mdx(\"h3\", null, \"Quick Start\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"git clone https://github.com/neuralmagic/deepsparse.git\\ncd deepsparse/examples/aws-sagemaker\\npip install -r requirements.txt\\n\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Before starting, replace the \", mdx(\"inlineCode\", {\n parentName: \"strong\"\n }, \"role_arn\"), \" PLACEHOLDER string with your AWS \", mdx(\"a\", {\n parentName: \"strong\",\n \"href\": \"https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html\"\n }, \"ARN\"), \" at the bottom of SparseMaker class on the \", mdx(\"inlineCode\", {\n parentName: \"strong\"\n }, \"endpoint.py\"), \" file. Your ARN should look something like this:\"), \" \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"\\\"arn:aws:iam::XXX:role/service-role/XXX\\\"\")), mdx(\"p\", null, \"Run the following command to build your SageMaker endpoint.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"python endpoint.py create\\n\")), mdx(\"p\", null, \"After the endpoint has been staged (~1 minute), you can start making requests by passing your endpoint \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"region name\"), \" and your \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"endpoint name\"), \". Afterwards you can run inference by passing in your question and context:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from qa_client import Endpoint\\n\\n\\nqa = Endpoint(\\\"us-east-1\\\", \\\"question-answering-example-endpoint\\\")\\nanswer = qa.predict(question=\\\"who is batman?\\\", context=\\\"Mark is batman.\\\")\\n\\nprint(answer)\\n\")), mdx(\"p\", null, \"answer: \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"b'{\\\"score\\\":0.6484262943267822,\\\"answer\\\":\\\"Mark\\\",\\\"start\\\":0,\\\"end\\\":4}'\")), mdx(\"p\", null, \"If you want to delete your endpoint, please use:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"python endpoint.py destroy\\n\")), mdx(\"p\", null, \"Continue reading to learn more about the files in this directory, the build requirements, and a descriptive step-by-step guide for launching a SageMaker endpoint.\"), mdx(\"h2\", null, \"Contents\"), mdx(\"p\", null, \"In addition to the step-by-step instructions below, the directory contains\\nadditional files to aid in the deployment.\"), mdx(\"h3\", null, \"Dockerfile\"), mdx(\"p\", null, \"The included \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Dockerfile\"), \" builds an image on top of the standard \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"python:3.8\"), \" image\\nwith \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse\"), \" installed and creates an executable command \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"serve\"), \" that runs\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.server\"), \" on port 8080. SageMaker will execute this image by running\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"docker run serve\"), \" and expects the image to serve inference requests at the\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"invocations/\"), \" endpoint.\"), mdx(\"p\", null, \"For general customization of the server, changes should not need to be made\\nto the Dockerfile, but to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \" file that the Dockerfile reads from\\ninstead.\"), mdx(\"h3\", null, \"config.yaml\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \" is used to configure the DeepSparse server running in the Dockerfile.\\nThe config must contain the line \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"integration: sagemaker\"), \" so\\nendpoints may be provisioned correctly to match SageMaker specifications.\"), mdx(\"p\", null, \"Notice that the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"task\"), \" are set to run a sparse-quantized\\nquestion-answering model from \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com/\"\n }, \"SparseZoo\"), \".\\nTo use a model directory stored in \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"s3\"), \", set \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" to \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/opt/ml/model\"), \" in\\nthe config and add \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ModelDataUrl=\"), \" to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"CreateModel\"), \" arguments.\\nSageMaker will automatically copy the files from the s3 path into \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/opt/ml/model\"), \"\\nwhich the server can then read from.\"), mdx(\"h3\", null, \"push_image.sh\"), mdx(\"p\", null, \"Bash script for pushing your local Docker image to the AWS ECR repository.\"), mdx(\"h3\", null, \"endpoint.py\"), mdx(\"p\", null, \"Contains the SparseMaker object for automating the build of a SageMaker endpoint from a Docker Image. You have the option to customize the parameters of the class in order to match the prefered state of your deployment.\"), mdx(\"h3\", null, \"qa_client.py\"), mdx(\"p\", null, \"Contains a client object for making requests to the SageMaker inference endpoint for the question answering task.\"), mdx(\"hr\", null), mdx(\"p\", null, \"More information on the DeepSparse server and its configuration can be found\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server#readme\"\n }, \"here\"), \".\"), mdx(\"h2\", null, \"Deploying to SageMaker\"), mdx(\"p\", null, \"The following steps are required to provision and deploy DeepSparse to SageMaker\\nfor inference:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Build the DeepSparse-SageMaker \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"Dockerfile\"), \" into a local docker image\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Create an \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://aws.amazon.com/ecr/\"\n }, \"Amazon ECR\"), \" repository to host the image\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Push the image to the ECR repository\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Create a SageMaker \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"Model\"), \" that reads from the hosted ECR image\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Build a SageMaker \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"EndpointConfig\"), \" that defines how to provision the model deployment\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Launch the SageMaker \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"Endpoint\"), \" defined by the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"Model\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"EndpointConfig\"))), mdx(\"h3\", null, \"Building the DeepSparse-SageMaker Image Locally\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Dockerfile\"), \" can be build from this directory from a bash shell using the following command.\\nThe image will be tagged locally as \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse-sagemaker-example\"), \".\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"docker build -t deepsparse-sagemaker-example .\\n\")), mdx(\"h3\", null, \"Creating an ECR Repository\"), mdx(\"p\", null, \"The following code snippet can be used in Python to create an ECR repository.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"region_name\"), \" can be swapped to a preferred region. The repository will be named\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse-sagemaker\"), \". If the repository is already created, this step may be skipped.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import boto3\\n\\necr = boto3.client(\\\"ecr\\\", region_name='us-east-1')\\ncreate_repository_res = ecr.create_repository(repositoryName=\\\"deepsparse-sagemaker\\\")\\n\")), mdx(\"h3\", null, \"Pushing the Local Image to the ECR Repository\"), mdx(\"p\", null, \"Once the image is built and the ECR repository is created, the image can be pushed using the following\\nbash commands.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"account=$(aws sts get-caller-identity --query Account | sed -e 's/^\\\"//' -e 's/\\\"$//')\\nregion=$(aws configure get region)\\necr_account=${account}.dkr.ecr.${region}.amazonaws.com\\n\\naws ecr get-login-password --region $region | docker login --username AWS --password-stdin $ecr_account\\nfullname=$ecr_account/deepsparse-sagemaker:latest\\n\\ndocker tag deepsparse-sagemaker-example:latest $fullname\\ndocker push $fullname\\n\")), mdx(\"p\", null, \"An abbreviated successful output will look like:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\"\n }, \"Login Succeeded\\nThe push refers to repository [XXX.dkr.ecr.us-east-1.amazonaws.com/deepsparse-example]\\n3c2284f66840: Preparing\\n08fa02ce37eb: Preparing\\na037458de4e0: Preparing\\nbafdbe68e4ae: Preparing\\na13c519c6361: Preparing\\n6817758dd480: Waiting\\n6d95196cbe50: Waiting\\ne9872b0f234f: Waiting\\nc18b71656bcf: Waiting\\n2174eedecc00: Waiting\\n03ea99cd5cd8: Pushed\\n585a375d16ff: Pushed\\n5bdcc8e2060c: Pushed\\nlatest: digest: sha256:XXX size: 3884\\n\")), mdx(\"h3\", null, \"Creating a SageMaker Model\"), mdx(\"p\", null, \"A SageMaker \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Model\"), \" can now be created referencing the pushed image.\\nThe example model will be named \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"question-answering-example\"), \".\\nAs mentioned in the requirements, \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ROLE_ARN\"), \" should be a string arn of an AWS\\nrole with full access to SageMaker.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import boto3\\n\\nsm_boto3 = boto3.client(\\\"sagemaker\\\", region_name=\\\"us-east-1\\\")\\n\\nregion = boto3.Session().region_name\\naccount_id = boto3.client(\\\"sts\\\").get_caller_identity()[\\\"Account\\\"]\\n\\nimage_uri = \\\"{}.dkr.ecr.{}.amazonaws.com/deepsparse-sagemaker:latest\\\".format(account_id, region)\\n\\ncreate_model_res = sm_boto3.create_model(\\n ModelName=\\\"question-answering-example\\\",\\n Containers=[\\n {\\n \\\"Image\\\": image_uri,\\n },\\n ],\\n ExecutionRoleArn=ROLE_ARN,\\n EnableNetworkIsolation=False,\\n)\\n\")), mdx(\"p\", null, \"More information about options for configuring SageMaker \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Model\"), \" instances can\\nbe found \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html\"\n }, \"here\"), \".\"), mdx(\"h3\", null, \"Building a SageMaker EndpointConfig\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"EndpointConfig\"), \" is used to set the instance type to provision, how many, scaling\\nrules, and other deployment settings. The following code snippet defines an endpoint\\nwith a single machine using an \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ml.c5.large\"), \" CPU.\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-available-instance-types.html\"\n }, \"Full list of available instances\"), \" (See Compute optimized (no GPUs) section)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html\"\n }, \"EndpointConfig documentation and options\"))), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"model_name = \\\"question-answering-example\\\" # model defined above\\ninitial_instance_count = 1\\ninstance_type = \\\"ml.c5.2xlarge\\\" # 8 vcpus\\n\\nvariant_name = \\\"QuestionAnsweringDeepSparseDemo\\\" # ^[a-zA-Z0-9](-*[a-zA-Z0-9]){0,62}\\n\\nproduction_variants = [\\n {\\n \\\"VariantName\\\": variant_name,\\n \\\"ModelName\\\": model_name,\\n \\\"InitialInstanceCount\\\": initial_instance_count,\\n \\\"InstanceType\\\": instance_type,\\n }\\n]\\n\\nendpoint_config_name = \\\"QuestionAnsweringExampleConfig\\\" # ^[a-zA-Z0-9](-*[a-zA-Z0-9]){0,62}\\n\\nendpoint_config = {\\n \\\"EndpointConfigName\\\": endpoint_config_name,\\n \\\"ProductionVariants\\\": production_variants,\\n}\\n\\nendpoint_config_res = sm_boto3.create_endpoint_config(**endpoint_config)\\n\")), mdx(\"h3\", null, \"Launching a SageMaker Endpoint\"), mdx(\"p\", null, \"Once the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"EndpointConfig\"), \" is defined, the endpoint can be easily launched using\\nthe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"create_endpoint\"), \" command:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"endpoint_name = \\\"question-answering-example-endpoint\\\"\\nendpoint_res = sm_boto3.create_endpoint(\\n EndpointName=endpoint_name, EndpointConfigName=endpoint_config_name\\n)\\n\")), mdx(\"p\", null, \"After creating the endpoint, its status can be checked by running the following.\\nInitially, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"EndpointStatus\"), \" will be \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Creating\"), \". Checking after the image is\\nsuccessfully launched, it will be \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"InService\"), \". If there are any errors, it will\\nbecome \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Failed\"), \".\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from pprint import pprint\\npprint(sm_boto3.describe_endpoint(EndpointName=endpoint_name))\\n\")), mdx(\"h2\", null, \"Making a Request to the Endpoint\"), mdx(\"p\", null, \"After the endpoint is in service, requests can be made to it through the\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"invoke_endpoint\"), \" api. Inputs will be passed as a JSON payload.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import json\\n\\nsm_runtime = boto3.client(\\\"sagemaker-runtime\\\", region_name=\\\"us-east-1\\\")\\n\\nbody = json.dumps(\\n dict(\\n question=\\\"Where do I live?\\\",\\n context=\\\"I am a student and I live in Cambridge\\\",\\n )\\n)\\n\\ncontent_type = \\\"application/json\\\"\\naccept = \\\"text/plain\\\"\\n\\nres = sm_runtime.invoke_endpoint(\\n EndpointName=endpoint_name,\\n Body=body,\\n ContentType=content_type,\\n Accept=accept,\\n)\\n\\nprint(res[\\\"Body\\\"].readlines())\\n\")), mdx(\"h3\", null, \"Cleanup\"), mdx(\"p\", null, \"The model and endpoint can be deleted with the following commands:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"sm_boto3.delete_endpoint(EndpointName=endpoint_name)\\nsm_boto3.delete_endpoint_config(EndpointConfigName=endpoint_config_name)\\nsm_boto3.delete_model(ModelName=model_name)\\n\")), mdx(\"h2\", null, \"Next Steps\"), mdx(\"p\", null, \"These steps create an invokable SageMaker inference endpoint powered by the DeepSparse\\nEngine. The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"EndpointConfig\"), \" settings may be adjusted to set instance scaling rules based\\non deployment needs.\"), mdx(\"p\", null, \"More information on deploying custom models with SageMaker can be found\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html\"\n }, \"here\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploying-with-deepsparse-on-aws-sagemaker","title":"Deploying with DeepSparse on AWS SageMaker","items":[{"url":"#installation-requirements","title":"Installation Requirements","items":[{"url":"#quick-start","title":"Quick Start"}]},{"url":"#contents","title":"Contents","items":[{"url":"#dockerfile","title":"Dockerfile"},{"url":"#configyaml","title":"config.yaml"},{"url":"#push_imagesh","title":"push_image.sh"},{"url":"#endpointpy","title":"endpoint.py"},{"url":"#qa_clientpy","title":"qa_client.py"}]},{"url":"#deploying-to-sagemaker","title":"Deploying to SageMaker","items":[{"url":"#building-the-deepsparse-sagemaker-image-locally","title":"Building the DeepSparse-SageMaker Image Locally"},{"url":"#creating-an-ecr-repository","title":"Creating an ECR Repository"},{"url":"#pushing-the-local-image-to-the-ecr-repository","title":"Pushing the Local Image to the ECR Repository"},{"url":"#creating-a-sagemaker-model","title":"Creating a SageMaker Model"},{"url":"#building-a-sagemaker-endpointconfig","title":"Building a SageMaker EndpointConfig"},{"url":"#launching-a-sagemaker-endpoint","title":"Launching a SageMaker Endpoint"}]},{"url":"#making-a-request-to-the-endpoint","title":"Making a Request to the Endpoint","items":[{"url":"#cleanup","title":"Cleanup"}]},{"url":"#next-steps","title":"Next Steps"}]}]},"parent":{"relativePath":"use-cases/deploying-deepsparse/aws-sagemaker.mdx"},"frontmatter":{"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/deploying-deepsparse/deepsparse-server/page-data.json b/page-data/use-cases/deploying-deepsparse/deepsparse-server/page-data.json deleted file mode 100644 index cb69aeaba93..00000000000 --- a/page-data/use-cases/deploying-deepsparse/deepsparse-server/page-data.json +++ /dev/null @@ -1 +0,0 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases/deploying-deepsparse/deepsparse-server","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","title":"DeepSparse Server","slug":"/use-cases/deploying-deepsparse/deepsparse-server","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/deploying-deepsparse/deepsparse-server.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"DeepSparse Server\",\n \"metaTitle\": \"Deploying with the DeepSparse Server\",\n \"metaDescription\": \"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploying with the DeepSparse Server\"), mdx(\"p\", null, \"This section explains how to deploy with DeepSparse Server\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This section requires the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Server Install\"), \".\"), mdx(\"h2\", null, \"Usage\"), mdx(\"p\", null, \"The DeepSparse Server allows you to serve models and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" for deployment in HTTP. The server runs on top of the popular FastAPI web framework and Uvicorn web server.\\nThe server supports any task from DeepSparse, such as \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" including NLP, image classification, and object detection tasks.\\nAn updated list of available tasks can be found\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/PIPELINES.md\"\n }, \"here\")), mdx(\"p\", null, \"Run the help CLI to lookup the available arguments.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\"\n }, \"$ deepsparse.server --help\\n\\n> Usage: deepsparse.server [OPTIONS] COMMAND [ARGS]...\\n>\\n> Start a DeepSparse inference server for serving the models and pipelines.\\n>\\n> 1. `deepsparse.server config [OPTIONS] `\\n>\\n> 2. `deepsparse.server task [OPTIONS] \\n>\\n> Examples for using the server:\\n>\\n> `deepsparse.server config server-config.yaml`\\n>\\n> `deepsparse.server task question_answering --batch-size 2`\\n>\\n> `deepsparse.server task question_answering --host \\\"0.0.0.0\\\"`\\n>\\n> Example config.yaml for serving:\\n>\\n> \\\\```yaml\\n> num_cores: 2\\n> num_workers: 2\\n> endpoints:\\n> - task: question_answering\\n> route: /unpruned/predict\\n> model: zoo:some/zoo/stub\\n> - task: question_answering\\n> route: /pruned/predict\\n> model: /path/to/local/model\\n> \\\\```\\n>\\n> Options:\\n> --help Show this message and exit.\\n>\\n> Commands:\\n> config Run the server using configuration from a .yaml file.\\n> task Run the server using configuration with CLI options, which can...\\n\")), mdx(\"h2\", null, \"Single Model Inference\"), mdx(\"p\", null, \"Example CLI command for serving a single model for the \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"question answering\"), \" task:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task question_answering \\\\\\n --model_path \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"To make a request to your server, use the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"requests\"), \" library and pass the request URL:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\n\\nurl = \\\"http://localhost:5543/predict\\\"\\n\\nobj = {\\n \\\"question\\\": \\\"Who is Mark?\\\",\\n \\\"context\\\": \\\"Mark is batman.\\\"\\n}\\n\\nresponse = requests.post(url, json=obj)\\n\")), mdx(\"p\", null, \"In addition, you can make a request with a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"curl\"), \" command from terminal:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"curl -X POST \\\\\\n 'http://localhost:5543/predict' \\\\\\n -H 'accept: application/json' \\\\\\n -H 'Content-Type: application/json' \\\\\\n -d '{\\n \\\"question\\\": \\\"Who is Mark?\\\",\\n \\\"context\\\": \\\"Mark is batman.\\\"\\n}'\\n\")), mdx(\"h2\", null, \"Multiple Model Inference\"), mdx(\"p\", null, \"To serve multiple models you can build a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \" file.\\nIn the sample YAML file below, we are defining two BERT models to be served by the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.server\"), \" for the \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"question answering\"), \" task:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"num_cores: 2\\nnum_workers: 2\\nendpoints:\\n - task: question_answering\\n route: /unpruned/predict\\n model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none\\n batch_size: 1\\n - task: question_answering\\n route: /pruned/predict\\n model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\n batch_size: 1\\n\")), mdx(\"p\", null, \"You can now run the server with the config file path using the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config\"), \" sub command:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server config config.yaml\\n\")), mdx(\"p\", null, \"You can send requests to a specific model by appending the model's \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"alias\"), \" from the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \" to the end of the request url. For example, to call the second model, you can send a request to its configured route:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\n\\nurl = \\\"http://localhost:5543/pruned/predict\\\"\\n\\nobj = {\\n \\\"question\\\": \\\"Who is Mark?\\\",\\n \\\"context\\\": \\\"Mark is batman.\\\"\\n}\\n\\nresponse = requests.post(url, json=obj)\\n\")), mdx(\"p\", null, \"\\uD83D\\uDCA1 \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"PRO TIP\"), \" \\uD83D\\uDCA1: While your server is running, you can always use the awesome swagger UI that's built into FastAPI to view your model's pipeline \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"POST\"), \" routes.\\nThe UI also enables you to easily make sample requests to your server.\\nAll you need is to add \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs\"), \" at the end of your host URL:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\"\n }, \"localhost:5543/docs\\n\")), mdx(\"p\", null, mdx(\"img\", {\n parentName: \"p\",\n \"src\": \"./img/swagger_ui.png\",\n \"alt\": \"alt text\"\n })));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploying-with-the-deepsparse-server","title":"Deploying with the DeepSparse Server","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#usage","title":"Usage"},{"url":"#single-model-inference","title":"Single Model Inference"},{"url":"#multiple-model-inference","title":"Multiple Model Inference"}]}]},"parent":{"relativePath":"use-cases/deploying-deepsparse/deepsparse-server.mdx"},"frontmatter":{"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/deploying-deepsparse/docker/page-data.json b/page-data/use-cases/deploying-deepsparse/docker/page-data.json index 414ee150da2..ebbcbafa00d 100644 --- a/page-data/use-cases/deploying-deepsparse/docker/page-data.json +++ b/page-data/use-cases/deploying-deepsparse/docker/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases/deploying-deepsparse/docker","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","title":"Docker","slug":"/use-cases/deploying-deepsparse/docker","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/deploying-deepsparse/docker.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Docker\",\n \"metaTitle\": \"Using/Creating a DeepSparse Docker Image\",\n \"metaDescription\": \"Using/Creating a DeepSparse Docker Image for repeatable build processes\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Using/Creating a DeepSparse Docker Image\"), mdx(\"p\", null, \"DeepSparse is setup with a default Dockerfile for a minimal DeepSparse docker image.\\nThis image is based off the latest official Ubuntu image.\"), mdx(\"h2\", null, \"Pull\"), mdx(\"p\", null, \"You can access the already built image detailed at \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/orgs/neuralmagic/packages/container/package/deepsparse\"\n }, \"https://github.com/orgs/neuralmagic/packages/container/package/deepsparse\"), \":\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"docker pull ghcr.io/neuralmagic/deepsparse:1.0.2-debian11\\ndocker tag ghcr.io/neuralmagic/deepsparse:1.0.2-debian11 deepsparse_docker\\n\")), mdx(\"h2\", null, \"Extend\"), mdx(\"p\", null, \"If you would like to customize the docker image, you can use the pre-built images as a base in your own \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Dockerfile\"), \":\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-Dockerfile\"\n }, \"from ghcr.io/neuralmagic/deepsparse:1.0.2-debian11\\n\\n...\\n\")), mdx(\"h2\", null, \"Build\"), mdx(\"p\", null, \"In order to build and launch this image, run from the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"docker/\"), \" directory under the DeepSparse Repo:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ docker build -t deepsparse_docker . && docker run -it deepsparse_docker ${python_command}\\n\")), mdx(\"p\", null, \"For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"docker build -t deepsparse_docker . && docker run -it deepsparse_docker deepsparse.server --task question_answering --model_path \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"If you want to use a specific branch from deepsparse you can use the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"GIT_CHECKOUT\"), \" build arg:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"docker build --build-arg GIT_CHECKOUT=main -t deepsparse_docker .\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#usingcreating-a-deepsparse-docker-image","title":"Using/Creating a DeepSparse Docker Image","items":[{"url":"#pull","title":"Pull"},{"url":"#extend","title":"Extend"},{"url":"#build","title":"Build"}]}]},"parent":{"relativePath":"use-cases/deploying-deepsparse/docker.mdx"},"frontmatter":{"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/use-cases/deploying-deepsparse/docker","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","title":"Docker","slug":"/use-cases/deploying-deepsparse/docker","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/deploying-deepsparse/docker.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Docker\",\n \"metaTitle\": \"Using/Creating a DeepSparse Docker Image\",\n \"metaDescription\": \"Using/Creating a DeepSparse Docker Image for repeatable build processes\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Using/Creating a DeepSparse Docker Image\"), mdx(\"p\", null, \"DeepSparse is set up with a default Dockerfile for a minimal DeepSparse Docker image.\\nThis image is based off the latest official Ubuntu image.\"), mdx(\"h2\", null, \"Pull\"), mdx(\"p\", null, \"You can access the already-built image detailed at \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/orgs/neuralmagic/packages/container/package/deepsparse\"\n }, \"https://github.com/orgs/neuralmagic/packages/container/package/deepsparse\"), \":\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"docker pull ghcr.io/neuralmagic/deepsparse:1.0.2-debian11\\ndocker tag ghcr.io/neuralmagic/deepsparse:1.0.2-debian11 deepsparse_docker\\n\")), mdx(\"h2\", null, \"Extend\"), mdx(\"p\", null, \"To customize the Docker image, you can use the pre-built images as a base in your own \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Dockerfile\"), \":\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-Dockerfile\"\n }, \"from ghcr.io/neuralmagic/deepsparse:1.0.2-debian11\\n\\n...\\n\")), mdx(\"h2\", null, \"Build\"), mdx(\"p\", null, \"To build and launch this image, run the following from the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"docker/\"), \" directory under the DeepSparse Repo:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ docker build -t deepsparse_docker . && docker run -it deepsparse_docker ${python_command}\\n\")), mdx(\"p\", null, \"For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"docker build -t deepsparse_docker . && docker run -it deepsparse_docker deepsparse.server --task question_answering --model_path \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"To use a specific branch from DeepSparse, you can use the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"GIT_CHECKOUT\"), \" build argument:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"docker build --build-arg GIT_CHECKOUT=main -t deepsparse_docker .\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#usingcreating-a-deepsparse-docker-image","title":"Using/Creating a DeepSparse Docker Image","items":[{"url":"#pull","title":"Pull"},{"url":"#extend","title":"Extend"},{"url":"#build","title":"Build"}]}]},"parent":{"relativePath":"use-cases/deploying-deepsparse/docker.mdx"},"frontmatter":{"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/deploying-deepsparse/page-data.json b/page-data/use-cases/deploying-deepsparse/page-data.json deleted file mode 100644 index 36806df71df..00000000000 --- a/page-data/use-cases/deploying-deepsparse/page-data.json +++ /dev/null @@ -1 +0,0 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases/deploying-deepsparse","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","title":"Deploying DeepSparse","slug":"/use-cases/deploying-deepsparse","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/deploying-deepsparse.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Deploying DeepSparse\",\n \"metaTitle\": \"Deploying DeepSparse\",\n \"metaDescription\": \"Deploying Deepsparse\",\n \"index\": 5000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploying DeepSparse\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploying-deepsparse","title":"Deploying DeepSparse"}]},"parent":{"relativePath":"use-cases/deploying-deepsparse.mdx"},"frontmatter":{"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse","index":5000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/image-classification/deploying/page-data.json b/page-data/use-cases/image-classification/deploying/page-data.json index a2987377b8a..0b5eb245faf 100644 --- a/page-data/use-cases/image-classification/deploying/page-data.json +++ b/page-data/use-cases/image-classification/deploying/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases/image-classification/deploying","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","title":"Deploying","slug":"/use-cases/image-classification/deploying","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/image-classification/deploying.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Deploying\",\n \"metaTitle\": \"Image Classification Deployments with DeepSparse\",\n \"metaDescription\": \"Image Classification deployments with DeepSparse to create cheaper and more performant models\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploying Image Classification Models with DeepSparse\"), mdx(\"p\", null, \"This page explains how to deploy an Image Classification model with DeepSparse.\"), mdx(\"p\", null, \"DeepSparse allows accelerated inference, serving, and benchmarking of sparsified image classification models.\\nThese integrations enables you to easily deploy sparsified image classification models onto the DeepSparse Engine for GPU-class performance directly on the CPU.\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This section requires the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Server Install\"), \".\"), mdx(\"h2\", null, \"Getting Started\"), mdx(\"p\", null, \"Before you start using the DeepSparse Engine, confirm your machine is\\ncompatible with our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deepsparse-engine/hardware-support\"\n }, \"hardware requirements\"), \".\"), mdx(\"h3\", null, \"Model Format\"), mdx(\"p\", null, \"To deploy an image classification model using DeepSparse Engine, pass the model in the ONNX format.\\nThis grants the engine the flexibility to serve any model in a framework-agnostic environment.\"), mdx(\"p\", null, \"There are two options to creating the model in ONNX format:\"), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"1) Export the ONNX/Config Files From SparseML\")), mdx(\"p\", null, \"This pathway is relevant if you intend to deploy a model created using SparseML library.\"), mdx(\"p\", null, \"After training your model with SparseML, locate the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \".pth\"), \" file for the checkpoint you'd like to export and run the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"SparseML\"), \" integrated export script below.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.image_classification.export_onnx \\\\\\n --arch-key resnet50 \\\\\\n --dataset imagenet \\\\\\n --dataset-path ~/datasets/ILSVRC2012 \\\\\\n --checkpoint-path ~/checkpoints/resnet50_checkpoint.pth\\n\")), mdx(\"p\", null, \"This creates \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file.\"), mdx(\"p\", null, \"The examples below use SparseZoo stubs, but simply pass the path to \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" in place of the stubs to use the local model.\")), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"2) Pass a SparseZoo Stub To DeepSparse\")), mdx(\"p\", null, \"This pathway is relevant if you plan to use an off-the-shelf model from the SparseZoo.\"), mdx(\"p\", null, \"All of DeepSparse's \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" and APIs can use a SparseZoo stub in place of a local folder.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" use the stubs to locate and download the ONNX and config files from the SparseZoo repo.\"), mdx(\"p\", null, \"All of DeepSparse's pipelines and APIs can use a SparseZoo stub in place of a local folder.\\nThe examples use SparseZoo stubs to highlight this pathway.\")), mdx(\"p\", null, \"The examples below use option 2. However, you can pass the local path to the ONNX file as needed.\"), mdx(\"h2\", null, \"Deployment APIs\"), mdx(\"p\", null, \"DeepSparse provides both a Python \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" API and an out-of-the-box model\\nserver that can be used for end-to-end inference in either Python\\nworkflows or as an HTTP endpoint. Both options provide similar specifications\\nfor configurations and support a variety of image classification models.\"), mdx(\"h3\", null, \"Python API\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" are the default interface for running inference with the\\nDeepSparse Engine.\"), mdx(\"p\", null, \"Once a model is obtained, either through SparseML training or directly from SparseZoo,\\na \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" can be used to easily facilitate end to end inference and deployment\\nof the sparsified image classification model.\"), mdx(\"p\", null, \"If no model is specified to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" for a given task, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" will automatically\\nselect a pruned and quantized model for the task from the SparseZoo that can be used for accelerated\\ninference. Note that other models in the SparseZoo will have different tradeoffs between speed, size,\\nand accuracy.\"), mdx(\"h3\", null, \"HTTP Server\"), mdx(\"p\", null, \"As an alternative to Python API, the DeepSparse Server allows you to\\nserve ONNX models and pipelines in HTTP. Configuring the server uses the same parameters and schemas as the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \",\\nenabling simple deployment. Once launched, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs\"), \" endpoint is created with full\\nendpoint descriptions and support for making sample requests.\"), mdx(\"p\", null, \"An example deployment using a 95% pruned ResNet-50 is given below.\"), mdx(\"p\", null, \"For full documentation on deploying sparse image classification models with the\\nDeepSparse Server, see the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/use-cases/deploying-deepsparse/deepsparse-server\"\n }, \"documentation for DeepSparse Server\"), \".\"), mdx(\"h2\", null, \"Deployment Examples\"), mdx(\"p\", null, \"The following section includes example usage of the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" and server APIs for\\nvarious image classification models. Each example uses a SparseZoo stub to pull down the model,\\nbut a local path to an ONNX file can also be passed as the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \".\"), mdx(\"h3\", null, \"Python API\"), mdx(\"p\", null, \"Create a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" to run inference with the following code. The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" handles the pre-processing (e.g., subtracting by ImageNet\\nmeans, dividing by ImageNet standard deviation) and post-processing so you can pass an raw image and receive an class without any extra code.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\ncv_pipeline = Pipeline.create(\\n task='image_classification',\\n model_path='zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none', # Path to checkpoint or SparseZoo stub\\n class_names=None # optional dict / json mapping class ids to labels (if not using ImageNet classes)\\n)\\ninput_image = \\\"my_image.png\\\" # path to input image\\ninference = cv_pipeline(images=input_image)\\n\")), mdx(\"h3\", null, \"HTTP Server\"), mdx(\"p\", null, \"Spinning up:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task image_classification \\\\\\n --model_path \\\"zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none\\\" \\\\\\n --port 5543\\n\")), mdx(\"p\", null, \"Making a request:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\n\\nurl = 'http://0.0.0.0:5543/predict/from_files'\\npath = ['goldfish.jpeg'] # just put the name of images in here\\nfiles = [('request', open(img, 'rb')) for img in path]\\nresp = requests.post(url=url, files=files)\\n\")), mdx(\"h2\", null, \"Benchmarking\"), mdx(\"p\", null, \"The mission of Neural Magic is to enable GPU-class inference performance on commodity CPUs.\\nWant to find out how fast our sparse ONNX models perform inference? You can quickly run benchmarking tests on your own with a single CLI command.\"), mdx(\"p\", null, \"You only need to provide the model path of a SparseZoo ONNX model or your own local ONNX model to get started:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.benchmark zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none\\n\")), mdx(\"p\", null, \"Output:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"Original Model Path: zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none\\nBatch Size: 1\\nScenario: async\\nThroughput (items/sec): 299.2372\\nLatency Mean (ms/batch): 16.6677\\nLatency Median (ms/batch): 16.6748\\nLatency Std (ms/batch): 0.1728\\nIterations: 2995\\n\")), mdx(\"p\", null, \"To learn more about benchmarking, refer to the appropriate documentation.\\nAlso, check out our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark\"\n }, \"Benchmarking Tutorial on GitHub \"), \"!\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploying-image-classification-models-with-deepsparse","title":"Deploying Image Classification Models with DeepSparse","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#model-format","title":"Model Format"}]},{"url":"#deployment-apis","title":"Deployment APIs","items":[{"url":"#python-api","title":"Python API"},{"url":"#http-server","title":"HTTP Server"}]},{"url":"#deployment-examples","title":"Deployment Examples","items":[{"url":"#python-api-1","title":"Python API"},{"url":"#http-server-1","title":"HTTP Server"}]},{"url":"#benchmarking","title":"Benchmarking"}]}]},"parent":{"relativePath":"use-cases/image-classification/deploying.mdx"},"frontmatter":{"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/use-cases/image-classification/deploying","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","title":"Deploying","slug":"/use-cases/image-classification/deploying","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/image-classification/deploying.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Deploying\",\n \"metaTitle\": \"Image Classification Deployments with DeepSparse\",\n \"metaDescription\": \"Image Classification deployments with DeepSparse to create cheaper and more performant models\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploying Image Classification Models with DeepSparse\"), mdx(\"p\", null, \"This page explains how to deploy an Image Classification model with DeepSparse.\"), mdx(\"p\", null, \"DeepSparse allows accelerated inference, serving, and benchmarking of sparsified image classification models.\\nThis integration enables you to easily deploy sparsified image classification models with DeepSparse for GPU-class performance directly on the CPU.\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This use case requires the installation of \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Server\"), \".\"), mdx(\"h2\", null, \"Getting Started\"), mdx(\"p\", null, \"Before you start using DeepSparse, confirm your machine is\\ncompatible with our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deepsparse-engine/hardware-support\"\n }, \"hardware requirements\"), \".\"), mdx(\"h3\", null, \"Model Format\"), mdx(\"p\", null, \"To deploy an image classification model with DeepSparse , pass the model in the ONNX format.\\nThis grants DeepSparse the flexibility to serve any model in a framework-agnostic environment.\"), mdx(\"p\", null, \"There are two options for creating the model in ONNX format:\"), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"1) Export the ONNX/Config Files From SparseML\")), mdx(\"p\", null, \"This pathway is relevant if you intend to deploy a model created using SparseML library.\"), mdx(\"p\", null, \"After training your model with SparseML, locate the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \".pth\"), \" file for the checkpoint you'd like to export and run the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"SparseML\"), \" integrated export script below.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.image_classification.export_onnx \\\\\\n --arch-key resnet50 \\\\\\n --dataset imagenet \\\\\\n --dataset-path ~/datasets/ILSVRC2012 \\\\\\n --checkpoint-path ~/checkpoints/resnet50_checkpoint.pth\\n\")), mdx(\"p\", null, \"This creates a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file.\"), mdx(\"p\", null, \"The examples below use SparseZoo stubs, but simply pass the path to \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" in place of the stubs to use the local model.\")), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"2) Pass a SparseZoo Stub To DeepSparse\")), mdx(\"p\", null, \"This pathway is relevant if you plan to use an off-the-shelf model from the SparseZoo.\"), mdx(\"p\", null, \"All of DeepSparse's \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" and APIs can use a SparseZoo stub in place of a local folder.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" use the stubs to locate and download the ONNX and configuration files from the SparseZoo repository.\"), mdx(\"p\", null, \"All of DeepSparse's pipelines and APIs can use a SparseZoo stub in place of a local folder.\\nThe examples use SparseZoo stubs to highlight this pathway.\")), mdx(\"p\", null, \"The examples below use option 2. However, you can pass the local path to the ONNX file, as needed.\"), mdx(\"h2\", null, \"Deployment APIs\"), mdx(\"p\", null, \"DeepSparse provides both a Python \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" API and an out-of-the-box model\\nserver that can be used for end-to-end inference in either Python\\nworkflows or as an HTTP endpoint. Both options provide similar specifications\\nfor configurations and support a variety of image classification models.\"), mdx(\"h3\", null, \"Python API\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" are the default interface for running inference with DeepSparse.\"), mdx(\"p\", null, \"Once a model is obtained, either through SparseML training or directly from SparseZoo,\\na \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" can be used to easily facilitate end-to-end inference and deployment\\nof the sparsified image classification model.\"), mdx(\"p\", null, \"If no model is specified to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" for a given task, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" will automatically\\nselect a pruned and quantized model for the task from the SparseZoo that can be used for accelerated\\ninference. Note that other models in the SparseZoo will have different tradeoffs between speed, size,\\nand accuracy.\"), mdx(\"h3\", null, \"HTTP Server\"), mdx(\"p\", null, \"As an alternative to Python API, DeepSparse Server allows you to\\nserve ONNX models and pipelines in HTTP. Configuring the server uses the same parameters and schemas as the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \",\\nenabling simple deployment. Once launched, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs\"), \" endpoint is created with full\\nendpoint descriptions and support for making sample requests.\"), mdx(\"p\", null, \"An example deployment using a 95% pruned ResNet-50 is given below.\"), mdx(\"p\", null, \"Refer also to the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deploying-deepsparse/deepsparse-server\"\n }, \"full documentation for DeepSparse Server\"), \".\"), mdx(\"h2\", null, \"Deployment Examples\"), mdx(\"p\", null, \"The following section includes example usage of the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" and server APIs for\\nvarious image classification models. Each example uses a SparseZoo stub to pull down the model,\\nbut a local path to an ONNX file can also be passed as the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \".\"), mdx(\"h3\", null, \"Python API\"), mdx(\"p\", null, \"Create a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" to run inference with the following code. The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" handles the pre-processing (e.g., subtracting by ImageNet\\nmeans, dividing by ImageNet standard deviation) and post-processing so you can pass a raw image and receive a class without any extra code.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\ncv_pipeline = Pipeline.create(\\n task='image_classification',\\n model_path='zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none', # Path to checkpoint or SparseZoo stub\\n class_names=None # optional dict / json mapping class ids to labels (if not using ImageNet classes)\\n)\\ninput_image = \\\"my_image.png\\\" # path to input image\\ninference = cv_pipeline(images=input_image)\\n\")), mdx(\"h3\", null, \"HTTP Server\"), mdx(\"p\", null, \"Spinning up:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task image_classification \\\\\\n --model_path \\\"zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none\\\" \\\\\\n --port 5543\\n\")), mdx(\"p\", null, \"Making a request:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\n\\nurl = 'http://0.0.0.0:5543/predict/from_files'\\npath = ['goldfish.jpeg'] # just put the name of images in here\\nfiles = [('request', open(img, 'rb')) for img in path]\\nresp = requests.post(url=url, files=files)\\n\")), mdx(\"h2\", null, \"Benchmarking\"), mdx(\"p\", null, \"The mission of Neural Magic is to enable GPU-class inference performance on commodity CPUs.\\nWant to find out how fast our sparse ONNX models perform inference? You can quickly run benchmarking tests on your own with a single CLI command.\"), mdx(\"p\", null, \"You only need to provide the model path of a SparseZoo ONNX model or your own local ONNX model to get started:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.benchmark zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none\\n\")), mdx(\"p\", null, \"The output is:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"Original Model Path: zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none\\nBatch Size: 1\\nScenario: async\\nThroughput (items/sec): 299.2372\\nLatency Mean (ms/batch): 16.6677\\nLatency Median (ms/batch): 16.6748\\nLatency Std (ms/batch): 0.1728\\nIterations: 2995\\n\")), mdx(\"p\", null, \"To learn more about benchmarking, refer to the appropriate documentation.\\nAlso, check out our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark\"\n }, \"Benchmarking Tutorial on GitHub\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploying-image-classification-models-with-deepsparse","title":"Deploying Image Classification Models with DeepSparse","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#model-format","title":"Model Format"}]},{"url":"#deployment-apis","title":"Deployment APIs","items":[{"url":"#python-api","title":"Python API"},{"url":"#http-server","title":"HTTP Server"}]},{"url":"#deployment-examples","title":"Deployment Examples","items":[{"url":"#python-api-1","title":"Python API"},{"url":"#http-server-1","title":"HTTP Server"}]},{"url":"#benchmarking","title":"Benchmarking"}]}]},"parent":{"relativePath":"use-cases/image-classification/deploying.mdx"},"frontmatter":{"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/image-classification/page-data.json b/page-data/use-cases/image-classification/page-data.json index 0d43d516a61..ca72bb81566 100644 --- a/page-data/use-cases/image-classification/page-data.json +++ b/page-data/use-cases/image-classification/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases/image-classification","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","title":"Image Classification","slug":"/use-cases/image-classification","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/image-classification.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Image Classification\",\n \"metaTitle\": \"Image Classification\",\n \"metaDescription\": \"Image Classification with PyTorch Torchvision\",\n \"index\": 2000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Image Classification\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#image-classification","title":"Image Classification"}]},"parent":{"relativePath":"use-cases/image-classification.mdx"},"frontmatter":{"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision","index":2000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/use-cases/image-classification","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","title":"Image Classification","slug":"/use-cases/image-classification","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/image-classification.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Image Classification\",\n \"metaTitle\": \"Image Classification\",\n \"metaDescription\": \"Image Classification with PyTorch Torchvision\",\n \"index\": 2000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Image Classification\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#image-classification","title":"Image Classification"}]},"parent":{"relativePath":"use-cases/image-classification.mdx"},"frontmatter":{"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision","index":2000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/image-classification/sparsifying/page-data.json b/page-data/use-cases/image-classification/sparsifying/page-data.json index 1cde28bc0c5..fedb507f947 100644 --- a/page-data/use-cases/image-classification/sparsifying/page-data.json +++ b/page-data/use-cases/image-classification/sparsifying/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases/image-classification/sparsifying","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","title":"Sparsifying","slug":"/use-cases/image-classification/sparsifying","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/image-classification/sparsifying.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Sparsifying\",\n \"metaTitle\": \"Sparsifying Image Classification Models with SparseML\",\n \"metaDescription\": \"Sparsifying Image Classification models with SparseML to create cheaper and more performant models\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Sparsifying Image Classification Models with SparseML\"), mdx(\"p\", null, \"This page explains how to create a sparse image classification model.\"), mdx(\"p\", null, \"SparseML Image Classification pipeline integrates with torch and torchvision libraries to enable the sparsification of popular image classification model.\\nSparsification is a powerful technique that results in faster, smaller, and cheaper deployable models.\\nAfter training, the model can be deployed with Neural Magic's DeepSparse Engine. The engine enables inference with GPU-class performance directly on your CPU.\"), mdx(\"p\", null, \"This integration enables you to create a sparse model in two ways:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification of Popular Torchvision Models\"), \" - easily sparsify popular torchvision image classification models.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \" - fine-tune a sparse backbone model (or use one of our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/?domain=cv&sub_domain=classification&page=1\"\n }, \"sparse pre-trained models\"), \") on your own private dataset.\")), mdx(\"p\", null, \"Each option is useful in different situations:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification from Scratch\"), \" enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the Sparsification algorithm.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \" is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.\")), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This section requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torchvision Install\"), \".\"), mdx(\"h2\", null, \"Tutorials\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/tutorials/sparsifying_pytorch_models_using_recipes.md\"\n }, \"Sparsifying PyTorch Models Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/tutorials/classification_sparse_transfer_learning_tutorial.md\"\n }, \"Sparse Transfer Learning for Image Classification\"))), mdx(\"h2\", null, \"Getting Started\"), mdx(\"h3\", null, \"Sparsifying Image Classification Models\"), mdx(\"p\", null, \"In the example below, a dense ResNet model is sparsified and fine-tuned on the Imagenette dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.image_classification.train \\\\\\n --recipe-path \\\"zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenette/pruned-conservative?recipe_type=original\\\" \\\\\\n --dataset-path ./data \\\\\\n --pretrained True \\\\\\n --arch-key resnet50 \\\\\\n --dataset imagenette \\\\\\n --train-batch-size 128 \\\\\\n --test-batch-size 256 \\\\\\n --loader-num-workers 8 \\\\\\n --save-dir sparsification_example \\\\\\n --logs-dir sparsification_example \\\\\\n --model-tag resnet50-imagenette-pruned \\\\\\n --save-best-after 8\\n\")), mdx(\"p\", null, \"The most important arguments are \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--dataset_path\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--recipe_path\"), \":\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--dataset_path\"), \" argument indicates which model to start the pruning process from. It can be a SparseZoo stub or a path to a local model.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--recipe_path\"), \" argument instructs SparseML to run the sparsification process during the training loop. It can either be the stub of a recipe in the SparseZoo or a path to a local custom recipe. For more on creating a recipe see \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/recipes/creating\"\n }, \"here\"), \".\")), mdx(\"h3\", null, \"Sparse Transfer Learning\"), mdx(\"p\", null, \"SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset.\\nWhile you are free to use your backbone, we encourage you to leverage one of our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"sparse pre-trained models\"), \" to boost your productivity!\"), mdx(\"p\", null, \"The command below fetches a pruned ResNet model, pre-trained on ImageNet dataset from the SparseZoo and then fine-tunes the model on the Imagenette dataset while preserving sparsity.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.image_classification.train \\\\\\n --recipe-path zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none?recipe_type=transfer-classification \\\\\\n --checkpoint-path zoo \\\\\\n --arch-key resnet50 \\\\\\n --model-kwargs '{\\\"ignore_error_tensors\\\": [\\\"classifier.fc.weight\\\", \\\"classifier.fc.bias\\\"]}' \\\\\\n --dataset imagenette \\\\\\n --dataset-path /PATH/TO/IMAGENETTE \\\\\\n --train-batch-size 32 \\\\\\n --test-batch-size 64 \\\\\\n --loader-num-workers 0 \\\\\\n --optim Adam \\\\\\n --optim-args '{}' \\\\\\n --model-tag resnet50-imagenette-transfer-learned\\n\")), mdx(\"h2\", null, \"SparseML CLI\"), mdx(\"p\", null, \"SparseML installation provides a CLI for sparsifying your models for a specific task;\\nappending the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--help\"), \" argument displays a full list of options for training in SparseML:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.image_classification.train --help\\n\\n> Usage: sparseml.image_classification.train [OPTIONS]\\n>\\n> PyTorch training integration with SparseML for image classification models\\n>\\n> Options:\\n> --train-batch-size, --train_batch_size INTEGER\\n> Train batch size [required]\\n> --test-batch-size, --test_batch_size INTEGER\\n> Test/Validation batch size [required]\\n> --dataset TEXT The dataset to use for training, ex:\\n> `imagenet`, `imagenette`, `cifar10`, etc.\\n> Set to `imagefolder` for a generic dataset\\n> setup with imagefolder type structure like\\n> imagenet or loadable by a dataset in\\n> `sparseml.pytorch.datasets` [required]\\n> --dataset-path, --dataset_path DIRECTORY\\n> The root dir path where the dataset is\\n> stored or should be downloaded to if\\n> available [required]\\n> --arch_key, --arch-key TEXT The architecture key for image\\n> classification model; example: `resnet50`,\\n> `mobilenet`. Note: Will be read from the\\n> checkpoint if not specified\\n> --checkpoint-path, --checkpoint_path TEXT\\n> A path to a previous checkpoint to load the\\n> state from and resume the state for. If\\n> provided, pretrained will be ignored . If\\n> using a SparseZoo recipe, can also provide\\n> 'zoo' to load the base weights associated\\n> with that recipe. Additionally, can also\\n> provide a SparseZoo model stub to load model\\n> weights from SparseZoo\\n> ...\\n\")), mdx(\"h2\", null, \"Exporting to ONNX\"), mdx(\"p\", null, \"The artifacts of the training process are saved to \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--save-dir\"), \" under \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model-tag\"), \".\\nOnce the script terminates, you should find everything required to deploy or further modify the model,\\nincluding the recipe (with the full description of the sparsification attributes),\\ncheckpoint files (saved in the appropriate framework format), etc.\"), mdx(\"h3\", null, \"Exporting the Sparse Model to ONNX\"), mdx(\"p\", null, \"The DeepSparse Engine uses the ONNX format to load neural networks and then\\ndeliver breakthrough performance for CPUs by leveraging the sparsity and quantization within a network.\"), mdx(\"p\", null, \"The SparseML installation provides a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.image_classification.export_onnx\"), \"\\ncommand that you can use to load the checkpoint and create a new \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file in the same directory the\\nframework directory is stored.\\nBe sure the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_path\"), \" argument points to your trained \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.pth\"), \" or \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"checkpoint-best.pth\"), \" file.\\nBoth are included in \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"//framework/\"), \" from the sparsification run.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.image_classification.export_onnx \\\\\\n --arch-key resnet50 \\\\\\n --dataset imagenet \\\\\\n --dataset-path ./data/imagenette-160 \\\\\\n --checkpoint-path sparsification_example/resnet50-imagenette-pruned/training/model.pth\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparsifying-image-classification-models-with-sparseml","title":"Sparsifying Image Classification Models with SparseML","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#tutorials","title":"Tutorials"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#sparsifying-image-classification-models","title":"Sparsifying Image Classification Models"},{"url":"#sparse-transfer-learning","title":"Sparse Transfer Learning"}]},{"url":"#sparseml-cli","title":"SparseML CLI"},{"url":"#exporting-to-onnx","title":"Exporting to ONNX","items":[{"url":"#exporting-the-sparse-model-to-onnx","title":"Exporting the Sparse Model to ONNX"}]}]}]},"parent":{"relativePath":"use-cases/image-classification/sparsifying.mdx"},"frontmatter":{"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/use-cases/image-classification/sparsifying","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","title":"Sparsifying","slug":"/use-cases/image-classification/sparsifying","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/image-classification/sparsifying.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Sparsifying\",\n \"metaTitle\": \"Sparsifying Image Classification Models with SparseML\",\n \"metaDescription\": \"Sparsifying Image Classification models with SparseML to create cheaper and more performant models\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Sparsifying Image Classification Models with SparseML\"), mdx(\"p\", null, \"This page explains how to create a sparse image classification model.\"), mdx(\"p\", null, \"SparseML Image Classification pipeline integrates with torch and torchvision libraries to enable the sparsification of popular image classification model.\\nSparsification is a powerful technique that results in faster, smaller, and cheaper deployable models.\\nAfter training, the sparse model can be deployed with DeepSparse for GPU-class performance directly on your CPU.\"), mdx(\"p\", null, \"This integration enables you to create a sparse model in two ways. Each option is useful in different situations:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification of Popular Torchvision Models\"), \"\\u2014\", \"Easily sparsify popular torchvision image classification models. This enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the Sparsification algorithm.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \"\\u2014\", \"Fine-tune a sparse backbone model (or use one of our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/?domain=cv&sub_domain=classification&page=1\"\n }, \"sparse pre-trained models\"), \") on your own private dataset. This is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.\")), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This use case requires installation of \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torchvision\"), \".\"), mdx(\"h2\", null, \"Tutorials\"), mdx(\"p\", null, \"Here are additional tutorials for this functionality:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/tutorials/sparsifying_pytorch_models_using_recipes.md\"\n }, \"Sparsifying PyTorch Models Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/pytorch/tutorials/classification_sparse_transfer_learning_tutorial.md\"\n }, \"Sparse Transfer Learning for Image Classification\"))), mdx(\"h2\", null, \"Getting Started\"), mdx(\"h3\", null, \"Sparsifying Image Classification Models\"), mdx(\"p\", null, \"In the example below, a dense ResNet model is sparsified and fine-tuned on the Imagenette dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.image_classification.train \\\\\\n --recipe-path \\\"zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenette/pruned-conservative?recipe_type=original\\\" \\\\\\n --dataset-path ./data \\\\\\n --pretrained True \\\\\\n --arch-key resnet50 \\\\\\n --dataset imagenette \\\\\\n --train-batch-size 128 \\\\\\n --test-batch-size 256 \\\\\\n --loader-num-workers 8 \\\\\\n --save-dir sparsification_example \\\\\\n --logs-dir sparsification_example \\\\\\n --model-tag resnet50-imagenette-pruned \\\\\\n --save-best-after 8\\n\")), mdx(\"p\", null, \"The most important arguments are \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--dataset_path\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--recipe_path\"), \":\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--dataset_path\"), \" indicates the model with which to start the pruning process. It can be a SparseZoo stub or a path to a local model.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--recipe_path\"), \" instructs SparseML to run the sparsification process during the training loop. It can be either the stub of a recipe in the SparseZoo or a path to a local custom recipe. See \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/recipes/creating\"\n }, \"Creating Sparsification Recipes\"), \" for more information.\")), mdx(\"h3\", null, \"Sparse Transfer Learning\"), mdx(\"p\", null, \"SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset.\\nWhile you are free to use your backbone, we encourage you to leverage one of our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"sparse pre-trained models\"), \" to boost your productivity!\"), mdx(\"p\", null, \"The command below fetches a pruned ResNet model, pre-trained on ImageNet dataset from the SparseZoo and then fine-tunes the model on the Imagenette dataset while preserving sparsity.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.image_classification.train \\\\\\n --recipe-path zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none?recipe_type=transfer-classification \\\\\\n --checkpoint-path zoo \\\\\\n --arch-key resnet50 \\\\\\n --model-kwargs '{\\\"ignore_error_tensors\\\": [\\\"classifier.fc.weight\\\", \\\"classifier.fc.bias\\\"]}' \\\\\\n --dataset imagenette \\\\\\n --dataset-path /PATH/TO/IMAGENETTE \\\\\\n --train-batch-size 32 \\\\\\n --test-batch-size 64 \\\\\\n --loader-num-workers 0 \\\\\\n --optim Adam \\\\\\n --optim-args '{}' \\\\\\n --model-tag resnet50-imagenette-transfer-learned\\n\")), mdx(\"h2\", null, \"SparseML CLI\"), mdx(\"p\", null, \"SparseML installation provides a CLI for sparsifying your models for a specific task. Appending the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--help\"), \" argument displays a full list of options for training in SparseML:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.image_classification.train --help\\n\\n> Usage: sparseml.image_classification.train [OPTIONS]\\n>\\n> PyTorch training integration with SparseML for image classification models\\n>\\n> Options:\\n> --train-batch-size, --train_batch_size INTEGER\\n> Train batch size [required]\\n> --test-batch-size, --test_batch_size INTEGER\\n> Test/Validation batch size [required]\\n> --dataset TEXT The dataset to use for training, ex:\\n> `imagenet`, `imagenette`, `cifar10`, etc.\\n> Set to `imagefolder` for a generic dataset\\n> setup with imagefolder type structure like\\n> imagenet or loadable by a dataset in\\n> `sparseml.pytorch.datasets` [required]\\n> --dataset-path, --dataset_path DIRECTORY\\n> The root dir path where the dataset is\\n> stored or should be downloaded to if\\n> available [required]\\n> --arch_key, --arch-key TEXT The architecture key for image\\n> classification model; example: `resnet50`,\\n> `mobilenet`. Note: Will be read from the\\n> checkpoint if not specified\\n> --checkpoint-path, --checkpoint_path TEXT\\n> A path to a previous checkpoint to load the\\n> state from and resume the state for. If\\n> provided, pretrained will be ignored . If\\n> using a SparseZoo recipe, can also provide\\n> 'zoo' to load the base weights associated\\n> with that recipe. Additionally, can also\\n> provide a SparseZoo model stub to load model\\n> weights from SparseZoo\\n> ...\\n\")), mdx(\"h2\", null, \"Exporting to ONNX\"), mdx(\"p\", null, \"The artifacts of the training process are saved to \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--save-dir\"), \" under \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model-tag\"), \".\\nOnce the script terminates, you should find everything required to deploy or further modify the model,\\nincluding the recipe (with the full description of the sparsification attributes),\\ncheckpoint files (saved in the appropriate framework format), etc.\"), mdx(\"h3\", null, \"Exporting the Sparse Model to ONNX\"), mdx(\"p\", null, \"DeepSparse uses the ONNX format to load neural networks and then\\ndeliver breakthrough performance for CPUs by leveraging the sparsity and quantization within a network.\"), mdx(\"p\", null, \"The SparseML installation provides a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.image_classification.export_onnx\"), \"\\ncommand that you can use to load the checkpoint and create a new \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file in the same directory where the\\nframework directory is stored.\\nBe sure the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_path\"), \" argument points to your trained \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.pth\"), \" or \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"checkpoint-best.pth\"), \" file.\\nBoth are included in \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"//framework/\"), \" from the sparsification run.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.image_classification.export_onnx \\\\\\n --arch-key resnet50 \\\\\\n --dataset imagenet \\\\\\n --dataset-path ./data/imagenette-160 \\\\\\n --checkpoint-path sparsification_example/resnet50-imagenette-pruned/training/model.pth\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparsifying-image-classification-models-with-sparseml","title":"Sparsifying Image Classification Models with SparseML","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#tutorials","title":"Tutorials"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#sparsifying-image-classification-models","title":"Sparsifying Image Classification Models"},{"url":"#sparse-transfer-learning","title":"Sparse Transfer Learning"}]},{"url":"#sparseml-cli","title":"SparseML CLI"},{"url":"#exporting-to-onnx","title":"Exporting to ONNX","items":[{"url":"#exporting-the-sparse-model-to-onnx","title":"Exporting the Sparse Model to ONNX"}]}]}]},"parent":{"relativePath":"use-cases/image-classification/sparsifying.mdx"},"frontmatter":{"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/natural-language-processing/deploying/page-data.json b/page-data/use-cases/natural-language-processing/deploying/page-data.json index 2cd8c1c0088..c756f8b1e99 100644 --- a/page-data/use-cases/natural-language-processing/deploying/page-data.json +++ b/page-data/use-cases/natural-language-processing/deploying/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases/natural-language-processing/deploying","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","title":"Deploying","slug":"/use-cases/natural-language-processing/deploying","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/natural-language-processing/deploying.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Deploying\",\n \"metaTitle\": \"NLP Deployments with DeepSparse\",\n \"metaDescription\": \"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models\",\n \"index\": 5000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploying NLP Models with Hugging Face Transformers and DeepSparse\"), mdx(\"p\", null, \"This page explains how to deploy a sparse Transformer on DeepSparse.\"), mdx(\"p\", null, \"DeepSparse allows accelerated inference, serving, and benchmarking of sparsified \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/huggingface/transformers\"\n }, \"Hugging Face Transformer\"), \" models.\\nThe Hugging Face integration enables you to easily deploy sparsified Transformers onto the DeepSparse Engine for GPU-class performance directly on the CPU.\"), mdx(\"p\", null, \"This integration currently supports several fundamental NLP tasks out of the box:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Question Answering\"), \" - posing questions about a document\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sentiment Analysis\"), \" - assigning a sentiment to a piece of text\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Text Classification\"), \" - assigning a label or class to a piece of text (e.g duplicate question pairing)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Token Classification\"), \" - attributing a label to each token in a sentence (e.g. Named Entity Recognition task)\")), mdx(\"p\", null, \"We are actively working on adding more use cases, stay tuned!\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This section requires the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Server Install\"), \".\"), mdx(\"h2\", null, \"Getting Started\"), mdx(\"p\", null, \"Before you start using the DeepSparse Engine, confirm that your machine is\\ncompatible with our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/source/hardware.html\"\n }, \"hardware requirements\"), \".\"), mdx(\"h3\", null, \"Model Format\"), mdx(\"p\", null, \"To deploy a Transformer using DeepSparse Engine, pass the model in the ONNX format along with the Hugging Face supporting files.\\nThis grants the engine the flexibility to serve any model in a framework-agnostic environment.\"), mdx(\"p\", null, \"The DeepSparse \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" require the following files within a folder on the local server to properly load a Transformers model:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.onnx\"), \" - The exported Transformers model in the ONNX format\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"tokenizer.json\"), \" - The \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://huggingface.co/docs/transformers/fast_tokenizers\"\n }, \"HuggingFace tokenizer file\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"config.json\"), \" - The \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://huggingface.co/docs/transformers/main_classes/configuration\"\n }, \"HuggingFace configuration file\"))), mdx(\"p\", null, \"There are two options to collecting these files:\"), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"1) Export the ONNX/Config Files From SparseML\")), mdx(\"p\", null, \"This pathway is relevant if you intend to deploy a model created using SparseML.\"), mdx(\"p\", null, \"After training your model with SparseML, locate the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \".pt\"), \" file for the model you'd like to export and run the SparseML integrated Transformers ONNX export script below.\\nFor example, if you wanted to export a model you had trained to do question answering, use the below:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.export_onnx --task question-answering --model_path model_path\\n\")), mdx(\"p\", null, \"This creates \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file and exports it to the local filesystem. \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"tokenizer.json\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.json\"), \" are also stored in this directory.\\nAll of the examples below use SparseZoo stubs, but you can pass the path to the local directory in its place.\")), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"2) Pass a SparseZoo Stub To DeepSparse\")), mdx(\"p\", null, \"This pathway is relevant if you plan to use an off-the-shelf model from the SparseZoo.\"), mdx(\"p\", null, \"All of DeepSparse's \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" and APIs can use a SparseZoo stub in place of a local folder.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" use the stubs to locate and download the ONNX and config files from the SparseZoo repo.\")), mdx(\"p\", null, \"The examples below use option 2. However, you can pass the local path to the directory containing the config files in place\\nof the SparseZoo stub.\"), mdx(\"h2\", null, \"Deployment APIs\"), mdx(\"p\", null, \"DeepSparse provides both a Python \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" API and an out-of-the-box model server\\nthat can be used for end-to-end inference in either existing python workflows or as an HTTP endpoint.\\nBoth options provide similar specifications for configurations and support a variety of NLP transformers\\ntasks including question answering, text classification, sentiment analysis, and token classification.\"), mdx(\"h3\", null, \"Python API\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" are the default interface for running inference with the DeepSparse Engine.\"), mdx(\"p\", null, \"Once a model is obtained, either through SparseML training or directly from SparseZoo,\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.Pipeline\"), \" can be used to easily facilitate end to end inference and deployment\\nof the sparsified transformers model.\"), mdx(\"p\", null, \"If no model is specified to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" for a given task, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" will automatically\\nselect a pruned and quantized model for the task from the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"SparseZoo\"), \" that can be used for accelerated\\ninference. Note that other models in the SparseZoo will have different tradeoffs between speed, size,\\nand accuracy.\"), mdx(\"h3\", null, \"HTTP Server\"), mdx(\"p\", null, \"As an alternative to Python API, the DeepSparse Server allows you to serve ONNX models and pipelines in HTTP.\\nBoth configuring and making requests to the server follow the same parameters and schemas as the\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" enabling simple deployment. Once launched, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs\"), \" endpoint is created with full\\nendpoint descriptions and support for making sample requests.\"), mdx(\"p\", null, \"Example deployments using NLP transformer models are provided below.\\nFor full documentation on deploying sparse transformer models with the DeepSparse Server, see the\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/use-cases/deploying-deepsparse/deepsparse-server\"\n }, \"documentation\"), \".\"), mdx(\"h2\", null, \"Deployment Use Cases\"), mdx(\"p\", null, \"The following section includes example usage of the Pipeline and server APIs for various NLP transformers tasks.\"), mdx(\"h3\", null, \"Question Answering\"), mdx(\"p\", null, \"The question answering tasks accepts a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"question\"), \" and a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"context\"), \". The pipeline will predict an answer\\nfor the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"question\"), \" as a substring of the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"context\"), \". The following examples use a pruned and quantized\\nquestion answering BERT model trained on the SQuAD dataset downloaded by default from the SparseZoo.\"), mdx(\"h4\", null, \"Python Pipeline\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\nqa_pipeline = Pipeline.create(task=\\\"question-answering\\\")\\ninference = qa_pipeline(question=\\\"What's my name?\\\", context=\\\"My name is Snorlax\\\")\\n\\n> {'score': 0.9947717785835266, 'start': 11, 'end': 18, 'answer': 'Snorlax'}\\n\")), mdx(\"h4\", null, \"HTTP Server\"), mdx(\"p\", null, \"Spinning up:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task question-answering \\\\\\n --model_path \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"Making a request:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\n\\nurl = \\\"http://localhost:5543/predict\\\" # Server's port default to 5543\\n\\nobj = {\\n \\\"question\\\": \\\"Who is Mark?\\\",\\n \\\"context\\\": \\\"Mark is batman.\\\"\\n}\\n\\nresponse = requests.post(url, json=obj)\\nresponse.text\\n\\n> '{\\\"score\\\":0.9534820914268494,\\\"start\\\":8,\\\"end\\\":14,\\\"answer\\\":\\\"batman\\\"}'\\n\")), mdx(\"h3\", null, \"Sentiment Analysis\"), mdx(\"p\", null, \"The sentiment analysis task takes in a sentence and classifies its sentiment. The following example\\nuses a pruned and quantized text sentiment analysis BERT model trained on the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sst2\"), \" dataset downloaded\\nfrom the SparseZoo. This \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sst2\"), \" model classifies sentences as positive or negative.\"), mdx(\"h4\", null, \"Python Pipeline\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\nsa_pipeline = Pipeline.create(task=\\\"sentiment-analysis\\\")\\n\\ninference = sa_pipeline(\\\"Snorlax loves my Tesla!\\\")\\n\\n> [{'label': 'LABEL_1', 'score': 0.9884248375892639}] # positive sentiment\\n\")), mdx(\"h4\", null, \"HTTP Server\"), mdx(\"p\", null, \"Spinning up:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task sentiment-analysis \\\\\\n --model_path \\\"zoo:nlp/sentiment_analysis/bert-base/pytorch/huggingface/sst2/12layer_pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"Making a request:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\n\\nurl = \\\"http://localhost:5543/predict\\\" # Server's port default to 5543\\n\\nobj = {\\\"sequences\\\": \\\"Snorlax loves my Tesla!\\\"}\\n\\nresponse = requests.post(url, json=obj)\\nresponse.text\\n\\n> '{\\\"labels\\\":[\\\"LABEL_1\\\"],\\\"scores\\\":[0.9884248375892639]}'\\n\")), mdx(\"h3\", null, \"Text Classification\"), mdx(\"p\", null, \"The text classification task supports binary, multi class, and regression predictions over\\nsentence inputs. The following example uses a pruned and quantized text classification\\nDistilBERT model trained on the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"qqp\"), \" dataset downloaded from a SparseZoo stub.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"qqp\"), \" dataset takes pairs of questions and predicts if they are a duplicate or not.\"), mdx(\"h4\", null, \"Python Pipeline\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\ntc_pipeline = Pipeline.create(\\n task=\\\"text-classification\\\",\\n model_path=\\\"zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/qqp/pruned80_quant-none-vnni\\\",\\n)\\n\\n# inference of duplicate question pair\\ninference = tc_pipeline(\\n sequences=[\\n [\\n \\\"Which is the best gaming laptop under 40k?\\\",\\n \\\"Which is the best gaming laptop under 40,000 rs?\\\",\\n ]\\n ]\\n)\\n\\n> TextClassificationOutput(labels=['duplicate'], scores=[0.9947025775909424])\\n\")), mdx(\"h4\", null, \"HTTP Server\"), mdx(\"p\", null, \"Spinning up:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task text-classification \\\\\\n --model_path \\\"zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/qqp/pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"Making a request:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\n\\nurl = \\\"http://localhost:5543/predict\\\" # Server's port default to 5543\\n\\nobj = {\\n \\\"sequences\\\": [\\n [\\n \\\"Which is the best gaming laptop under 40k?\\\",\\n \\\"Which is the best gaming laptop under 40,000 rs?\\\",\\n ]\\n ]\\n}\\n\\nresponse = requests.post(url, json=obj)\\nresponse.text\\n\\n> '{\\\"labels\\\": [\\\"duplicate\\\"], \\\"scores\\\": [0.9947025775909424]}'\\n\")), mdx(\"h4\", null, \"Token Classification Pipeline\"), mdx(\"p\", null, \"The token classification task takes in sequences as inputs and assigns a class to each token.\\nThe following example uses a pruned and quantized token classification NER BERT model\\ntrained on the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"CoNLL\"), \" dataset downloaded from the SparseZoo.\"), mdx(\"h4\", null, \"Python Pipeline\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\n# default model is a pruned + quantized NER model trained on the CoNLL dataset\\ntc_pipeline = Pipeline.create(task=\\\"token-classification\\\")\\ninference = tc_pipeline(\\\"Drive from California to Texas!\\\")\\n\\n> [{'entity': 'LABEL_0','word': 'drive', ...},\\n> {'entity': 'LABEL_0','word': 'from', ...},\\n> {'entity': 'LABEL_5','word': 'california', ...},\\n> {'entity': 'LABEL_0','word': 'to', ...},\\n> {'entity': 'LABEL_5','word': 'texas', ...},\\n> {'entity': 'LABEL_0','word': '!', ...}]\\n\")), mdx(\"h4\", null, \"HTTP Server\"), mdx(\"p\", null, \"Spinning up:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task token-classification \\\\\\n --model_path \\\"zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/12layer_pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"Making a request:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\n\\nurl = \\\"http://localhost:5543/predict\\\" # Server's port default to 5543\\n\\nobj = {\\\"inputs\\\": \\\"Drive from California to Texas!\\\"}\\n\\n\\nresponse = requests.post(url, json=obj)\\nresponse.text\\n\\n> '{\\\"predictions\\\":[[{\\\"entity\\\":\\\"LABEL_0\\\",\\\"score\\\":0.9998655915260315,\\\"index\\\":1,\\\"word\\\":\\\"drive\\\",\\\"start\\\":0,\\\"end\\\":5,\\\"is_grouped\\\":false},{\\\"entity\\\":\\\"LABEL_0\\\",\\\"score\\\":0.9998604655265808,\\\"index\\\":2,\\\"word\\\":\\\"from\\\",\\\"start\\\":6,\\\"end\\\":10,\\\"is_grouped\\\":false},{\\\"entity\\\":\\\"LABEL_5\\\",\\\"score\\\":0.9994636178016663,\\\"index\\\":3,\\\"word\\\":\\\"california\\\",\\\"start\\\":11,\\\"end\\\":21,\\\"is_grouped\\\":false},{\\\"entity\\\":\\\"LABEL_0\\\",\\\"score\\\":0.999838650226593,\\\"index\\\":4,\\\"word\\\":\\\"to\\\",\\\"start\\\":22,\\\"end\\\":24,\\\"is_grouped\\\":false},{\\\"entity\\\":\\\"LABEL_5\\\",\\\"score\\\":0.9994573593139648,\\\"index\\\":5,\\\"word\\\":\\\"texas\\\",\\\"start\\\":25,\\\"end\\\":30,\\\"is_grouped\\\":false},{\\\"entity\\\":\\\"LABEL_0\\\",\\\"score\\\":0.9998716711997986,\\\"index\\\":6,\\\"word\\\":\\\"!\\\",\\\"start\\\":30,\\\"end\\\":31,\\\"is_grouped\\\":false}]]}'\\n\")), mdx(\"h2\", null, \"Benchmarking\"), mdx(\"p\", null, \"The mission of Neural Magic is to enable GPU-class inference performance on commodity CPUs. Want to find out how fast our sparse Hugging Face ONNX models perform inference?\\nYou can quickly do benchmarking tests on your own with a single CLI command!\"), mdx(\"p\", null, \"You only need to provide the model path of a SparseZoo ONNX model or your own local ONNX model to get started:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\n\\n> Original Model Path: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\n> Batch Size: 1\\n> Scenario: multistream\\n> Throughput (items/sec): 76.3484\\n> Latency Mean (ms/batch): 157.1049\\n> Latency Median (ms/batch): 157.0088\\n> Latency Std (ms/batch): 1.4860\\n> Iterations: 768\\n\")), mdx(\"p\", null, \"To learn more about benchmarking, refer to the appropriate documentation.\"), mdx(\"h2\", null, \"Support\"), mdx(\"p\", null, \"For Neural Magic Support, sign up or log in to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Deep Sparse Community Slack\"), \". Bugs, feature requests, or additional questions can also be posted to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/issues\"\n }, \"GitHub Issue Queue\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploying-nlp-models-with-hugging-face-transformers-and-deepsparse","title":"Deploying NLP Models with Hugging Face Transformers and DeepSparse","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#model-format","title":"Model Format"}]},{"url":"#deployment-apis","title":"Deployment APIs","items":[{"url":"#python-api","title":"Python API"},{"url":"#http-server","title":"HTTP Server"}]},{"url":"#deployment-use-cases","title":"Deployment Use Cases","items":[{"url":"#question-answering","title":"Question Answering","items":[{"url":"#python-pipeline","title":"Python Pipeline"},{"url":"#http-server-1","title":"HTTP Server"}]},{"url":"#sentiment-analysis","title":"Sentiment Analysis","items":[{"url":"#python-pipeline-1","title":"Python Pipeline"},{"url":"#http-server-2","title":"HTTP Server"}]},{"url":"#text-classification","title":"Text Classification","items":[{"url":"#python-pipeline-2","title":"Python Pipeline"},{"url":"#http-server-3","title":"HTTP Server"},{"url":"#token-classification-pipeline","title":"Token Classification Pipeline"},{"url":"#python-pipeline-3","title":"Python Pipeline"},{"url":"#http-server-4","title":"HTTP Server"}]}]},{"url":"#benchmarking","title":"Benchmarking"},{"url":"#support","title":"Support"}]}]},"parent":{"relativePath":"use-cases/natural-language-processing/deploying.mdx"},"frontmatter":{"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models","index":5000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/use-cases/natural-language-processing/deploying","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","title":"Deploying","slug":"/use-cases/natural-language-processing/deploying","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/natural-language-processing/deploying.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Deploying\",\n \"metaTitle\": \"NLP Deployments with DeepSparse\",\n \"metaDescription\": \"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models\",\n \"index\": 5000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploying NLP Models with Hugging Face Transformers and DeepSparse\"), mdx(\"p\", null, \"This page explains how to deploy a sparse Transformer on DeepSparse.\"), mdx(\"p\", null, \"DeepSparse allows accelerated inference, serving, and benchmarking of sparsified \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/huggingface/transformers\"\n }, \"Hugging Face Transformer\"), \" models.\\nThe Hugging Face integration enables you to easily deploy sparsified Transformers with DeepSparse for GPU-class performance directly on the CPU.\"), mdx(\"p\", null, \"This integration currently supports several fundamental NLP tasks out of the box:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Question Answering\"), \"\\u2014\", \"posing questions about a document\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sentiment Analysis\"), \"\\u2014\", \"assigning a sentiment to a piece of text\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Text Classification\"), \"\\u2014\", \"assigning a label or class to a piece of text (e.g., duplicate question pairing)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Token Classification\"), \"\\u2014\", \"attributing a label to each token in a sentence (e.g., Named Entity Recognition task)\")), mdx(\"p\", null, \"We are actively working on adding more use cases. Stay tuned!\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This use case requires the installation of \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Server\"), \".\"), mdx(\"h2\", null, \"Getting Started\"), mdx(\"p\", null, \"Before you start using DeepSparse, confirm that your machine is\\ncompatible with our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/source/hardware.html\"\n }, \"hardware requirements\"), \".\"), mdx(\"h3\", null, \"Model Format\"), mdx(\"p\", null, \"To deploy a Transformer using DeepSparse, pass the model in the ONNX format along with the Hugging Face supporting files.\\nThis grants the engine the flexibility to serve any model in a framework-agnostic environment.\"), mdx(\"p\", null, \"DeepSparse \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" require the following files within a folder on the local server to properly load a Transformers model:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.onnx\"), \"\\u2014\", \"the exported Transformers model in the ONNX format\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"tokenizer.json\"), \"\\u2014\", \"the \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://huggingface.co/docs/transformers/fast_tokenizers\"\n }, \"HuggingFace tokenizer file\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"config.json\"), \"\\u2014\", \"the \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://huggingface.co/docs/transformers/main_classes/configuration\"\n }, \"HuggingFace configuration file\"))), mdx(\"p\", null, \"There are two options for collecting these files:\"), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"1) Export the ONNX/Config Files From SparseML\")), mdx(\"p\", null, \"This pathway is relevant if you intend to deploy a model created using SparseML.\"), mdx(\"p\", null, \"After training your model with SparseML, locate the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \".pt\"), \" file for the model you'd like to export and run the SparseML integrated Transformers ONNX export script below.\\nFor example, to export a model you had trained to do question answering, use the following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.export_onnx --task question-answering --model_path model_path\\n\")), mdx(\"p\", null, \"This creates a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file and exports it to the local filesystem. \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"tokenizer.json\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.json\"), \" are also stored in this directory.\\nAll of the examples below use SparseZoo stubs, but you can pass the path to the local directory in its place.\")), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"2) Pass a SparseZoo Stub To DeepSparse\")), mdx(\"p\", null, \"This pathway is relevant if you plan to use an off-the-shelf model from the SparseZoo.\"), mdx(\"p\", null, \"All of DeepSparse's \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" and APIs can use a SparseZoo stub in place of a local folder.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" use the stubs to locate and download the ONNX and configuration files from the SparseZoo repository.\")), mdx(\"p\", null, \"The examples below use option 2. However, you can pass the local path to the directory containing the configuration files in place\\nof the SparseZoo stub.\"), mdx(\"h2\", null, \"Deployment APIs\"), mdx(\"p\", null, \"DeepSparse provides both a Python \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" API and an out-of-the-box model server\\nthat can be used for end-to-end inference in either existing Python workflows or as an HTTP endpoint.\\nBoth options provide similar specifications for configurations and support a variety of NLP Transformers\\ntasks including question answering, text classification, sentiment analysis, and token classification.\"), mdx(\"h3\", null, \"Python API\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" are the default interface for running inference with DeepSparse.\"), mdx(\"p\", null, \"Once a model is obtained, either through SparseML training or directly from SparseZoo,\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.Pipeline\"), \" can be used to easily facilitate end-to-end inference and deployment\\nof the sparsified Transformers model.\"), mdx(\"p\", null, \"If no model is specified to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" for a given task, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" will automatically\\nselect a pruned and quantized model for the task from the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"SparseZoo\"), \" that can be used for accelerated\\ninference. Note that other models in the SparseZoo will have different tradeoffs between speed, size,\\nand accuracy.\"), mdx(\"h3\", null, \"HTTP Server\"), mdx(\"p\", null, \"As an alternative to the Python API, DeepSparse Server allows you to serve ONNX models and pipelines in HTTP.\\nBoth configuring and making requests to the server follow the same parameters and schemas as the\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \", enabling simple deployment. Once launched, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs\"), \" endpoint is created with full\\nendpoint descriptions and support for making sample requests.\"), mdx(\"p\", null, \"Example deployments using NLP Transformer models are provided below.\\nRefer to the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deploying-deepsparse/deepsparse-server\"\n }, \"full documentation on DeepSparse Server\"), \".\"), mdx(\"h2\", null, \"Deployment Use Cases\"), mdx(\"p\", null, \"The following section includes example usage of the pipeline and server APIs for various NLP Transformers tasks.\"), mdx(\"h3\", null, \"Question Answering\"), mdx(\"p\", null, \"The question answering tasks accepts a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"question\"), \" and a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"context\"), \". The pipeline will predict an answer\\nfor the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"question\"), \" as a substring of the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"context\"), \". The following examples use a pruned and quantized\\nquestion answering BERT model trained on the SQuAD dataset downloaded by default from the SparseZoo.\"), mdx(\"h4\", null, \"Python Pipeline\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\nqa_pipeline = Pipeline.create(task=\\\"question-answering\\\")\\ninference = qa_pipeline(question=\\\"What's my name?\\\", context=\\\"My name is Snorlax\\\")\\n\\n> {'score': 0.9947717785835266, 'start': 11, 'end': 18, 'answer': 'Snorlax'}\\n\")), mdx(\"h4\", null, \"HTTP Server\"), mdx(\"p\", null, \"Spinning up:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task question-answering \\\\\\n --model_path \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"Making a request:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\n\\nurl = \\\"http://localhost:5543/predict\\\" # Server's port default to 5543\\n\\nobj = {\\n \\\"question\\\": \\\"Who is Mark?\\\",\\n \\\"context\\\": \\\"Mark is batman.\\\"\\n}\\n\\nresponse = requests.post(url, json=obj)\\nresponse.text\\n\\n> '{\\\"score\\\":0.9534820914268494,\\\"start\\\":8,\\\"end\\\":14,\\\"answer\\\":\\\"batman\\\"}'\\n\")), mdx(\"h3\", null, \"Sentiment Analysis\"), mdx(\"p\", null, \"The sentiment analysis task takes in a sentence and classifies its sentiment. The following example\\nuses a pruned and quantized text sentiment analysis BERT model trained on the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sst2\"), \" dataset downloaded\\nfrom the SparseZoo. This \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sst2\"), \" model classifies sentences as positive or negative.\"), mdx(\"h4\", null, \"Python Pipeline\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\nsa_pipeline = Pipeline.create(task=\\\"sentiment-analysis\\\")\\n\\ninference = sa_pipeline(\\\"Snorlax loves my Tesla!\\\")\\n\\n> [{'label': 'LABEL_1', 'score': 0.9884248375892639}] # positive sentiment\\n\")), mdx(\"h4\", null, \"HTTP Server\"), mdx(\"p\", null, \"Spinning up:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task sentiment-analysis \\\\\\n --model_path \\\"zoo:nlp/sentiment_analysis/bert-base/pytorch/huggingface/sst2/12layer_pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"Making a request:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\n\\nurl = \\\"http://localhost:5543/predict\\\" # Server's port default to 5543\\n\\nobj = {\\\"sequences\\\": \\\"Snorlax loves my Tesla!\\\"}\\n\\nresponse = requests.post(url, json=obj)\\nresponse.text\\n\\n> '{\\\"labels\\\":[\\\"LABEL_1\\\"],\\\"scores\\\":[0.9884248375892639]}'\\n\")), mdx(\"h3\", null, \"Text Classification\"), mdx(\"p\", null, \"The text classification task supports binary, multi-class, and regression predictions over\\nsentence inputs. The following example uses a pruned and quantized text classification\\nDistilBERT model trained on the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"qqp\"), \" dataset downloaded from a SparseZoo stub.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"qqp\"), \" dataset takes pairs of questions and predicts whether or not they are a duplicate.\"), mdx(\"h4\", null, \"Python Pipeline\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\ntc_pipeline = Pipeline.create(\\n task=\\\"text-classification\\\",\\n model_path=\\\"zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/qqp/pruned80_quant-none-vnni\\\",\\n)\\n\\n# inference of duplicate question pair\\ninference = tc_pipeline(\\n sequences=[\\n [\\n \\\"Which is the best gaming laptop under 40k?\\\",\\n \\\"Which is the best gaming laptop under 40,000 rs?\\\",\\n ]\\n ]\\n)\\n\\n> TextClassificationOutput(labels=['duplicate'], scores=[0.9947025775909424])\\n\")), mdx(\"h4\", null, \"HTTP Server\"), mdx(\"p\", null, \"Spinning up:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task text-classification \\\\\\n --model_path \\\"zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/qqp/pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"Making a request:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\n\\nurl = \\\"http://localhost:5543/predict\\\" # Server's port default to 5543\\n\\nobj = {\\n \\\"sequences\\\": [\\n [\\n \\\"Which is the best gaming laptop under 40k?\\\",\\n \\\"Which is the best gaming laptop under 40,000 rs?\\\",\\n ]\\n ]\\n}\\n\\nresponse = requests.post(url, json=obj)\\nresponse.text\\n\\n> '{\\\"labels\\\": [\\\"duplicate\\\"], \\\"scores\\\": [0.9947025775909424]}'\\n\")), mdx(\"h4\", null, \"Token Classification Pipeline\"), mdx(\"p\", null, \"The token classification task takes in sequences as inputs and assigns a class to each token.\\nThe following example uses a pruned and quantized token classification NER BERT model\\ntrained on the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"CoNLL\"), \" dataset downloaded from the SparseZoo.\"), mdx(\"h4\", null, \"Python Pipeline\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\n# default model is a pruned + quantized NER model trained on the CoNLL dataset\\ntc_pipeline = Pipeline.create(task=\\\"token-classification\\\")\\ninference = tc_pipeline(\\\"Drive from California to Texas!\\\")\\n\\n> [{'entity': 'LABEL_0','word': 'drive', ...},\\n> {'entity': 'LABEL_0','word': 'from', ...},\\n> {'entity': 'LABEL_5','word': 'california', ...},\\n> {'entity': 'LABEL_0','word': 'to', ...},\\n> {'entity': 'LABEL_5','word': 'texas', ...},\\n> {'entity': 'LABEL_0','word': '!', ...}]\\n\")), mdx(\"h4\", null, \"HTTP Server\"), mdx(\"p\", null, \"Spinning up:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task token-classification \\\\\\n --model_path \\\"zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/12layer_pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"Making a request:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\n\\nurl = \\\"http://localhost:5543/predict\\\" # Server's port default to 5543\\n\\nobj = {\\\"inputs\\\": \\\"Drive from California to Texas!\\\"}\\n\\n\\nresponse = requests.post(url, json=obj)\\nresponse.text\\n\\n> '{\\\"predictions\\\":[[{\\\"entity\\\":\\\"LABEL_0\\\",\\\"score\\\":0.9998655915260315,\\\"index\\\":1,\\\"word\\\":\\\"drive\\\",\\\"start\\\":0,\\\"end\\\":5,\\\"is_grouped\\\":false},{\\\"entity\\\":\\\"LABEL_0\\\",\\\"score\\\":0.9998604655265808,\\\"index\\\":2,\\\"word\\\":\\\"from\\\",\\\"start\\\":6,\\\"end\\\":10,\\\"is_grouped\\\":false},{\\\"entity\\\":\\\"LABEL_5\\\",\\\"score\\\":0.9994636178016663,\\\"index\\\":3,\\\"word\\\":\\\"california\\\",\\\"start\\\":11,\\\"end\\\":21,\\\"is_grouped\\\":false},{\\\"entity\\\":\\\"LABEL_0\\\",\\\"score\\\":0.999838650226593,\\\"index\\\":4,\\\"word\\\":\\\"to\\\",\\\"start\\\":22,\\\"end\\\":24,\\\"is_grouped\\\":false},{\\\"entity\\\":\\\"LABEL_5\\\",\\\"score\\\":0.9994573593139648,\\\"index\\\":5,\\\"word\\\":\\\"texas\\\",\\\"start\\\":25,\\\"end\\\":30,\\\"is_grouped\\\":false},{\\\"entity\\\":\\\"LABEL_0\\\",\\\"score\\\":0.9998716711997986,\\\"index\\\":6,\\\"word\\\":\\\"!\\\",\\\"start\\\":30,\\\"end\\\":31,\\\"is_grouped\\\":false}]]}'\\n\")), mdx(\"h2\", null, \"Benchmarking\"), mdx(\"p\", null, \"The mission of Neural Magic is to enable GPU-class inference performance on commodity CPUs. Want to find out how fast our sparse Hugging Face ONNX models perform inference?\\nYou can quickly do benchmarking tests on your own with a single CLI command!\"), mdx(\"p\", null, \"You only need to provide the model path of a SparseZoo ONNX model or your own local ONNX model to get started:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\n\\n> Original Model Path: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\n> Batch Size: 1\\n> Scenario: multistream\\n> Throughput (items/sec): 76.3484\\n> Latency Mean (ms/batch): 157.1049\\n> Latency Median (ms/batch): 157.0088\\n> Latency Std (ms/batch): 1.4860\\n> Iterations: 768\\n\")), mdx(\"p\", null, \"To learn more about benchmarking, refer to the appropriate documentation.\"), mdx(\"h2\", null, \"Support\"), mdx(\"p\", null, \"For Neural Magic Support, sign up or log into our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Neural Magic Community Slack\"), \". Bugs, feature requests, or additional questions can also be posted to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/issues\"\n }, \"GitHub Issue Queue\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploying-nlp-models-with-hugging-face-transformers-and-deepsparse","title":"Deploying NLP Models with Hugging Face Transformers and DeepSparse","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#model-format","title":"Model Format"}]},{"url":"#deployment-apis","title":"Deployment APIs","items":[{"url":"#python-api","title":"Python API"},{"url":"#http-server","title":"HTTP Server"}]},{"url":"#deployment-use-cases","title":"Deployment Use Cases","items":[{"url":"#question-answering","title":"Question Answering","items":[{"url":"#python-pipeline","title":"Python Pipeline"},{"url":"#http-server-1","title":"HTTP Server"}]},{"url":"#sentiment-analysis","title":"Sentiment Analysis","items":[{"url":"#python-pipeline-1","title":"Python Pipeline"},{"url":"#http-server-2","title":"HTTP Server"}]},{"url":"#text-classification","title":"Text Classification","items":[{"url":"#python-pipeline-2","title":"Python Pipeline"},{"url":"#http-server-3","title":"HTTP Server"},{"url":"#token-classification-pipeline","title":"Token Classification Pipeline"},{"url":"#python-pipeline-3","title":"Python Pipeline"},{"url":"#http-server-4","title":"HTTP Server"}]}]},{"url":"#benchmarking","title":"Benchmarking"},{"url":"#support","title":"Support"}]}]},"parent":{"relativePath":"use-cases/natural-language-processing/deploying.mdx"},"frontmatter":{"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models","index":5000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/natural-language-processing/page-data.json b/page-data/use-cases/natural-language-processing/page-data.json index b8d1c8424a5..02599d29328 100644 --- a/page-data/use-cases/natural-language-processing/page-data.json +++ b/page-data/use-cases/natural-language-processing/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases/natural-language-processing","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","title":"Natural Language Processing","slug":"/use-cases/natural-language-processing","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/natural-language-processing.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Natural Language Processing\",\n \"metaTitle\": \"Natural Language Processing\",\n \"metaDescription\": \"NLP with HuggingFace Transformers\",\n \"index\": 1000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Natural Language Processing\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#natural-language-processing","title":"Natural Language Processing"}]},"parent":{"relativePath":"use-cases/natural-language-processing.mdx"},"frontmatter":{"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers","index":1000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/use-cases/natural-language-processing","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","title":"Natural Language Processing","slug":"/use-cases/natural-language-processing","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/natural-language-processing.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Natural Language Processing\",\n \"metaTitle\": \"Natural Language Processing\",\n \"metaDescription\": \"NLP with HuggingFace Transformers\",\n \"index\": 1000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Natural Language Processing\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#natural-language-processing","title":"Natural Language Processing"}]},"parent":{"relativePath":"use-cases/natural-language-processing.mdx"},"frontmatter":{"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers","index":1000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/natural-language-processing/question-answering/page-data.json b/page-data/use-cases/natural-language-processing/question-answering/page-data.json index ae5414d3584..2177d93bee0 100644 --- a/page-data/use-cases/natural-language-processing/question-answering/page-data.json +++ b/page-data/use-cases/natural-language-processing/question-answering/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases/natural-language-processing/question-answering","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","title":"Question Answering","slug":"/use-cases/natural-language-processing/question-answering","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/natural-language-processing/question-answering.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Question Answering\",\n \"metaTitle\": \"NLP Question Answering\",\n \"metaDescription\": \"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Question Answering with Hugging Face Transformers and SparseML\"), mdx(\"p\", null, \"This page explains how to create and deploy a sparse Transformer for Question Answering.\"), mdx(\"p\", null, \"SparseML Question Answering \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" integrate with Hugging Face\\u2019s Transformers library to enable the sparsification of a large set of transformers models.\\nSparsification is a powerful technique that results in faster, smaller, and cheaper deployable models.\\nA sparse model can be deployed with Neural Magic's DeepSparse Engine with GPU-class performance directly on your CPU.\"), mdx(\"p\", null, \"This integration enables you to create a sparse model in two ways:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification of Popular Transformer Models\"), \" - sparsify any popular Hugging Face Transformer model from scratch.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \" - fine-tune a sparse model (or use one of our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/?domain=nlp&sub_domain=question_answering\"\n }, \"sparse pre-trained models\"), \") on your own private dataset.\")), mdx(\"p\", null, \"Each option is useful in different situations:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification from Scratch\"), \" enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the sparsification algorithm.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \" is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.\")), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This section requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torch Install\"), \" and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse General Install\"), \".\"), mdx(\"p\", null, \"It is recommended to run Python 3.8 as some of the scripts within the transformers repository require it.\"), mdx(\"p\", null, \"Transformers will not immediately install with this command. Instead, a sparsification-compatible version of Transformers will install on the first invocation of the Transformers code in SparseML.\"), mdx(\"h2\", null, \"Tutorials\"), mdx(\"p\", null, \"There are some additional tutorials for this functionality on GitHub.\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/huggingface-transformers/tutorials/sparsifying_bert_using_recipes.md\"\n }, \"Sparsifying BERT Models Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/huggingface-transformers/tutorials/bert_sparse_transfer_learning.md\"\n }, \"Sparse Transfer Learning With BERT\"))), mdx(\"h2\", null, \"Getting Started\"), mdx(\"h3\", null, \"Sparsifying Popular Transformer Models\"), mdx(\"p\", null, \"In the example below, a dense BERT model is sparsified and fine-tuned on the SQuAD dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.question_answering \\\\\\n --model_name_or_path bert-base-uncased \\\\\\n --dataset_name squad \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir './output' \\\\\\n --cache_dir cache \\\\\\n --distill_teacher disable \\\\\\n --recipe zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned-aggressive_98\\n\")), mdx(\"p\", null, \"The SparseML train script is a wrapper around a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts\"\n }, \"Hugging Face script\"), \",\\nand usage for most arguments follows the Hugging Face. The most important arguments for SparseML are:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--model_name_or_path\"), \" indicates which model to start the pruning process from. It can be a SparseZoo stub, HF model identifier, or a path to a local model.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--recipe\"), \" points to recipe file containing the sparsification hyperparamters. It can be a SparseZoo stub or a local file. For more on creating a recipe see \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/recipes/creating\"\n }, \"here\"), \".\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--dataset_name\"), \" indicates that we should fine tune on the SQuAD dataset.\")), mdx(\"p\", null, \"To utilize a custom dataset, use the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--train_file\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--validation_file\"), \" arguments. To use a dataset from the Hugging Face hub, use \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--dataset_name\"), \".\\nSee the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts#run-a-script\"\n }, \"Hugging Face Docs\"), \" for more details.\"), mdx(\"p\", null, \"Run the following to see the full list of options:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.question_answering -h\\n\")), mdx(\"h3\", null, \"Sparse Transfer Learning\"), mdx(\"p\", null, \"SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset.\\nWhile you are free to use your backbone, we encourage you to leverage one of our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"sparse pre-trained models\"), \" to boost your productivity!\"), mdx(\"p\", null, \"In the example below, we fetch a pruned, quantized BERT model, pre-trained on Wikipedia and Bookcorpus datasets. We then fine-tune the model to the SQuAD dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.question_answering \\\\\\n --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni \\\\\\n --dataset_name squad \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir './output' \\\\\\n --distill_teacher disable \\\\\\n --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-question_answering\\n\")), mdx(\"p\", null, \"This usage of the script is the same as the above.\"), mdx(\"p\", null, \"In this example, however, the starting model is a pruned-quantized version of BERT from the SparseZoo (rather than\\na dense BERT model) and the recipe is a transfer learning recipe, which instructs Transformers to maintain sparsity as\\nit fine-tunes (rather than a recipe that sparsifies a model from scratch).\"), mdx(\"h4\", null, \"Knowledge Distillation\"), mdx(\"p\", null, \"By modifying the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"distill_teacher\"), \" argument, you can enable \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neptune.ai/blog/knowledge-distillation\"\n }, \"Knowledge Distillation\"), \" (KD) functionality. KD provides additional\\nsupport to the sparsification or transfer learning process, enabling higher accuracy at higher levels of sparsity.\"), mdx(\"p\", null, \"For example, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--distill_teacher\"), \" argument can be set to pull a dense SQuAD model from the SparseZoo to support the training process:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"--distill_teacher zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none\\n\")), mdx(\"p\", null, \"Alternatively, SparseML enables you to use your a custom dense teacher model. The following command uses the dense BERT base model from the SparseZoo and fine-tunes it on the SQuAD dataset for use as a dense teacher.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.question_answering \\\\\\n --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none \\\\\\n --dataset_name squad \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir models/teacher \\\\\\n --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none?recipe_type=transfer-question_answering\\n\")), mdx(\"p\", null, \"Once the dense teacher is trained we may reuse it for KD in Sparsification or Sparse Transfer learning.\\nSimply pass the path to the directory with the teacher model to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--distill_teacher\"), \" argument. For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"--distill_teacher models/teacher\\n\")), mdx(\"h2\", null, \"SparseML CLI\"), mdx(\"p\", null, \"The SparseML installation provides a CLI for sparsifying your models for a specific task; appending the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--help\"), \" argument displays a full list of options for training in SparseML:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.question_answering --help\\n\")), mdx(\"p\", null, \"output:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" --model_name_or_path MODEL_NAME_OR_PATH\\n Path to pre-trained model or model identifier from huggingface.co/models\\n --distill_teacher DISTILL_TEACHER\\n Teacher model which needs to be a trained QA model\\n --cache_dir CACHE_DIR\\n Directory path to store the pre-trained models downloaded from huggingface.co\\n --recipe RECIPE\\n Path to a SparseML sparsification recipe, see https://github.com/neuralmagic/sparseml for more information\\n --dataset_name DATASET_NAME\\n The name of the dataset to use (via the datasets library).\\n ...\\n\")), mdx(\"p\", null, \"To learn about the Hugging Face Transformers run-scripts in more detail, refer to \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts\"\n }, \"Hugging Face Transformers documentation\"), \".\"), mdx(\"h2\", null, \"Deploying with DeepSparse\"), mdx(\"p\", null, \"The artifacts of the training process are saved to the directory \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--output_dir\"), \". Once the script terminates, the directory will have everything required to deploy or further modify the model such as:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The recipe (with the full description of the sparsification attributes).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Checkpoint files (saved in the appropriate framework format).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Additional configuration files (e.g., tokenizer, dataset info).\")), mdx(\"h3\", null, \"Exporting the Sparse Model to ONNX\"), mdx(\"p\", null, \"The DeepSparse Engine uses the ONNX format to load neural networks and then deliver breakthrough performance for CPUs by leveraging the sparsity and quantization within a network.\"), mdx(\"p\", null, \"The SparseML installation provides a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.transformers.export_onnx\"), \" command that you can use to load the training model folder and create a new \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file within. Be sure the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_path\"), \" argument points to your trained model.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.export_onnx \\\\\\n --model_path './output' \\\\\\n --task 'question-answering'\\n\")), mdx(\"h3\", null, \"DeepSparse Engine Deployment\"), mdx(\"p\", null, \"Once the model is exported in the ONNX format, it is ready for deployment with the DeepSparse Engine.\"), mdx(\"p\", null, \"The deployment is intuitive due to the DeepSparse Python API.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\nqa_pipeline = Pipeline.create(\\n task=\\\"question-answering\\\",\\n model_path='./output'\\n)\\n\\ninference = qa_pipeline(question=\\\"What's my name?\\\", context=\\\"My name is Snorlax\\\")\\n\\n>> {'score': 0.9947717785835266, 'start': 11, 'end': 18, 'answer': 'Snorlax'}\\n\")), mdx(\"p\", null, \"To learn more, refer to the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/transformers/README.md\"\n }, \"appropriate documentation in the DeepSparse repository\"), \".\"), mdx(\"h2\", null, \"Support\"), mdx(\"p\", null, \"For Neural Magic Support, sign up or log in to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Deep Sparse Community Slack\"), \". Bugs, feature requests, or additional questions can also be posted to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/issues\"\n }, \"GitHub Issue Queue\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#question-answering-with-hugging-face-transformers-and-sparseml","title":"Question Answering with Hugging Face Transformers and SparseML","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#tutorials","title":"Tutorials"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#sparsifying-popular-transformer-models","title":"Sparsifying Popular Transformer Models"},{"url":"#sparse-transfer-learning","title":"Sparse Transfer Learning","items":[{"url":"#knowledge-distillation","title":"Knowledge Distillation"}]}]},{"url":"#sparseml-cli","title":"SparseML CLI"},{"url":"#deploying-with-deepsparse","title":"Deploying with DeepSparse","items":[{"url":"#exporting-the-sparse-model-to-onnx","title":"Exporting the Sparse Model to ONNX"},{"url":"#deepsparse-engine-deployment","title":"DeepSparse Engine Deployment"}]},{"url":"#support","title":"Support"}]}]},"parent":{"relativePath":"use-cases/natural-language-processing/question-answering.mdx"},"frontmatter":{"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/use-cases/natural-language-processing/question-answering","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","title":"Question Answering","slug":"/use-cases/natural-language-processing/question-answering","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/natural-language-processing/question-answering.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Question Answering\",\n \"metaTitle\": \"NLP Question Answering\",\n \"metaDescription\": \"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Question Answering with Hugging Face Transformers and SparseML\"), mdx(\"p\", null, \"This page explains how to create and deploy a sparse Transformer for Question Answering.\"), mdx(\"p\", null, \"SparseML Question Answering \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" integrate with Hugging Face\\u2019s Transformers library to enable the sparsification of a large set of transformers models.\\nSparsification is a powerful technique that results in faster, smaller, and cheaper deployable models.\\nA sparse model can be deployed with DeepSparse for GPU-class performance directly on your CPU.\"), mdx(\"p\", null, \"This integration enables you to create a sparse model in two ways. Each option is useful in different situations:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification of Popular Transformer Models\"), \"\\u2014\", \"Sparsify any popular Hugging Face Transformer model from scratch. This enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the sparsification algorithm.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \"\\u2014\", \"Fine-tune a sparse model (or use one of our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/?domain=nlp&sub_domain=question_answering\"\n }, \"sparse pre-trained models\"), \") on your own private dataset. This is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.\")), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This use case requires installation of:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torch Install\"), \", and \"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse General Install\"), \".\")), mdx(\"p\", null, \"It is recommended to run Python 3.8 as some of the scripts within the Transformers repository require it.\"), mdx(\"p\", null, \"Transformers will not immediately install with this command. Instead, a sparsification-compatible version of Transformers will install on the first invocation of the Transformers code in SparseML.\"), mdx(\"h2\", null, \"Tutorials\"), mdx(\"p\", null, \"Here are additional tutorials for this functionality.\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/huggingface-transformers/tutorials/sparsifying_bert_using_recipes.md\"\n }, \"Sparsifying BERT Models Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/huggingface-transformers/tutorials/bert_sparse_transfer_learning.md\"\n }, \"Sparse Transfer Learning With BERT\"))), mdx(\"h2\", null, \"Getting Started\"), mdx(\"h3\", null, \"Sparsifying Popular Transformer Models\"), mdx(\"p\", null, \"In the example below, a dense BERT model is sparsified and fine-tuned on the SQuAD dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.question_answering \\\\\\n --model_name_or_path bert-base-uncased \\\\\\n --dataset_name squad \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir './output' \\\\\\n --cache_dir cache \\\\\\n --distill_teacher disable \\\\\\n --recipe zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned-aggressive_98\\n\")), mdx(\"p\", null, \"The SparseML train script is a wrapper around a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts\"\n }, \"Hugging Face script\"), \",\\nand usage for most arguments follows the Hugging Face. The most important arguments for SparseML are:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--model_name_or_path\"), \" indicates the model from which to start the pruning process. It can be a SparseZoo stub, HF model identifier, or a path to a local model.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--recipe\"), \" points to a recipe file containing the sparsification hyperparameters. It can be a SparseZoo stub or a local file. See \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/recipes/creating\"\n }, \"Creating Sparsification Recipes\"), \" for more information.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--dataset_name\"), \" indicates that we should fine-tune on the SQuAD dataset.\")), mdx(\"p\", null, \"To utilize a custom dataset, use the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--train_file\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--validation_file\"), \" arguments. To use a dataset from the Hugging Face hub, use \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--dataset_name\"), \".\\nSee the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts#run-a-script\"\n }, \"Hugging Face documentation\"), \" for more details.\"), mdx(\"p\", null, \"Run the following to see the full list of options:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.question_answering -h\\n\")), mdx(\"h3\", null, \"Sparse Transfer Learning\"), mdx(\"p\", null, \"SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset.\\nWhile you are free to use your backbone, we encourage you to leverage one of our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"sparse pre-trained models\"), \" to boost your productivity!\"), mdx(\"p\", null, \"In the example below, we fetch a pruned, quantized BERT model, pre-trained on Wikipedia and Bookcorpus datasets. We then fine-tune the model to the SQuAD dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.question_answering \\\\\\n --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni \\\\\\n --dataset_name squad \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir './output' \\\\\\n --distill_teacher disable \\\\\\n --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-question_answering\\n\")), mdx(\"p\", null, \"The usage of the script is the same as for Sparsifying Popular Transformer Models, above. However, in this example, the starting model is a pruned-quantized version of BERT from the SparseZoo (rather than\\na dense BERT model) and the recipe is a transfer learning recipe, which instructs Transformers to maintain sparsity as\\nit fine-tunes (rather than a recipe that sparsifies a model from scratch).\"), mdx(\"h4\", null, \"Knowledge Distillation\"), mdx(\"p\", null, \"By modifying the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"distill_teacher\"), \" argument, you can enable \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neptune.ai/blog/knowledge-distillation\"\n }, \"Knowledge Distillation\"), \" (KD) functionality. KD provides additional\\nsupport to the sparsification or transfer learning process, enabling higher accuracy at higher levels of sparsity.\"), mdx(\"p\", null, \"For example, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--distill_teacher\"), \" argument can be set to pull a dense SQuAD model from the SparseZoo to support the training process:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"--distill_teacher zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none\\n\")), mdx(\"p\", null, \"Alternatively, SparseML enables you to use your a custom dense teacher model. The following command uses the dense BERT base model from the SparseZoo and fine-tunes it on the SQuAD dataset for use as a dense teacher.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.question_answering \\\\\\n --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none \\\\\\n --dataset_name squad \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir models/teacher \\\\\\n --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none?recipe_type=transfer-question_answering\\n\")), mdx(\"p\", null, \"Once the dense teacher is trained, you may reuse it for KD in sparsification or sparse transfer learning.\\nSimply pass the path to the directory with the teacher model to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--distill_teacher\"), \" argument. For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"--distill_teacher models/teacher\\n\")), mdx(\"h2\", null, \"SparseML CLI\"), mdx(\"p\", null, \"The SparseML installation provides a CLI for sparsifying your models for a specific task. Appending the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--help\"), \" argument displays a full list of options for training in SparseML:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.question_answering --help\\n\")), mdx(\"p\", null, \"The output is:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" --model_name_or_path MODEL_NAME_OR_PATH\\n Path to pre-trained model or model identifier from huggingface.co/models\\n --distill_teacher DISTILL_TEACHER\\n Teacher model which needs to be a trained QA model\\n --cache_dir CACHE_DIR\\n Directory path to store the pre-trained models downloaded from huggingface.co\\n --recipe RECIPE\\n Path to a SparseML sparsification recipe, see https://github.com/neuralmagic/sparseml for more information\\n --dataset_name DATASET_NAME\\n The name of the dataset to use (via the datasets library).\\n ...\\n\")), mdx(\"p\", null, \"To learn about the Hugging Face Transformers run-scripts in more detail, refer to \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts\"\n }, \"Hugging Face Transformers documentation\"), \".\"), mdx(\"h2\", null, \"Deploying with DeepSparse\"), mdx(\"p\", null, \"The artifacts of the training process are saved to the directory \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--output_dir\"), \". Once the script terminates, the directory will have everything required to deploy or further modify the model such as:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The recipe (with the full description of the sparsification attributes)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Checkpoint files (saved in the appropriate framework format)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Additional configuration files (e.g., tokenizer, dataset info)\")), mdx(\"h3\", null, \"Exporting the Sparse Model to ONNX\"), mdx(\"p\", null, \"DeepSparse uses the ONNX format to load neural networks and then deliver breakthrough performance for CPUs by leveraging the sparsity and quantization within a network.\"), mdx(\"p\", null, \"The SparseML installation provides a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.transformers.export_onnx\"), \" command that you can use to load the training model folder and create a new \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file within. Be sure the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_path\"), \" argument points to your trained model.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.export_onnx \\\\\\n --model_path './output' \\\\\\n --task 'question-answering'\\n\")), mdx(\"h3\", null, \"DeepSparse Deployment\"), mdx(\"p\", null, \"Once the model is exported in the ONNX format, it is ready for deployment with DeepSparse.\"), mdx(\"p\", null, \"The deployment is intuitive due to the DeepSparse Python API.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\nqa_pipeline = Pipeline.create(\\n task=\\\"question-answering\\\",\\n model_path='./output'\\n)\\n\\ninference = qa_pipeline(question=\\\"What's my name?\\\", context=\\\"My name is Snorlax\\\")\\n\\n>> {'score': 0.9947717785835266, 'start': 11, 'end': 18, 'answer': 'Snorlax'}\\n\")), mdx(\"p\", null, \"To learn more, refer to the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/transformers/README.md\"\n }, \"appropriate documentation in the DeepSparse repository\"), \".\"), mdx(\"h2\", null, \"Support\"), mdx(\"p\", null, \"For Neural Magic Support, sign up or log into our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Neural Magic Community Slack\"), \". Bugs, feature requests, or additional questions can also be posted to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/issues\"\n }, \"GitHub Issue Queue\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#question-answering-with-hugging-face-transformers-and-sparseml","title":"Question Answering with Hugging Face Transformers and SparseML","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#tutorials","title":"Tutorials"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#sparsifying-popular-transformer-models","title":"Sparsifying Popular Transformer Models"},{"url":"#sparse-transfer-learning","title":"Sparse Transfer Learning","items":[{"url":"#knowledge-distillation","title":"Knowledge Distillation"}]}]},{"url":"#sparseml-cli","title":"SparseML CLI"},{"url":"#deploying-with-deepsparse","title":"Deploying with DeepSparse","items":[{"url":"#exporting-the-sparse-model-to-onnx","title":"Exporting the Sparse Model to ONNX"},{"url":"#deepsparse-deployment","title":"DeepSparse Deployment"}]},{"url":"#support","title":"Support"}]}]},"parent":{"relativePath":"use-cases/natural-language-processing/question-answering.mdx"},"frontmatter":{"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/natural-language-processing/text-classification/page-data.json b/page-data/use-cases/natural-language-processing/text-classification/page-data.json index c2ef95dfac3..00905e01f77 100644 --- a/page-data/use-cases/natural-language-processing/text-classification/page-data.json +++ b/page-data/use-cases/natural-language-processing/text-classification/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases/natural-language-processing/text-classification","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","title":"Text Classification","slug":"/use-cases/natural-language-processing/text-classification","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/natural-language-processing/text-classification.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Text Classification\",\n \"metaTitle\": \"NLP Text Classification\",\n \"metaDescription\": \"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Text Classification with Hugging Face Transformers and SparseML\"), mdx(\"p\", null, \"This page explains how to create and deploy a sparse Transformer for Text Classification.\"), mdx(\"p\", null, \"SparseML Text Classification \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" integrate with Hugging Face\\u2019s Transformers library to enable the sparsification of a large set of transformers models.\\nSparsification is a powerful technique that results in faster, smaller, and cheaper deployable models.\\nA sparse model can be deployed with Neural Magic's DeepSparse Engine with GPU-class performance directly on your CPU.\"), mdx(\"p\", null, \"This integration enables you to create a sparse model in two ways:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification of Popular Transformer Models\"), \" - sparsify any popular Hugging Face Transformer model from scratch.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \" - fine-tune a sparse model (or use one of our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/?domain=nlp&sub_domain=text_classification\"\n }, \"sparse pre-trained models\"), \") on your own private dataset.\")), mdx(\"p\", null, \"Each option is useful in different situations:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification from Scratch\"), \" enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the sparsification algorithm.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \" is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.\")), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This section requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torch Install\"), \" and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse General Install\"), \".\"), mdx(\"p\", null, \"It is recommended to run Python 3.8 as some of the scripts within the transformers repository require it.\"), mdx(\"p\", null, \"Transformers will not immediately install with this command. Instead, a sparsification-compatible version of Transformers will install on the first invocation of the Transformers code in SparseML.\"), mdx(\"h2\", null, \"Tutorials\"), mdx(\"p\", null, \"There are some additional tutorials for this functionality on GitHub.\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-sentiment-analysis/\"\n }, \"Sparse Sentiment Analysis with BERT\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/500d132f27e97547b752c99dd06e17b8e53a1ba8/examples/twitter-nlp\"\n }, \"Crypto Sentiment Analysis example\"), \" + \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://www.youtube.com/watch?v=7UTKt-PDLvk\"\n }, \"accompanying video\"))), mdx(\"h2\", null, \"Getting Started\"), mdx(\"h3\", null, \"Sparsifying Popular Transformer Models\"), mdx(\"p\", null, \"In the example below, a dense BERT model is sparsified and fine-tuned it on the MNLI dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.text_classification \\\\\\n --model_name_or_path bert-base-uncased \\\\\\n --task_name mnli \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir './output' \\\\\\n --cache_dir cache \\\\\\n --distill_teacher disable \\\\\\n --recipe zoo:nlp/text_classification/bert-base/pytorch/huggingface/mnli/12layer_pruned90-none\\n\")), mdx(\"p\", null, \"The SparseML train script is a wrapper around a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts\"\n }, \"Hugging Face script\"), \", and\\nusage for most arguments follows the Hugging Face. The most important arguments for SparseML are:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model_name_or_path\"), \": specifies starting model. It can be a SparseZoo stub, Hugging Face model identifier, or a local directory\\nwith \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.pt\"), \", \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"tokenizer.json\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"config.json\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"recipe\"), \": recipe containing the training hyperparamters (SparseZoo stub or a local file)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"task_name\"), \": specifies the sentiment analysis task for the MNLI dataset\")), mdx(\"p\", null, \"To utilize a custom dataset, use the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--train_file\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--validation_file\"), \" arguments. To use a dataset from the Hugging Face hub, use \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--dataset_name\"), \".\\nSee the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts#run-a-script\"\n }, \"Hugging Face Docs\"), \" for more details.\"), mdx(\"p\", null, \"Run the following to see the full list of options:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.text_classification -h\\n\")), mdx(\"h3\", null, \"Sparse Transfer Learning\"), mdx(\"p\", null, \"SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset.\\nWhile you are free to use your backbone, we encourage you to leverage one of our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"sparse pre-trained models\"), \" to boost your productivity!\"), mdx(\"p\", null, \"In the example below, we fetch a pruned, quantized BERT model, pre-trained on Wikipedia and Bookcorpus datasets. We then fine-tune the model to the SST2 dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.text_classification \\\\\\n --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni \\\\\\n --task_name sst2 \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir './output' \\\\\\n --distill_teacher disable \\\\\\n --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-text_classification\\n\")), mdx(\"p\", null, \"This usage of the script is the same as the above.\"), mdx(\"p\", null, \"In this example, however, the starting model is a pruned-quantized version of BERT from SparseZoo (rather than a dense BERT)\\nand the recipe is a transfer learning recipe, which instructs Transformers to maintain sparsity (rather than a sparsification recipe\\nthat sparsifies the model from scratch).\"), mdx(\"p\", null, \"Additionally, this example uses the SST2 task (which uses the SST2 dataset).\"), mdx(\"h4\", null, \"Knowledge Distillation\"), mdx(\"p\", null, \"By modifying the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"distill_teacher\"), \" argument, you can enable \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neptune.ai/blog/knowledge-distillation\"\n }, \"Knowledge Distillation\"), \" (KD) functionality.\\nKD provides additional support to the sparsification process, enabling higher accuracy at higher levels of sparsity.\"), mdx(\"p\", null, \"For example, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--distill_teacher\"), \" argument can be set to pull a dense SST2 model from the SparseZoo to support the training process:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"--distill_teacher zoo:nlp/text_classification/bert-base/pytorch/huggingface/sst2/base-none\\n\")), mdx(\"p\", null, \"Alternatively, the user may decide to train their own dense teacher model. The following command uses the dense BERT base model from the SparseZoo and fine-tunes it on the SST2 dataset for use as a dense teacher.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.text_classification \\\\\\n --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none \\\\\\n --task_name sst2 \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir models/teacher \\\\\\n --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none?recipe_type=transfer-text_classification\\n\")), mdx(\"p\", null, \"Once the dense teacher is trained we may reuse it for KD in Sparsification or Sparse Transfer learning.\\nSimply pass the path to the directory with the teacher model to the --distill_teacher argument. For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"--distill_teacher models/teacher\\n\")), mdx(\"h2\", null, \"SparseML CLI\"), mdx(\"p\", null, \"The SparseML installation provides a CLI for sparsifying your models for a specific task; appending the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--help\"), \" argument displays a full list of options for training in SparseML:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.text_classification --help\\n\")), mdx(\"p\", null, \"output:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" --model_name_or_path MODEL_NAME_OR_PATH\\n Path to pretrained model, sparsezoo stub. or model identifier from huggingface.co/models (default: None)\\n --distill_teacher DISTILL_TEACHER\\n Teacher model which must be a trained text classification model (default: None)\\n --cache_dir CACHE_DIR\\n Where to store the pretrained data from huggingface.co (default: None)\\n --recipe RECIPE\\n Path to a SparseML sparsification recipe, see https://github.com/neuralmagic/sparseml for more information (default: None)\\n --task_name TASK_NAME\\n The name of the task to train on: cola, mnli, mrpc, qnli, qqp, rte, sst2, stsb, wnli (default: None)\\n...\\n\")), mdx(\"p\", null, \"To learn about the Hugging Face Transformers run-scripts in more detail, refer to \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts\"\n }, \"Hugging Face Transformers documentation\"), \".\"), mdx(\"h2\", null, \"Deploying with DeepSparse\"), mdx(\"p\", null, \"The artifacts of the training process are saved to the directory \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--output_dir\"), \". Once the script terminates, the directory will have everything required to deploy or further modify the model such as:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The recipe (with the full description of the sparsification attributes).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Checkpoint files (saved in the appropriate framework format).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Additional configuration files (e.g., tokenizer, dataset info).\")), mdx(\"h3\", null, \"Exporting the Sparse Model to ONNX\"), mdx(\"p\", null, \"The DeepSparse Engine uses the ONNX format to load neural networks and then deliver breakthrough performance for CPUs by leveraging the sparsity and quantization within a network.\"), mdx(\"p\", null, \"The SparseML installation provides a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.transformers.export_onnx\"), \" command that you can use to load the training model folder and create a new \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file within. Be sure the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_path\"), \" argument points to your trained model.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.export_onnx \\\\\\n --model_path './output' \\\\\\n --task 'text-classification'\\n\")), mdx(\"h3\", null, \"DeepSparse Engine Deployment\"), mdx(\"p\", null, \"Once the model is exported in the ONNX format, it is ready for deployment with the DeepSparse Engine.\"), mdx(\"p\", null, \"The deployment is intuitive due to the DeepSparse Python API.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\ntc_pipeline = Pipeline.create(\\n task=\\\"text-classification\\\",\\n model_path='./output'\\n)\\n\\ninference = tc_pipeline(\\\"Snorlax loves my Tesla!\\\")\\n\\n>> [{'label': 'LABEL_1', 'score': 0.9884248375892639}]\\n\\ninference = tc_pipeline(\\\"Snorlax hates pineapple pizza!\\\")\\n\\n>> [{'label': 'LABEL_0', 'score': 0.9981569051742554}]\\n\")), mdx(\"p\", null, \"To learn more, refer to the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/transformers/README.md\"\n }, \"appropriate documentation in the DeepSparse repository\"), \".\"), mdx(\"h2\", null, \"Support\"), mdx(\"p\", null, \"For Neural Magic Support, sign up or log in to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Deep Sparse Community Slack\"), \". Bugs, feature requests, or additional questions can also be posted to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/issues\"\n }, \"GitHub Issue Queue\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#text-classification-with-hugging-face-transformers-and-sparseml","title":"Text Classification with Hugging Face Transformers and SparseML","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#tutorials","title":"Tutorials"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#sparsifying-popular-transformer-models","title":"Sparsifying Popular Transformer Models"},{"url":"#sparse-transfer-learning","title":"Sparse Transfer Learning","items":[{"url":"#knowledge-distillation","title":"Knowledge Distillation"}]}]},{"url":"#sparseml-cli","title":"SparseML CLI"},{"url":"#deploying-with-deepsparse","title":"Deploying with DeepSparse","items":[{"url":"#exporting-the-sparse-model-to-onnx","title":"Exporting the Sparse Model to ONNX"},{"url":"#deepsparse-engine-deployment","title":"DeepSparse Engine Deployment"}]},{"url":"#support","title":"Support"}]}]},"parent":{"relativePath":"use-cases/natural-language-processing/text-classification.mdx"},"frontmatter":{"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/use-cases/natural-language-processing/text-classification","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","title":"Text Classification","slug":"/use-cases/natural-language-processing/text-classification","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/natural-language-processing/text-classification.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Text Classification\",\n \"metaTitle\": \"NLP Text Classification\",\n \"metaDescription\": \"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Text Classification with Hugging Face Transformers and SparseML\"), mdx(\"p\", null, \"This page explains how to create and deploy a sparse Transformer for Text Classification.\"), mdx(\"p\", null, \"SparseML Text Classification \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" integrate with Hugging Face\\u2019s Transformers library to enable the sparsification of a large set of transformers models.\\nSparsification is a powerful technique that results in faster, smaller, and cheaper deployable models.\\nA sparse model can be deployed with DeepSparse for GPU-class performance directly on your CPU.\"), mdx(\"p\", null, \"This integration enables you to create a sparse model in two ways. Each option is useful in different situations:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification of Popular Transformer Models\"), \"\\u2014\", \"Sparsify any popular Hugging Face Transformer model from scratch. This enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the sparsification algorithm.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \"\\u2014\", \"Fine-tune a sparse model (or use one of our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/?domain=nlp&sub_domain=text_classification\"\n }, \"sparse pre-trained models\"), \") on your own private dataset. This is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.\")), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This use case requires installation of:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torch\"), \", and \"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Community Edition\"), \".\")), mdx(\"p\", null, \"It is recommended to run Python 3.8 as some of the scripts within the Transformers repository require it.\"), mdx(\"p\", null, \"Transformers will not immediately install with this command. Instead, a sparsification-compatible version of Transformers will install on the first invocation of the Transformers code in SparseML.\"), mdx(\"h2\", null, \"Tutorials\"), mdx(\"p\", null, \"Here are additional tutorials for this functionality.\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-sentiment-analysis/\"\n }, \"Sparse Sentiment Analysis with BERT\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/500d132f27e97547b752c99dd06e17b8e53a1ba8/examples/twitter-nlp\"\n }, \"Crypto Sentiment Analysis example\"), \" + \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://www.youtube.com/watch?v=7UTKt-PDLvk\"\n }, \"accompanying video\"))), mdx(\"h2\", null, \"Getting Started\"), mdx(\"h3\", null, \"Sparsifying Popular Transformer Models\"), mdx(\"p\", null, \"In the example below, a dense BERT model is sparsified and fine-tuned it on the MNLI dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.text_classification \\\\\\n --model_name_or_path bert-base-uncased \\\\\\n --task_name mnli \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir './output' \\\\\\n --cache_dir cache \\\\\\n --distill_teacher disable \\\\\\n --recipe zoo:nlp/text_classification/bert-base/pytorch/huggingface/mnli/12layer_pruned90-none\\n\")), mdx(\"p\", null, \"The SparseML train script is a wrapper around a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts\"\n }, \"Hugging Face script\"), \", and\\nusage for most arguments follows the Hugging Face. The most important arguments for SparseML are:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model_name_or_path\"), \" specifies the starting model. It can be a SparseZoo stub, Hugging Face model identifier, or a local directory\\nwith \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"model.pt\"), \", \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"tokenizer.json\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"config.json\"), \".\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"recipe\"), \" points to a recipe file containing the training hyperparamters (SparseZoo stub or a local file).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"task_name\"), \" specifies the sentiment analysis task for the MNLI dataset.\")), mdx(\"p\", null, \"To utilize a custom dataset, use the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--train_file\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--validation_file\"), \" arguments. To use a dataset from the Hugging Face hub, use \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--dataset_name\"), \".\\nSee the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts#run-a-script\"\n }, \"Hugging Face documentation\"), \" for more details.\"), mdx(\"p\", null, \"Run the following to see the full list of options:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.text_classification -h\\n\")), mdx(\"h3\", null, \"Sparse Transfer Learning\"), mdx(\"p\", null, \"SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset.\\nWhile you are free to use your backbone, we encourage you to leverage one of our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"sparse pre-trained models\"), \" to boost your productivity!\"), mdx(\"p\", null, \"In the example below, we fetch a pruned, quantized BERT model, pre-trained on Wikipedia and Bookcorpus datasets. We then fine-tune the model to the SST2 dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.text_classification \\\\\\n --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni \\\\\\n --task_name sst2 \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir './output' \\\\\\n --distill_teacher disable \\\\\\n --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-text_classification\\n\")), mdx(\"p\", null, \"The usage of the script is the same as for Sparsifying Popular Transformer Models, above. However, in this example, the starting model is a pruned-quantized version of BERT from SparseZoo (rather than a dense BERT)\\nand the recipe is a transfer learning recipe, which instructs Transformers to maintain sparsity (rather than a sparsification recipe\\nthat sparsifies the model from scratch).\"), mdx(\"p\", null, \"Additionally, this example uses the SST2 task (which uses the SST2 dataset).\"), mdx(\"h4\", null, \"Knowledge Distillation\"), mdx(\"p\", null, \"By modifying the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"distill_teacher\"), \" argument, you can enable \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neptune.ai/blog/knowledge-distillation\"\n }, \"Knowledge Distillation\"), \" (KD) functionality.\\nKD provides additional support to the sparsification process, enabling higher accuracy at higher levels of sparsity.\"), mdx(\"p\", null, \"For example, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--distill_teacher\"), \" argument can be set to pull a dense SST2 model from the SparseZoo to support the training process:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"--distill_teacher zoo:nlp/text_classification/bert-base/pytorch/huggingface/sst2/base-none\\n\")), mdx(\"p\", null, \"Alternatively, you may decide to train your own dense teacher model. The following command uses the dense BERT base model from the SparseZoo and fine-tunes it on the SST2 dataset for use as a dense teacher.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.text_classification \\\\\\n --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none \\\\\\n --task_name sst2 \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir models/teacher \\\\\\n --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none?recipe_type=transfer-text_classification\\n\")), mdx(\"p\", null, \"Once the dense teacher is trained, you may reuse it for KD in sparsification or sparse transfer learning.\\nSimply pass the path to the directory with the teacher model to the --distill_teacher argument. For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"--distill_teacher models/teacher\\n\")), mdx(\"h2\", null, \"SparseML CLI\"), mdx(\"p\", null, \"The SparseML installation provides a CLI for sparsifying your models for a specific task. Appending the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--help\"), \" argument displays a full list of options for training in SparseML:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.text_classification --help\\n\")), mdx(\"p\", null, \"The output is:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" --model_name_or_path MODEL_NAME_OR_PATH\\n Path to pretrained model, sparsezoo stub. or model identifier from huggingface.co/models (default: None)\\n --distill_teacher DISTILL_TEACHER\\n Teacher model which must be a trained text classification model (default: None)\\n --cache_dir CACHE_DIR\\n Where to store the pretrained data from huggingface.co (default: None)\\n --recipe RECIPE\\n Path to a SparseML sparsification recipe, see https://github.com/neuralmagic/sparseml for more information (default: None)\\n --task_name TASK_NAME\\n The name of the task to train on: cola, mnli, mrpc, qnli, qqp, rte, sst2, stsb, wnli (default: None)\\n...\\n\")), mdx(\"p\", null, \"To learn about the Hugging Face Transformers run-scripts in more detail, refer to \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts\"\n }, \"Hugging Face Transformers documentation\"), \".\"), mdx(\"h2\", null, \"Deploying with DeepSparse\"), mdx(\"p\", null, \"The artifacts of the training process are saved to the directory \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--output_dir\"), \". Once the script terminates, the directory will have everything required to deploy or further modify the model such as:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The recipe (with the full description of the sparsification attributes)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Checkpoint files (saved in the appropriate framework format)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Additional configuration files (e.g., tokenizer, dataset info)\")), mdx(\"h3\", null, \"Exporting the Sparse Model to ONNX\"), mdx(\"p\", null, \"DeepSparse uses the ONNX format to load neural networks and then deliver breakthrough performance for CPUs by leveraging the sparsity and quantization within a network.\"), mdx(\"p\", null, \"The SparseML installation provides a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.transformers.export_onnx\"), \" command that you can use to load the training model folder and create a new \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file within. Be sure the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_path\"), \" argument points to your trained model.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.export_onnx \\\\\\n --model_path './output' \\\\\\n --task 'text-classification'\\n\")), mdx(\"h3\", null, \"DeepSparse Deployment\"), mdx(\"p\", null, \"Once the model is exported in the ONNX format, it is ready for deployment with DeepSparse.\"), mdx(\"p\", null, \"The deployment is intuitive due to the DeepSparse Python API.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\ntc_pipeline = Pipeline.create(\\n task=\\\"text-classification\\\",\\n model_path='./output'\\n)\\n\\ninference = tc_pipeline(\\\"Snorlax loves my Tesla!\\\")\\n\\n>> [{'label': 'LABEL_1', 'score': 0.9884248375892639}]\\n\\ninference = tc_pipeline(\\\"Snorlax hates pineapple pizza!\\\")\\n\\n>> [{'label': 'LABEL_0', 'score': 0.9981569051742554}]\\n\")), mdx(\"p\", null, \"To learn more, refer to the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/transformers/README.md\"\n }, \"appropriate documentation in the DeepSparse repository\"), \".\"), mdx(\"h2\", null, \"Support\"), mdx(\"p\", null, \"For Neural Magic Support, sign up or log into our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Deep Sparse Community Slack\"), \". Bugs, feature requests, or additional questions can also be posted to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/issues\"\n }, \"GitHub Issue Queue\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#text-classification-with-hugging-face-transformers-and-sparseml","title":"Text Classification with Hugging Face Transformers and SparseML","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#tutorials","title":"Tutorials"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#sparsifying-popular-transformer-models","title":"Sparsifying Popular Transformer Models"},{"url":"#sparse-transfer-learning","title":"Sparse Transfer Learning","items":[{"url":"#knowledge-distillation","title":"Knowledge Distillation"}]}]},{"url":"#sparseml-cli","title":"SparseML CLI"},{"url":"#deploying-with-deepsparse","title":"Deploying with DeepSparse","items":[{"url":"#exporting-the-sparse-model-to-onnx","title":"Exporting the Sparse Model to ONNX"},{"url":"#deepsparse-deployment","title":"DeepSparse Deployment"}]},{"url":"#support","title":"Support"}]}]},"parent":{"relativePath":"use-cases/natural-language-processing/text-classification.mdx"},"frontmatter":{"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/natural-language-processing/token-classification/page-data.json b/page-data/use-cases/natural-language-processing/token-classification/page-data.json index 92947a8968a..d3478e68846 100644 --- a/page-data/use-cases/natural-language-processing/token-classification/page-data.json +++ b/page-data/use-cases/natural-language-processing/token-classification/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases/natural-language-processing/token-classification","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","title":"Token Classification","slug":"/use-cases/natural-language-processing/token-classification","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/natural-language-processing/token-classification.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Token Classification\",\n \"metaTitle\": \"NLP Token Classification\",\n \"metaDescription\": \"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Token Classification with Hugging Face Transformers and SparseML\"), mdx(\"p\", null, \"This page explains how to create and deploy a sparse Transformer for Token Classification.\"), mdx(\"p\", null, \"SparseML Token Classification \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" integrate with Hugging Face\\u2019s Transformers library to enable the sparsification of a large set of transformers models.\\nSparsification is a powerful technique that results in faster, smaller, and cheaper deployable models.\\nA sparse model can be deployed with Neural Magic's DeepSparse Engine with GPU-class performance directly on your CPU.\"), mdx(\"p\", null, \"This integration enables you to create a sparse model in two ways:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification of Popular Transformer Models\"), \" - sparsify any popular Hugging Face Transformer model from scratch.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \" - fine-tune a sparse model (or use one of our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/?page=1&domain=nlp&sub_domain=token_classification\"\n }, \"sparse pre-trained models\"), \") on your own private dataset.\")), mdx(\"p\", null, \"Each option is useful in different situations:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification from Scratch\"), \" enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the Sparsification algorithm.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \" is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.\")), mdx(\"h2\", null, \"Installation\"), mdx(\"p\", null, \"This section requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torch Install\"), \" and \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse General Install\"), \".\"), mdx(\"p\", null, \"It is recommended to run Python 3.8 as some of the scripts within the transformers repository require it.\"), mdx(\"p\", null, \"Transformers will not immediately install with this command. Instead, a sparsification-compatible version of Transformers will install on the first invocation of the Transformers code in SparseML.\"), mdx(\"h2\", null, \"Tutorials\"), mdx(\"p\", null, \"There are some additional tutorials for this functionality on GitHub.\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-named-entity-recognition/\"\n }, \"Sparse Named Entity Recognition With BERT\"))), mdx(\"h2\", null, \"Getting Started\"), mdx(\"h3\", null, \"Sparsifying Popular Transformer Models\"), mdx(\"p\", null, \"In the example below, a dense BERT model is sparsified and fine-tuned on the CoNLL-2003 dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.token_classification \\\\\\n --model_name_or_path bert-base-uncased \\\\\\n --dataset_name conll2003 \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir './output' \\\\\\n --cache_dir cache \\\\\\n --distill_teacher disable \\\\\\n --recipe zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/12layer_pruned80_quant-none-vnni\\n\")), mdx(\"p\", null, \"The SparseML train script is a wrapper around a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts\"\n }, \"Hugging Face script\"), \",\\nand usage for most arguments follows the Hugging Face. The most important arguments for SparseML are:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--model_name_or_path\"), \" indicates which model to start the pruning process from. It can be a SparseZoo stub, Hugging Face model identifier, or a path to a local model.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--recipe\"), \" points to recipe file containing the sparsification hyperparamters. It can be a SparseZoo stub or a local file. For more on creating a recipe see \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/recipes/creating\"\n }, \"here\"), \".\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--dataset_name\"), \" indicates that we should fine tune on the CoNLL-2003 dataset.\")), mdx(\"p\", null, \"To utilize a custom dataset, use the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--train_file\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--validation_file\"), \" arguments. To use a dataset from the Hugging Face hub, use \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--dataset_name\"), \".\\nSee the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts#run-a-script\"\n }, \"Hugging Face Docs\"), \" for more details.\"), mdx(\"p\", null, \"Run the following to see the full list of options:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.token_classification -h\\n\")), mdx(\"h3\", null, \"Sparse Transfer Learning\"), mdx(\"p\", null, \"SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset.\\nWhile you are free to use your backbone, we encourage you to leverage one of our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"sparse pre-trained models\"), \" to boost your productivity!\"), mdx(\"p\", null, \"In the example below, we fetch a pruned, quantized BERT model, pre-trained on Wikipedia and Bookcorpus datasets. We then fine-tune the model to the CoNLL-2003 dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.token_classification \\\\\\n --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni \\\\\\n --dataset_name conll2003 \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir './output' \\\\\\n --distill_teacher disable \\\\\\n --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-token_classification\\n\")), mdx(\"p\", null, \"This usage of the script is the same as the above.\"), mdx(\"p\", null, \"In this example, however, the starting model is a pruned-quantized version of BERT from SparseZoo (rather than a dense BERT)\\nand the recipe is a transfer learning recipe, which instructs Transformers to maintain sparsity of the base model (rather than\\na recipe that sparsifies a model from scratch).\"), mdx(\"h4\", null, \"Knowledge Distillation\"), mdx(\"p\", null, \"By modifying the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"distill_teacher\"), \" argument, you can enable \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neptune.ai/blog/knowledge-distillation\"\n }, \"Knowledge Distillation\"), \" (KD) functionality. KD provides additional\\nsupport to the sparsification process, enabling higher accuracy at higher levels of sparsity.\"), mdx(\"p\", null, \"For example, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--distill_teacher\"), \" argument can be set to pull a dense model from the SparseZoo to support the training process:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"--distill_teacher zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/base-none\\n\")), mdx(\"p\", null, \"Alternatively, the user may decide to train their own dense teacher model. The following command uses the dense BERT base model from the SparseZoo and fine-tunes it on the CoNLL-2003 dataset for use as a dense teacher.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.token_classification \\\\\\n --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none \\\\\\n --dataset_name conll2003 \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir models/teacher \\\\\\n --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-token_classification \\\\\\n --distill_teacher zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/base-none\\n\")), mdx(\"p\", null, \"Once the dense teacher is trained we may reuse it for KD in Sparsification or Sparse Transfer learning.\\nSimply pass the path to the directory with the teacher model to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--distill_teacher\"), \" argument. For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"--distill_teacher models/teacher\\n\")), mdx(\"h2\", null, \"SparseML CLI\"), mdx(\"p\", null, \"The SparseML installation provides a CLI for sparsifying your models for a specific task; appending the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--help\"), \" argument displays a full list of options for training in SparseML:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.token_classification --help\\n\")), mdx(\"p\", null, \"output:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" --model_name_or_path MODEL_NAME_OR_PATH\\n Path to pretrained model, sparsezoo stub. or model identifier from huggingface.co/models (default: None)\\n --distill_teacher DISTILL_TEACHER\\n Teacher model which needs to be a trained NER model (default: None)\\n --cache_dir CACHE_DIR\\n Where to store the pretrained data from huggingface.co (default: None)\\n --recipe RECIPE\\n Path to a SparseML sparsification recipe, see https://github.com/neuralmagic/sparseml for more information (default: None)\\n --dataset_name DATASET_NAME\\n The name of the dataset to use (via the datasets library) (default: None)\\n ...\\n\")), mdx(\"p\", null, \"To learn about the Hugging Face Transformers run-scripts in more detail, refer to \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts\"\n }, \"Hugging Face Transformers documentation\"), \".\"), mdx(\"h2\", null, \"Deploying with DeepSparse\"), mdx(\"p\", null, \"The artifacts of the training process are saved to the directory \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--output_dir\"), \". Once the script terminates, the directory will have everything required to deploy or further modify the model such as:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The recipe (with the full description of the sparsification attributes).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Checkpoint files (saved in the appropriate framework format).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Additional configuration files (e.g., tokenizer, dataset info).\")), mdx(\"h3\", null, \"Exporting the Sparse Model to ONNX\"), mdx(\"p\", null, \"The DeepSparse Engine uses the ONNX format to load neural networks and then deliver breakthrough performance for CPUs by leveraging the sparsity and quantization within a network.\"), mdx(\"p\", null, \"The SparseML installation provides a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.transformers.export_onnx\"), \" command that you can use to load the training model folder and create a new \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file within. Be sure the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_path\"), \" argument points to your trained model.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.export_onnx \\\\\\n --model_path './output' \\\\\\n --task 'token-classification'\\n\")), mdx(\"h3\", null, \"DeepSparse Engine Deployment\"), mdx(\"p\", null, \"Once the model is exported in the ONNX format, it is ready for deployment with the DeepSparse Engine.\"), mdx(\"p\", null, \"The deployment is intuitive due to the DeepSparse Python API.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\ntc_pipeline = Pipeline.create(\\n task=\\\"token-classification\\\",\\n model_path='./output'\\n)\\ninference = tc_pipeline(\\\"We are flying from Texas to California\\\")\\n>> [{'entity': 'LABEL_0', 'word': 'we', ...},\\n {'entity': 'LABEL_0', 'word': 'are', ...},\\n {'entity': 'LABEL_0', 'word': 'flying', ...},\\n {'entity': 'LABEL_0', 'word': 'from', ...},\\n {'entity': 'LABEL_5', 'word': 'texas', ...},\\n {'entity': 'LABEL_0', 'word': 'to', ...},\\n {'entity': 'LABEL_5', 'word': 'california', ...}]\\n\")), mdx(\"p\", null, \"To learn more, refer to the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/transformers/README.md\"\n }, \"appropriate documentation in the DeepSparse repository\"), \".\"), mdx(\"h2\", null, \"Support\"), mdx(\"p\", null, \"For Neural Magic Support, sign up or log in to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Deep Sparse Community Slack\"), \". Bugs, feature requests, or additional questions can also be posted to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/issues\"\n }, \"GitHub Issue Queue\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#token-classification-with-hugging-face-transformers-and-sparseml","title":"Token Classification with Hugging Face Transformers and SparseML","items":[{"url":"#installation","title":"Installation"},{"url":"#tutorials","title":"Tutorials"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#sparsifying-popular-transformer-models","title":"Sparsifying Popular Transformer Models"},{"url":"#sparse-transfer-learning","title":"Sparse Transfer Learning","items":[{"url":"#knowledge-distillation","title":"Knowledge Distillation"}]}]},{"url":"#sparseml-cli","title":"SparseML CLI"},{"url":"#deploying-with-deepsparse","title":"Deploying with DeepSparse","items":[{"url":"#exporting-the-sparse-model-to-onnx","title":"Exporting the Sparse Model to ONNX"},{"url":"#deepsparse-engine-deployment","title":"DeepSparse Engine Deployment"}]},{"url":"#support","title":"Support"}]}]},"parent":{"relativePath":"use-cases/natural-language-processing/token-classification.mdx"},"frontmatter":{"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/use-cases/natural-language-processing/token-classification","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","title":"Token Classification","slug":"/use-cases/natural-language-processing/token-classification","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/natural-language-processing/token-classification.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Token Classification\",\n \"metaTitle\": \"NLP Token Classification\",\n \"metaDescription\": \"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Token Classification with Hugging Face Transformers and SparseML\"), mdx(\"p\", null, \"This page explains how to create and deploy a sparse Transformer for Token Classification.\"), mdx(\"p\", null, \"SparseML Token Classification \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" integrate with Hugging Face\\u2019s Transformers library to enable the sparsification of a large set of transformers models.\\nSparsification is a powerful technique that results in faster, smaller, and cheaper deployable models.\\nA sparse model can be deployed with DeepSparse for GPU-class performance directly on your CPU.\"), mdx(\"p\", null, \"This integration enables you to create a sparse model in two ways. Each option is useful in different situations:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification of Popular Transformer Models\"), \"\\u2014\", \"Sparsify any popular Hugging Face Transformer model from scratch. This enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the Sparsification algorithm.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \"\\u2014\", \"Fine-tune a sparse model (or use one of our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/?page=1&domain=nlp&sub_domain=token_classification\"\n }, \"sparse pre-trained models\"), \") on your own private dataset. This is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.\")), mdx(\"h2\", null, \"Installation\"), mdx(\"p\", null, \"This use case requires installation of:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torch\"), \", and\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Community Edition\"), \".\")), mdx(\"p\", null, \"It is recommended to run Python 3.8 as some of the scripts within the Transformers repository require it.\"), mdx(\"p\", null, \"Transformers will not immediately install with this command. Instead, a sparsification-compatible version of Transformers will install on the first invocation of the Transformers code in SparseML.\"), mdx(\"h2\", null, \"Tutorials\"), mdx(\"p\", null, \"Here is an additional tutorial for this functionality.\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://neuralmagic.com/use-cases/sparse-named-entity-recognition/\"\n }, \"Sparse Named Entity Recognition With BERT\"))), mdx(\"h2\", null, \"Getting Started\"), mdx(\"h3\", null, \"Sparsifying Popular Transformer Models\"), mdx(\"p\", null, \"In the example below, a dense BERT model is sparsified and fine-tuned on the CoNLL-2003 dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.token_classification \\\\\\n --model_name_or_path bert-base-uncased \\\\\\n --dataset_name conll2003 \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir './output' \\\\\\n --cache_dir cache \\\\\\n --distill_teacher disable \\\\\\n --recipe zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/12layer_pruned80_quant-none-vnni\\n\")), mdx(\"p\", null, \"The SparseML train script is a wrapper around a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts\"\n }, \"Hugging Face script\"), \",\\nand usage for most arguments follows the Hugging Face. The most important arguments for SparseML are:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--model_name_or_path\"), \" indicates the model with which to start the pruning process. It can be a SparseZoo stub, Hugging Face model identifier, or a path to a local model.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--recipe\"), \" points to a recipe file containing the sparsification hyperparameters. It can be a SparseZoo stub or a local file. See \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/recipes/creating\"\n }, \"Creating Sparsification Recipes\"), \" for more information.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--dataset_name\"), \" indicates that we should fine-tune on the CoNLL-2003 dataset.\")), mdx(\"p\", null, \"To utilize a custom dataset, use the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--train_file\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--validation_file\"), \" arguments. To use a dataset from the Hugging Face hub, use \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--dataset_name\"), \".\\nSee the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts#run-a-script\"\n }, \"Hugging Face documentation\"), \" for more details.\"), mdx(\"p\", null, \"Run the following to see the full list of options:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ sparseml.transformers.token_classification -h\\n\")), mdx(\"h3\", null, \"Sparse Transfer Learning\"), mdx(\"p\", null, \"SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset.\\nWhile you are free to use your backbone, we encourage you to leverage one of our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"sparse pre-trained models\"), \" to boost your productivity!\"), mdx(\"p\", null, \"In the example below, we fetch a pruned, quantized BERT model, pre-trained on Wikipedia and Bookcorpus datasets. We then fine-tune the model to the CoNLL-2003 dataset.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.token_classification \\\\\\n --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni \\\\\\n --dataset_name conll2003 \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir './output' \\\\\\n --distill_teacher disable \\\\\\n --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-token_classification\\n\")), mdx(\"p\", null, \"This usage of the script is the same as for Sparsifying Popular Transformer Models, above. However, in this example, the starting model is a pruned-quantized version of BERT from SparseZoo (rather than a dense BERT)\\nand the recipe is a transfer learning recipe, which instructs Transformers to maintain sparsity of the base model (rather than\\na recipe that sparsifies a model from scratch).\"), mdx(\"h4\", null, \"Knowledge Distillation\"), mdx(\"p\", null, \"By modifying the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"distill_teacher\"), \" argument, you can enable \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neptune.ai/blog/knowledge-distillation\"\n }, \"Knowledge Distillation\"), \" (KD) functionality. KD provides additional\\nsupport to the sparsification process, enabling higher accuracy at higher levels of sparsity.\"), mdx(\"p\", null, \"For example, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--distill_teacher\"), \" argument can be set to pull a dense model from the SparseZoo to support the training process:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"--distill_teacher zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/base-none\\n\")), mdx(\"p\", null, \"Alternatively, you may decide to train your own dense teacher model. The following command uses the dense BERT base model from the SparseZoo and fine-tunes it on the CoNLL-2003 dataset for use as a dense teacher.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.token_classification \\\\\\n --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none \\\\\\n --dataset_name conll2003 \\\\\\n --do_train \\\\\\n --do_eval \\\\\\n --output_dir models/teacher \\\\\\n --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-token_classification \\\\\\n --distill_teacher zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/base-none\\n\")), mdx(\"p\", null, \"Once the dense teacher is trained, you may reuse it for KD in sparsification or sparse transfer learning.\\nSimply pass the path to the directory with the teacher model to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--distill_teacher\"), \" argument. For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"--distill_teacher models/teacher\\n\")), mdx(\"h2\", null, \"SparseML CLI\"), mdx(\"p\", null, \"The SparseML installation provides a CLI for sparsifying your models for a specific task. Appending the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--help\"), \" argument displays a full list of options for training in SparseML:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.token_classification --help\\n\")), mdx(\"p\", null, \"The output is:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" --model_name_or_path MODEL_NAME_OR_PATH\\n Path to pretrained model, sparsezoo stub. or model identifier from huggingface.co/models (default: None)\\n --distill_teacher DISTILL_TEACHER\\n Teacher model which needs to be a trained NER model (default: None)\\n --cache_dir CACHE_DIR\\n Where to store the pretrained data from huggingface.co (default: None)\\n --recipe RECIPE\\n Path to a SparseML sparsification recipe, see https://github.com/neuralmagic/sparseml for more information (default: None)\\n --dataset_name DATASET_NAME\\n The name of the dataset to use (via the datasets library) (default: None)\\n ...\\n\")), mdx(\"p\", null, \"To learn about the Hugging Face Transformers run-scripts in more detail, refer to \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://huggingface.co/docs/transformers/run_scripts\"\n }, \"Hugging Face Transformers documentation\"), \".\"), mdx(\"h2\", null, \"Deploying with DeepSparse\"), mdx(\"p\", null, \"The artifacts of the training process are saved to the directory \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--output_dir\"), \". Once the script terminates, the directory will have everything required to deploy or further modify the model such as:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The recipe (with the full description of the sparsification attributes)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Checkpoint files (saved in the appropriate framework format)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Additional configuration files (e.g., tokenizer, dataset info)\")), mdx(\"h3\", null, \"Exporting the Sparse Model to ONNX\"), mdx(\"p\", null, \"DeepSparse uses the ONNX format to load neural networks and then deliver breakthrough performance for CPUs by leveraging the sparsity and quantization within a network.\"), mdx(\"p\", null, \"The SparseML installation provides a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.transformers.export_onnx\"), \" command that you can use to load the training model folder and create a new \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file within. Be sure the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_path\"), \" argument points to your trained model.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.transformers.export_onnx \\\\\\n --model_path './output' \\\\\\n --task 'token-classification'\\n\")), mdx(\"h3\", null, \"DeepSparse Deployment\"), mdx(\"p\", null, \"Once the model is exported in the ONNX format, it is ready for deployment with DeepSparse.\"), mdx(\"p\", null, \"The deployment is intuitive due to the DeepSparse Python API.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\ntc_pipeline = Pipeline.create(\\n task=\\\"token-classification\\\",\\n model_path='./output'\\n)\\ninference = tc_pipeline(\\\"We are flying from Texas to California\\\")\\n>> [{'entity': 'LABEL_0', 'word': 'we', ...},\\n {'entity': 'LABEL_0', 'word': 'are', ...},\\n {'entity': 'LABEL_0', 'word': 'flying', ...},\\n {'entity': 'LABEL_0', 'word': 'from', ...},\\n {'entity': 'LABEL_5', 'word': 'texas', ...},\\n {'entity': 'LABEL_0', 'word': 'to', ...},\\n {'entity': 'LABEL_5', 'word': 'california', ...}]\\n\")), mdx(\"p\", null, \"To learn more, refer to the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/transformers/README.md\"\n }, \"appropriate documentation in the DeepSparse repository\"), \".\"), mdx(\"h2\", null, \"Support\"), mdx(\"p\", null, \"For Neural Magic Support, sign up or log into our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ\"\n }, \"Neural Magic Community Slack\"), \". Bugs, feature requests, or additional questions can also be posted to our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparseml/issues\"\n }, \"GitHub Issue Queue\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#token-classification-with-hugging-face-transformers-and-sparseml","title":"Token Classification with Hugging Face Transformers and SparseML","items":[{"url":"#installation","title":"Installation"},{"url":"#tutorials","title":"Tutorials"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#sparsifying-popular-transformer-models","title":"Sparsifying Popular Transformer Models"},{"url":"#sparse-transfer-learning","title":"Sparse Transfer Learning","items":[{"url":"#knowledge-distillation","title":"Knowledge Distillation"}]}]},{"url":"#sparseml-cli","title":"SparseML CLI"},{"url":"#deploying-with-deepsparse","title":"Deploying with DeepSparse","items":[{"url":"#exporting-the-sparse-model-to-onnx","title":"Exporting the Sparse Model to ONNX"},{"url":"#deepsparse-deployment","title":"DeepSparse Deployment"}]},{"url":"#support","title":"Support"}]}]},"parent":{"relativePath":"use-cases/natural-language-processing/token-classification.mdx"},"frontmatter":{"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/object-detection/deploying/page-data.json b/page-data/use-cases/object-detection/deploying/page-data.json index 75a84955099..9923dcb4f61 100644 --- a/page-data/use-cases/object-detection/deploying/page-data.json +++ b/page-data/use-cases/object-detection/deploying/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases/object-detection/deploying","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","title":"Deploying","slug":"/use-cases/object-detection/deploying","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/object-detection/deploying.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Deploying\",\n \"metaTitle\": \"Object Detection Deployments with DeepSparse\",\n \"metaDescription\": \"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploying and Object Detection Model with Ultralytics YOLOv5 and the DeepSparse Engine\"), mdx(\"p\", null, \"This page explains how to deploy an Object Detection model with DeepSparse.\"), mdx(\"p\", null, \"DeepSparse allows accelerated inference, serving, and benchmarking of sparsified \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/ultralytics/yolo\"\n }, \"Ultralytics YOLOv5\"), \" models.\\nThe Ultralytics integration enables you to easily deploy sparsified YOLOv5 onto the DeepSparse Engine for GPU-class performance directly on the CPU.\"), mdx(\"p\", null, \"This integration currently supports the original YOLOv5 and updated V6.1 architectures.\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This section requires the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Server+YOLO Install\"), \".\"), mdx(\"h2\", null, \"Getting Started\"), mdx(\"p\", null, \"Before you start using the DeepSparse Engine, confirm your machine is\\ncompatible with our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deepsparse-engine/hardware-support\"\n }, \"hardware requirements\"), \".\"), mdx(\"h3\", null, \"Model Format\"), mdx(\"p\", null, \"To deploy an image classification model using DeepSparse Engine, pass the model in the ONNX format.\\nThis grants the engine the flexibility to serve any model in a framework-agnostic environment.\"), mdx(\"p\", null, \"Below we describe two possibilities to obtain the required ONNX model.\"), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"Exporting the ONNX File From SparseML\")), mdx(\"p\", null, \"This pathway is relevant if you intend to deploy a model created using the SparseML library.\"), mdx(\"p\", null, \"After training your model with SparseML, locate the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \".pt\"), \" file for the model you'd like to export and run the ONNX export script below.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.export_onnx \\\\\\n --weights path/to/your/model \\\\\\n --dynamic #Allows for dynamic input shape\\n\")), mdx(\"p\", null, \"This creates \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file, in the local filesystem in the directory of your \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"weights\"), \".\"), mdx(\"p\", null, \"The examples below use SparseZoo stubs, but simply pass the path to \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" in place of the stubs to use the local model.\")), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"Using the ONNX File in the SparseZoo\")), mdx(\"p\", null, \"This pathway is relevant if you plan to use an off-the-shelf model from the SparseZoo.\"), mdx(\"p\", null, \"When a SparseZoo stub is passed to the model, DeepSparse downloads the appropriate ONNX and other configuration files\\nfrom the SparseZoo repo. For example, the SparseZoo stub for the pruned (not quantized) YOLOv5 is:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\"\n }, \"zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned-aggressive_98\\n\"))), mdx(\"p\", null, \"The Deployment APIs examples use SparseZoo stubs to highlight this pathway.\"), mdx(\"h2\", null, \"Deployment APIs\"), mdx(\"p\", null, \"DeepSparse provides both a Python \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" API and an out-of-the-box model server\\nthat can be used for end-to-end inference in either Python workflows or as an HTTP endpoint.\\nBoth options provide similar specifications for configurations and support annotation serving for all\\nYOLOv5 models.\"), mdx(\"h3\", null, \"Python API\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" are the default interface for running inference with the DeepSparse Engine.\"), mdx(\"p\", null, \"Once a model is obtained, either through SparseML training or directly from SparseZoo, \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" can be used to easily facilitate end-to-end inference and deployment of the sparsified neural networks.\"), mdx(\"p\", null, \"If no model is specified to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" for a given task, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" will automatically select a pruned and quantized model for the task from the SparseZoo that can be used for accelerated inference. Note that other models in the SparseZoo will have different tradeoffs between speed, size, and accuracy.\"), mdx(\"h3\", null, \"HTTP Server\"), mdx(\"p\", null, \"As an alternative to Python API, the DeepSparse Server allows you to serve ONNX models and pipelines in HTTP.\\nConfiguring the server uses the same parameters and schemas as the\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" enabling simple deployment. Once launched, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs\"), \" endpoint is created with full\\nendpoint descriptions and support for making sample requests.\"), mdx(\"p\", null, \"An example of starting and requesting a DeepSparse Server for YOLOv5 is given below.\"), mdx(\"h2\", null, \"Deployment Examples\"), mdx(\"p\", null, \"The following section includes example usage of the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" and server APIs for\\nvarious image classification models. Each example uses a SparseZoo stub to pull down the model,\\nbut a local path to an ONNX file can also be passed as the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \".\"), mdx(\"h3\", null, \"Python API\"), mdx(\"p\", null, \"If you don't have an image ready, pull a sample image down with:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg\\n\")), mdx(\"p\", null, \"Create a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" and run inference with the following.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\nmodel_stub = \\\"zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned-aggressive_98\\\"\\nimages = [\\\"basilica.jpg\\\"]\\n\\nyolo_pipeline = Pipeline.create(\\n task=\\\"yolo\\\",\\n model_path=model_stub,\\n)\\n\\npipeline_outputs = yolo_pipeline(images=images, iou_thres=0.6, conf_thres=0.001)\\n\")), mdx(\"h3\", null, \"Annotate CLI\"), mdx(\"p\", null, \"You can also use the annotate command to have the engine save an annotated photo on disk.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.object_detection.annotate --source basilica.jpg #Try --source 0 to annotate your live webcam feed\\n\")), mdx(\"p\", null, \"Running the above command will create an \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"annotation-results\"), \" folder and save the annotated image inside.\"), mdx(\"p\", null, \"If a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_filepath\"), \" arg isn't provided, then \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned-aggressive_96\"), \" will be used by default.\"), mdx(\"h3\", null, \"HTTP Server\"), mdx(\"p\", null, \"Spinning up:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task yolo \\\\\\n --model_path \\\"zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94\\\"\\n\")), mdx(\"p\", null, \"Making a request:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\nimport json\\n\\nurl = 'http://0.0.0.0:5543/predict/from_files'\\npath = ['basilica.jpg'] # list of images for inference\\nfiles = [('request', open(img, 'rb')) for img in path]\\nresp = requests.post(url=url, files=files)\\nannotations = json.loads(resp.text) # dictionary of annotation results\\nbounding_boxes = annotations[\\\"boxes\\\"]\\nlabels = annotations[\\\"labels\\\"]\\n\")), mdx(\"h2\", null, \"Benchmarking\"), mdx(\"p\", null, \"The mission of Neural Magic is to enable GPU-class inference performance on commodity CPUs. Want to find out how fast our sparse YOLOv5 ONNX models perform inference?\\nYou can quickly do benchmarking tests on your own with a single CLI command!\"), mdx(\"p\", null, \"You only need to provide the model path of a SparseZoo ONNX model or your own local ONNX model to get started:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.benchmark \\\\\\n zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94 \\\\\\n --scenario sync\\n\\n> Original Model Path: zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94\\n> Batch Size: 1\\n> Scenario: sync\\n> Throughput (items/sec): 74.0355\\n> Latency Mean (ms/batch): 13.4924\\n> Latency Median (ms/batch): 13.4177\\n> Latency Std (ms/batch): 0.2166\\n> Iterations: 741\\n\")), mdx(\"p\", null, \"To learn more about benchmarking, refer to the appropriate documentation.\\nAlso, check out our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark\"\n }, \"Benchmarking Tutorial on GitHub\"), \"!\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploying-and-object-detection-model-with-ultralytics-yolov5-and-the-deepsparse-engine","title":"Deploying and Object Detection Model with Ultralytics YOLOv5 and the DeepSparse Engine","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#model-format","title":"Model Format"}]},{"url":"#deployment-apis","title":"Deployment APIs","items":[{"url":"#python-api","title":"Python API"},{"url":"#http-server","title":"HTTP Server"}]},{"url":"#deployment-examples","title":"Deployment Examples","items":[{"url":"#python-api-1","title":"Python API"},{"url":"#annotate-cli","title":"Annotate CLI"},{"url":"#http-server-1","title":"HTTP Server"}]},{"url":"#benchmarking","title":"Benchmarking"}]}]},"parent":{"relativePath":"use-cases/object-detection/deploying.mdx"},"frontmatter":{"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/use-cases/object-detection/deploying","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","title":"Deploying","slug":"/use-cases/object-detection/deploying","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/object-detection/deploying.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Deploying\",\n \"metaTitle\": \"Object Detection Deployments with DeepSparse\",\n \"metaDescription\": \"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploying an Object Detection Model with Ultralytics YOLOv5 and DeepSparse\"), mdx(\"p\", null, \"This page explains how to deploy an Object Detection model with DeepSparse.\"), mdx(\"p\", null, \"DeepSparse allows accelerated inference, serving, and benchmarking of sparsified \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/ultralytics/yolo\"\n }, \"Ultralytics YOLOv5\"), \" models.\\nThe Ultralytics integration enables you to easily deploy sparsified YOLOv5 with DeepSparse for GPU-class performance directly on the CPU.\"), mdx(\"p\", null, \"This integration currently supports the original YOLOv5 and updated V6.1 architectures.\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This use case requires the installation of \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Server+YOLO\"), \".\"), mdx(\"h2\", null, \"Getting Started\"), mdx(\"p\", null, \"Before you start using DeepSparse, confirm your machine is\\ncompatible with our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deepsparse-engine/hardware-support\"\n }, \"hardware requirements\"), \".\"), mdx(\"h3\", null, \"Model Format\"), mdx(\"p\", null, \"To deploy an image classification model using DeepSparse, pass the model in the ONNX format.\\nThis grants the DeepSparse the flexibility to serve any model in a framework-agnostic environment.\"), mdx(\"p\", null, \"Below we describe two possibilities to obtain the required ONNX model.\"), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"Exporting the ONNX File From SparseML\")), mdx(\"p\", null, \"This pathway is relevant if you intend to deploy a model created using the SparseML library.\"), mdx(\"p\", null, \"After training your model with SparseML, locate the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \".pt\"), \" file for the model you'd like to export and run the ONNX export script below.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.export_onnx \\\\\\n --weights path/to/your/model \\\\\\n --dynamic #Allows for dynamic input shape\\n\")), mdx(\"p\", null, \"This creates a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file in the local filesystem in the directory of your \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"weights\"), \".\"), mdx(\"p\", null, \"The examples below use SparseZoo stubs, but simply pass the path to \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" in place of the stubs to use the local model.\")), mdx(\"details\", null, mdx(\"summary\", null, mdx(\"b\", null, \"Using the ONNX File in the SparseZoo\")), mdx(\"p\", null, \"This pathway is relevant if you plan to use an off-the-shelf model from the SparseZoo.\"), mdx(\"p\", null, \"When a SparseZoo stub is passed to the model, DeepSparse downloads the appropriate ONNX and other configuration files\\nfrom the SparseZoo repository. For example, the SparseZoo stub for the pruned (not quantized) YOLOv5 is:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\"\n }, \"zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned-aggressive_98\\n\"))), mdx(\"p\", null, \"The deployment API examples use SparseZoo stubs to highlight this pathway.\"), mdx(\"h2\", null, \"Deployment APIs\"), mdx(\"p\", null, \"DeepSparse provides both a Python \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" API and an out-of-the-box model server\\nthat can be used for end-to-end inference in either Python workflows or as an HTTP endpoint.\\nBoth options provide similar specifications for configurations and support annotation serving for all\\nYOLOv5 models.\"), mdx(\"h3\", null, \"Python API\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" is the default interface for running inference with DeepSparse.\"), mdx(\"p\", null, \"Once a model is obtained, either through SparseML training or directly from SparseZoo, \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" can be used to easily facilitate end-to-end inference and deployment of the sparsified neural networks.\"), mdx(\"p\", null, \"If no model is specified to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" for a given task, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" will automatically select a pruned and quantized model for the task from the SparseZoo that can be used for accelerated inference. Note that other models in the SparseZoo will have different tradeoffs between speed, size, and accuracy.\"), mdx(\"h3\", null, \"HTTP Server\"), mdx(\"p\", null, \"As an alternative to the Python API, DeepSparse Server allows you to serve ONNX models and pipelines in HTTP.\\nConfiguring the server uses the same parameters and schemas as the\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \", enabling simple deployment. Once launched, a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs\"), \" endpoint is created with full\\nendpoint descriptions and support for making sample requests.\"), mdx(\"p\", null, \"An example of starting and requesting a DeepSparse Server for YOLOv5 is given below.\"), mdx(\"h2\", null, \"Deployment Examples\"), mdx(\"p\", null, \"The following section includes example usage of the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" and server APIs for\\nvarious image classification models. Each example uses a SparseZoo stub to pull down the model,\\nbut a local path to an ONNX file can also be passed as the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \".\"), mdx(\"h3\", null, \"Python API\"), mdx(\"p\", null, \"If you don't have an image ready, pull a sample image down with:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg\\n\")), mdx(\"p\", null, \"Create a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipeline\"), \" and run inference with the following.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse import Pipeline\\n\\nmodel_stub = \\\"zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned-aggressive_98\\\"\\nimages = [\\\"basilica.jpg\\\"]\\n\\nyolo_pipeline = Pipeline.create(\\n task=\\\"yolo\\\",\\n model_path=model_stub,\\n)\\n\\npipeline_outputs = yolo_pipeline(images=images, iou_thres=0.6, conf_thres=0.001)\\n\")), mdx(\"h3\", null, \"Annotate CLI\"), mdx(\"p\", null, \"You can also use the annotate command to have the Engine save an annotated photo on disk.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.object_detection.annotate --source basilica.jpg #Try --source 0 to annotate your live webcam feed\\n\")), mdx(\"p\", null, \"Running the above command will create an \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"annotation-results\"), \" folder and save the annotated image inside.\"), mdx(\"p\", null, \"If a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--model_filepath\"), \" argument is not provided, \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned-aggressive_96\"), \" will be used by default.\"), mdx(\"h3\", null, \"HTTP Server\"), mdx(\"p\", null, \"Spinning up:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task yolo \\\\\\n --model_path \\\"zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94\\\"\\n\")), mdx(\"p\", null, \"Making a request:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\nimport json\\n\\nurl = 'http://0.0.0.0:5543/predict/from_files'\\npath = ['basilica.jpg'] # list of images for inference\\nfiles = [('request', open(img, 'rb')) for img in path]\\nresp = requests.post(url=url, files=files)\\nannotations = json.loads(resp.text) # dictionary of annotation results\\nbounding_boxes = annotations[\\\"boxes\\\"]\\nlabels = annotations[\\\"labels\\\"]\\n\")), mdx(\"h2\", null, \"Benchmarking\"), mdx(\"p\", null, \"The mission of Neural Magic is to enable GPU-class inference performance on commodity CPUs. Want to find out how fast our sparse YOLOv5 ONNX models perform inference?\\nYou can quickly do benchmarking tests on your own with a single CLI command!\"), mdx(\"p\", null, \"You only need to provide the model path of a SparseZoo ONNX model or your own local ONNX model to get started:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.benchmark \\\\\\n zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94 \\\\\\n --scenario sync\\n\\n> Original Model Path: zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94\\n> Batch Size: 1\\n> Scenario: sync\\n> Throughput (items/sec): 74.0355\\n> Latency Mean (ms/batch): 13.4924\\n> Latency Median (ms/batch): 13.4177\\n> Latency Std (ms/batch): 0.2166\\n> Iterations: 741\\n\")), mdx(\"p\", null, \"To learn more about benchmarking, refer to the appropriate documentation.\\nAlso, check out our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/benchmark\"\n }, \"Benchmarking Tutorial on GitHub\"), \".\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploying-an-object-detection-model-with-ultralytics-yolov5-and-deepsparse","title":"Deploying an Object Detection Model with Ultralytics YOLOv5 and DeepSparse","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#model-format","title":"Model Format"}]},{"url":"#deployment-apis","title":"Deployment APIs","items":[{"url":"#python-api","title":"Python API"},{"url":"#http-server","title":"HTTP Server"}]},{"url":"#deployment-examples","title":"Deployment Examples","items":[{"url":"#python-api-1","title":"Python API"},{"url":"#annotate-cli","title":"Annotate CLI"},{"url":"#http-server-1","title":"HTTP Server"}]},{"url":"#benchmarking","title":"Benchmarking"}]}]},"parent":{"relativePath":"use-cases/object-detection/deploying.mdx"},"frontmatter":{"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/object-detection/page-data.json b/page-data/use-cases/object-detection/page-data.json index b0c466c16ef..13928525611 100644 --- a/page-data/use-cases/object-detection/page-data.json +++ b/page-data/use-cases/object-detection/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases/object-detection","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","title":"Object Detection","slug":"/use-cases/object-detection","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/object-detection.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Object Detection\",\n \"metaTitle\": \"Object Detection\",\n \"metaDescription\": \"Object Detection with Ultralytics YOLOv5\",\n \"index\": 3000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Object Detection with Ultralytics YOLOv5\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#object-detection-with-ultralytics-yolov5","title":"Object Detection with Ultralytics YOLOv5"}]},"parent":{"relativePath":"use-cases/object-detection.mdx"},"frontmatter":{"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5","index":3000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/use-cases/object-detection","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","title":"Object Detection","slug":"/use-cases/object-detection","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/object-detection.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Object Detection\",\n \"metaTitle\": \"Object Detection\",\n \"metaDescription\": \"Object Detection with Ultralytics YOLOv5\",\n \"index\": 3000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Object Detection with Ultralytics YOLOv5\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#object-detection-with-ultralytics-yolov5","title":"Object Detection with Ultralytics YOLOv5"}]},"parent":{"relativePath":"use-cases/object-detection.mdx"},"frontmatter":{"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5","index":3000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/object-detection/sparsifying/page-data.json b/page-data/use-cases/object-detection/sparsifying/page-data.json index a927d8b5e0e..9474ada4d1d 100644 --- a/page-data/use-cases/object-detection/sparsifying/page-data.json +++ b/page-data/use-cases/object-detection/sparsifying/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases/object-detection/sparsifying","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","title":"Sparsifying","slug":"/use-cases/object-detection/sparsifying","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/object-detection/sparsifying.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Sparsifying\",\n \"metaTitle\": \"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML\",\n \"metaDescription\": \"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Sparsifying Object Detection Models with Ultralytics YOLOv5 and SparseML\"), mdx(\"p\", null, \"This page explains how to create a sparse object detection model.\"), mdx(\"p\", null, \"SparseML is integrated with the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/ultralytics/yolov5\"\n }, \"ultralytics/yolov5\"), \" repository to enable simple creation of sparse YOLOv5 and YOLOv5-P6 models.\\nAfter training, the model can be deployed with Neural Magic's DeepSparse Engine. The engine enables inference with GPU-class performance directly on your CPU.\"), mdx(\"p\", null, \"This integration enables you to create a sparse model in two ways:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification of YOLOv5 Models\"), \" - easily sparsify any of the YOLOV5 and YOLOV5-P6 models, from YOLOv5n to YOLOv5x models.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \" - fine-tune a sparse backbone model (or use one of our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/?domain=cv&sub_domain=detection&page=1\"\n }, \"sparse pre-trained models\"), \") on your own, private dataset.\")), mdx(\"p\", null, \"Each option is useful in different situations:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification from Scratch\"), \" enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the Sparsification algorithm.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \" is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.\")), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This section requires \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torchvision Install\"), \".\"), mdx(\"p\", null, \"Note: YOLOv5 will not immediately install with this command. Instead, a sparsification-compatible version of YOLOv5 will install on the first invocation of the YOLOv5 code in SparseML.\"), mdx(\"h2\", null, \"Tutorials\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/tutorials/sparsifying_yolov5_using_recipes.md\"\n }, \"Sparsifying YOLOv5 Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/tutorials/yolov5_sparse_transfer_learning.md\"\n }, \"Sparse Transfer Learning With YOLOv5\"))), mdx(\"h2\", null, \"Getting Started\"), mdx(\"h3\", null, \"Sparsifying YOLOv5\"), mdx(\"p\", null, \"In the example below, a dense YOLOv5s model pre-trained on COCO is sparsified and fine-tuned further COCO.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.train \\\\\\n --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/base-none \\\\\\n --data coco.yaml \\\\\\n --hyp data/hyps/hyp.scratch.yaml \\\\\\n --recipe zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94\\n\")), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--weights\"), \" argument indicates which model to start the pruning process from. It can be a SparseZoo stub or a local path to a model.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--data\"), \" specifies the dataset to be used. You may sparsify your model while training on your own, private (downstream) dataset or while continuing training with the original (upstream) dataset. The \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/src/sparseml/yolov5/data/coco.yaml\"\n }, \"configuration file\"), \" for COCO is included in the yolov5 integration and can be used as an example for a custom dataset.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--recipe\"), \" encodes the hyperparameters of the pruning process. It can be a SparseZoo stub or a local YAML file. See \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/recipes/creating\"\n }, \"here\"), \" for a detailed discussion of recipes.\")), mdx(\"h3\", null, \"Sparse Transfer Learning\"), mdx(\"p\", null, \"SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset.\\nWhile you are free to use your backbone, we encourage you to leverage one of our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"sparse pre-trained models\"), \" to boost your productivity!\"), mdx(\"p\", null, \"The command below fetches a pre-sparsified YOLOv5s model, trained on the COCO dataset. It then fine-tunes the model to the VOC dataset while maintaining sparsity.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.train \\\\\\n --data VOC.yaml \\\\\\n --cfg models_v5.0/yolov5s.yaml \\\\\\n --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94?recipe_type=transfer \\\\\\n --hyp data/hyps/hyp.finetune.yaml \\\\\\n --recipe zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned-aggressive_96\\n\")), mdx(\"h2\", null, \"SparseML CLI\"), mdx(\"p\", null, \"The SparseML installation provides a CLI for running YOLOv5 scripts with SparseML capability. The full set of commands is included below:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.train\\nsparseml.yolov5.validation\\nsparseml.yolov5.export_onnx\\nsparseml.yolov5.val_onnx\\n\")), mdx(\"p\", null, \"Appending the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--help\"), \" argument displays a full list of options for the command:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.train --help\\n\")), mdx(\"p\", null, \"output:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\"\n }, \"usage: sparseml.yolov5.train [-h] [--weights WEIGHTS] [--cfg CFG] [--data DATA] [--hyp HYP] [--epochs EPOCHS] [--batch-size BATCH_SIZE] [--imgsz IMGSZ] [--rect]\\n [--resume [RESUME]] [--nosave] [--noval] [--noautoanchor] [--evolve [EVOLVE]] [--bucket BUCKET] [--cache [CACHE]] [--image-weights]\\n [--device DEVICE] [--multi-scale] [--single-cls] [--optimizer {SGD,Adam,AdamW}] [--sync-bn] [--workers WORKERS] [--project PROJECT]\\n [--name NAME] [--exist-ok] [--quad] [--cos-lr] [--label-smoothing LABEL_SMOOTHING] [--patience PATIENCE] [--freeze FREEZE [FREEZE ...]]\\n [--save-period SAVE_PERIOD] [--local_rank LOCAL_RANK] [--entity ENTITY] [--upload_dataset [UPLOAD_DATASET]]\\n [--bbox_interval BBOX_INTERVAL] [--artifact_alias ARTIFACT_ALIAS] [--recipe RECIPE] [--disable-ema] [--max-train-steps MAX_TRAIN_STEPS]\\n [--max-eval-steps MAX_EVAL_STEPS] [--one-shot] [--num-export-samples NUM_EXPORT_SAMPLES]\\n\\noptional arguments:\\n -h, --help show this help message and exit\\n --weights WEIGHTS initial weights path\\n --cfg CFG model.yaml path\\n --data DATA dataset.yaml path\\n --hyp HYP hyperparameters path\\n --epochs EPOCHS\\n --batch-size BATCH_SIZE\\n total batch size for all GPUs, -1 for autobatch\\n...\\n\")), mdx(\"h2\", null, \"Exporing to ONNX\"), mdx(\"h3\", null, \"Exporting the Sparse Model to ONNX\"), mdx(\"p\", null, \"The DeepSparse Engine accepts ONNX formats and is engineered to significantly speed up inference on CPUs for the sparsified models from this integration.\"), mdx(\"p\", null, \"The SparseML installation provides a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.yolov5.export_onnx\"), \" command that you can use to load the training model folder and create a new \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file within. The export process is modified such that the quantized and pruned models are corrected and folded properly. Be sure the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--weights\"), \" argument points to your trained model.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.export_onnx \\\\\\n --weights path/to/weights.pt \\\\\\n --dynamic\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparsifying-object-detection-models-with-ultralytics-yolov5-and-sparseml","title":"Sparsifying Object Detection Models with Ultralytics YOLOv5 and SparseML","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#tutorials","title":"Tutorials"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#sparsifying-yolov5","title":"Sparsifying YOLOv5"},{"url":"#sparse-transfer-learning","title":"Sparse Transfer Learning"}]},{"url":"#sparseml-cli","title":"SparseML CLI"},{"url":"#exporing-to-onnx","title":"Exporing to ONNX","items":[{"url":"#exporting-the-sparse-model-to-onnx","title":"Exporting the Sparse Model to ONNX"}]}]}]},"parent":{"relativePath":"use-cases/object-detection/sparsifying.mdx"},"frontmatter":{"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/use-cases/object-detection/sparsifying","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","title":"Sparsifying","slug":"/use-cases/object-detection/sparsifying","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases/object-detection/sparsifying.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Sparsifying\",\n \"metaTitle\": \"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML\",\n \"metaDescription\": \"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Sparsifying Object Detection Models with Ultralytics YOLOv5 and SparseML\"), mdx(\"p\", null, \"This page explains how to create a sparse object detection model.\"), mdx(\"p\", null, \"SparseML is integrated with the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/ultralytics/yolov5\"\n }, \"ultralytics/yolov5\"), \" repository to enable simple creation of sparse YOLOv5 and YOLOv5-P6 models.\\nAfter training, the model can be deployed with Neural Magic's DeepSparse. The engine enables inference with GPU-class performance directly on your CPU.\"), mdx(\"p\", null, \"This integration enables you to create a sparse model in two ways. Each option is useful in different situations:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparsification of YOLOv5 Models\"), \"\\u2014\", \"Easily sparsify any of the YOLOV5 and YOLOV5-P6 models, from YOLOv5n to YOLOv5x models. This enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the Sparsification algorithm.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Sparse Transfer Learning\"), \"\\u2014\", \"Fine-tune a sparse backbone model (or use one of our \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://sparsezoo.neuralmagic.com/?domain=cv&sub_domain=detection&page=1\"\n }, \"sparse pre-trained models\"), \") on your own, private dataset. This is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.\")), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This use case requires installation of \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML Torchvision\"), \".\"), mdx(\"p\", null, \" \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Note:\"), \" YOLOv5 will not immediately install with this command. Instead, a sparsification-compatible version of YOLOv5 will install on the first invocation of the YOLOv5 code in SparseML.\"), mdx(\"h2\", null, \"Tutorials\"), mdx(\"p\", null, \"Here are additional tutorials for this functionality:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/tutorials/sparsifying_yolov5_using_recipes.md\"\n }, \"Sparsifying YOLOv5 Using Recipes\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/tutorials/yolov5_sparse_transfer_learning.md\"\n }, \"Sparse Transfer Learning With YOLOv5\"))), mdx(\"h2\", null, \"Getting Started\"), mdx(\"h3\", null, \"Sparsifying YOLOv5\"), mdx(\"p\", null, \"In the example below, a dense YOLOv5s model pre-trained on COCO is sparsified and fine-tuned further with COCO.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.train \\\\\\n --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/base-none \\\\\\n --data coco.yaml \\\\\\n --hyp data/hyps/hyp.scratch.yaml \\\\\\n --recipe zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94\\n\")), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--weights\"), \" indicates the checkpoint from which the pruning process should start. It can be a SparseZoo stub or a local path to a model.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--data\"), \" specifies the dataset to be used. You may sparsify your model while training on your own, private (downstream) dataset or while continuing training with the original (upstream) dataset. The \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/sparseml/blob/main/src/sparseml/yolov5/data/coco.yaml\"\n }, \"configuration file\"), \" for COCO is included in the YOLOv5 integration and can be used as an example for a custom dataset.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"--recipe\"), \" encodes the hyperparameters of the pruning process. It can be a SparseZoo stub or a local YAML file. See \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"/user-guide/recipes/creating\"\n }, \"Creating Sparsification Recipes\"), \" for more information.\")), mdx(\"h3\", null, \"Sparse Transfer Learning\"), mdx(\"p\", null, \"SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset.\\nWhile you are free to use your backbone, we encourage you to leverage one of our \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com\"\n }, \"sparse pre-trained models\"), \" to boost your productivity!\"), mdx(\"p\", null, \"The command below fetches a pre-sparsified YOLOv5s model, trained on the COCO dataset. It then fine-tunes the model to the VOC dataset while maintaining sparsity.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.train \\\\\\n --data VOC.yaml \\\\\\n --cfg models_v5.0/yolov5s.yaml \\\\\\n --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94?recipe_type=transfer \\\\\\n --hyp data/hyps/hyp.finetune.yaml \\\\\\n --recipe zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned-aggressive_96\\n\")), mdx(\"h2\", null, \"SparseML CLI\"), mdx(\"p\", null, \"The SparseML installation provides a CLI for running YOLOv5 scripts with SparseML capability. The full set of commands is included below:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.train\\nsparseml.yolov5.validation\\nsparseml.yolov5.export_onnx\\nsparseml.yolov5.val_onnx\\n\")), mdx(\"p\", null, \"Appending the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--help\"), \" argument displays a full list of options for the command:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.train --help\\n\")), mdx(\"p\", null, \"The output is:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\"\n }, \"usage: sparseml.yolov5.train [-h] [--weights WEIGHTS] [--cfg CFG] [--data DATA] [--hyp HYP] [--epochs EPOCHS] [--batch-size BATCH_SIZE] [--imgsz IMGSZ] [--rect]\\n [--resume [RESUME]] [--nosave] [--noval] [--noautoanchor] [--evolve [EVOLVE]] [--bucket BUCKET] [--cache [CACHE]] [--image-weights]\\n [--device DEVICE] [--multi-scale] [--single-cls] [--optimizer {SGD,Adam,AdamW}] [--sync-bn] [--workers WORKERS] [--project PROJECT]\\n [--name NAME] [--exist-ok] [--quad] [--cos-lr] [--label-smoothing LABEL_SMOOTHING] [--patience PATIENCE] [--freeze FREEZE [FREEZE ...]]\\n [--save-period SAVE_PERIOD] [--local_rank LOCAL_RANK] [--entity ENTITY] [--upload_dataset [UPLOAD_DATASET]]\\n [--bbox_interval BBOX_INTERVAL] [--artifact_alias ARTIFACT_ALIAS] [--recipe RECIPE] [--disable-ema] [--max-train-steps MAX_TRAIN_STEPS]\\n [--max-eval-steps MAX_EVAL_STEPS] [--one-shot] [--num-export-samples NUM_EXPORT_SAMPLES]\\n\\noptional arguments:\\n -h, --help show this help message and exit\\n --weights WEIGHTS initial weights path\\n --cfg CFG model.yaml path\\n --data DATA dataset.yaml path\\n --hyp HYP hyperparameters path\\n --epochs EPOCHS\\n --batch-size BATCH_SIZE\\n total batch size for all GPUs, -1 for autobatch\\n...\\n\")), mdx(\"h2\", null, \"Exporing to ONNX\"), mdx(\"h3\", null, \"Exporting the Sparse Model to ONNX\"), mdx(\"p\", null, \"DeepSparse accepts ONNX formats and is engineered to significantly speed up inference on CPUs for the sparsified models from this integration.\"), mdx(\"p\", null, \"The SparseML installation provides a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.yolov5.export_onnx\"), \" command that you can use to load the training model folder and create a new \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model.onnx\"), \" file within. The export process is modified such that the quantized and pruned models are corrected and folded properly. Be sure the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--weights\"), \" argument points to your trained model.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"sparseml.yolov5.export_onnx \\\\\\n --weights path/to/weights.pt \\\\\\n --dynamic\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#sparsifying-object-detection-models-with-ultralytics-yolov5-and-sparseml","title":"Sparsifying Object Detection Models with Ultralytics YOLOv5 and SparseML","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#tutorials","title":"Tutorials"},{"url":"#getting-started","title":"Getting Started","items":[{"url":"#sparsifying-yolov5","title":"Sparsifying YOLOv5"},{"url":"#sparse-transfer-learning","title":"Sparse Transfer Learning"}]},{"url":"#sparseml-cli","title":"SparseML CLI"},{"url":"#exporing-to-onnx","title":"Exporing to ONNX","items":[{"url":"#exporting-the-sparse-model-to-onnx","title":"Exporting the Sparse Model to ONNX"}]}]}]},"parent":{"relativePath":"use-cases/object-detection/sparsifying.mdx"},"frontmatter":{"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/use-cases/page-data.json b/page-data/use-cases/page-data.json index 70172181b54..b52f1d2e653 100644 --- a/page-data/use-cases/page-data.json +++ b/page-data/use-cases/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/use-cases","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","title":"Use Cases","slug":"/use-cases","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Use Cases\",\n \"metaTitle\": \"Use Cases\",\n \"metaDescription\": \"Use Cases for the Neural Magic DeepSparse Platform\",\n \"index\": 2000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Get Started\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#get-started","title":"Get Started"}]},"parent":{"relativePath":"use-cases.mdx"},"frontmatter":{"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform","index":2000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/use-cases","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","title":"Use Cases","slug":"/use-cases","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/use-cases.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Use Cases\",\n \"metaTitle\": \"Use Cases\",\n \"metaDescription\": \"Use Cases for the Neural Magic Platform\",\n \"index\": 2000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Use Cases\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#use-cases","title":"Use Cases"}]},"parent":{"relativePath":"use-cases.mdx"},"frontmatter":{"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform","index":2000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/deepsparse-engine/benchmarking/page-data.json b/page-data/user-guide/deepsparse-engine/benchmarking/page-data.json index 37a7f55cd40..4cb89713699 100644 --- a/page-data/user-guide/deepsparse-engine/benchmarking/page-data.json +++ b/page-data/user-guide/deepsparse-engine/benchmarking/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deepsparse-engine/benchmarking","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","title":"Benchmarking","slug":"/user-guide/deepsparse-engine/benchmarking","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deepsparse-engine/benchmarking.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Benchmarking\",\n \"metaTitle\": \"Benchmarking ONNX Models with the DeepSparse Engine\",\n \"metaDescription\": \"Benchmarking ONNX Models with the DeepSparse Engine\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Benchmarking ONNX Models with the DeepSparse Engine\"), mdx(\"p\", null, \"This page explains how to use the DeepSparse Benchmarking utilities.\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.benchmark\"), \" is a command-line (CLI) tool for benchmarking the DeepSparse Engine with ONNX models.\\nThe tool will parse the arguments, download/compile the network into the engine, generate input tensors, and\\nexecute the model depending on the chosen scenario. By default, it will choose a multi-stream or asynchronous mode to optimize for throughput.\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This page requires the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse General Install\"), \".\"), mdx(\"h2\", null, \"Quickstart\"), mdx(\"p\", null, \"To benchmark a dense BERT ONNX model fine-tuned on the SST2 dataset (which is identified by its SparseZoo stub), run the following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.benchmark zoo:nlp/text_classification/bert-base/pytorch/huggingface/sst2/base-none\\n\")), mdx(\"h2\", null, \"Usage\"), mdx(\"p\", null, \"In most cases, good performance will be found in the default options so it can be as simple as running the command with a SparseZoo model stub or your local ONNX model.\\nHowever, if you prefer to customize benchmarking for your personal use case, you can run \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.benchmark -h\"), \" or with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--help\"), \" to view your usage options:\"), mdx(\"p\", null, \"CLI Arguments:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark --help\\n\\n> positional arguments:\\n>\\n> model_path Path to an ONNX model file or SparseZoo model stub.\\n>\\n> optional arguments:\\n>\\n> -h, --help show this help message and exit.\\n>\\n> -b BATCH_SIZE, --batch_size BATCH_SIZE\\n> The batch size to run the analysis for. Must be\\n> greater than 0.\\n>\\n> -shapes INPUT_SHAPES, --input_shapes INPUT_SHAPES\\n> Override the shapes of the inputs, i.e. -shapes\\n> \\\"[1,2,3],[4,5,6],[7,8,9]\\\" results in input0=[1,2,3]\\n> input1=[4,5,6] input2=[7,8,9].\\n>\\n> -ncores NUM_CORES, --num_cores NUM_CORES\\n> The number of physical cores to run the analysis on,\\n> defaults to all physical cores available on the system.\\n>\\n> -s {async,sync,elastic}, --scenario {async,sync,elastic}\\n> Choose between using the async, sync and elastic\\n> scenarios. Sync and async are similar to the single-\\n> stream/multi-stream scenarios. Elastic is a newer\\n> scenario that behaves similarly to the async scenario\\n> but uses a different scheduling backend. Default value\\n> is async.\\n>\\n> -t TIME, --time TIME\\n> The number of seconds the benchmark will run. Default\\n> is 10 seconds.\\n>\\n> -w WARMUP_TIME, --warmup_time WARMUP_TIME\\n> The number of seconds the benchmark will warmup before\\n> running.Default is 2 seconds.\\n>\\n> -nstreams NUM_STREAMS, --num_streams NUM_STREAMS\\n> The number of streams that will submit inferences in\\n> parallel using async scenario. Default is\\n> automatically determined for given hardware and may be\\n> sub-optimal.\\n>\\n> -pin {none,core,numa}, --thread_pinning {none,core,numa}\\n> Enable binding threads to cores ('core' the default),\\n> threads to cores on sockets ('numa'), or disable\\n> ('none').\\n>\\n> -e {deepsparse,onnxruntime}, --engine {deepsparse,onnxruntime}\\n> Inference engine backend to run eval on. Choices are\\n> 'deepsparse', 'onnxruntime'. Default is 'deepsparse'.\\n>\\n> -q, --quiet Lower logging verbosity.\\n>\\n> -x EXPORT_PATH, --export_path EXPORT_PATH\\n> Store results into a JSON file.\\n\")), mdx(\"p\", null, \"\\uD83D\\uDCA1\", mdx(\"strong\", {\n parentName: \"p\"\n }, \"PRO TIP\"), \"\\uD83D\\uDCA1: save your benchmark results in a convenient JSON file!\"), mdx(\"p\", null, \"Example CLI command for benchmarking an ONNX model from the SparseZoo and saving the results to a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"benchmark.json\"), \" file:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.benchmark zoo:nlp/text_classification/bert-base/pytorch/huggingface/sst2/base-none -x benchmark.json\\n\")), mdx(\"h3\", null, \"Sample CLI Argument Configurations\"), mdx(\"p\", null, \"To run a sparse FP32 MobileNetV1 at batch size 16 for 10 seconds for throughput using 8 streams of requests:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.benchmark zoo:cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/pruned-moderate --batch_size 16 --time 10 --scenario async --num_streams 8\\n\")), mdx(\"p\", null, \"To run a sparse quantized INT8 6-layer BERT at batch size 1 for latency:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_quant_6layers-aggressive_96 --batch_size 1 --scenario sync\\n\")), mdx(\"h2\", null, \"\\u26A1 Inference Scenarios\"), mdx(\"h3\", null, \"Synchronous (Single-stream) Scenario\"), mdx(\"p\", null, \"Set by the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--scenario sync\"), \" argument, the goal metric is latency per batch (ms/batch). This scenario submits a single inference request at a time to the engine, recording the time taken for a request to return an output. This mimics an edge deployment scenario.\"), mdx(\"p\", null, \"The latency value reported is the mean of all latencies recorded during the execution period for the given batch size.\"), mdx(\"h3\", null, \"Asynchronous (Multi-stream) Scenario\"), mdx(\"p\", null, \"Set by the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--scenario async\"), \" argument, the goal metric is throughput in items per second (i/s). This scenario submits \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--num_streams\"), \" concurrent inference requests to the engine, recording the time taken for each request to return an output. This mimics a model server or bulk batch deployment scenario.\"), mdx(\"p\", null, \"The throughput value reported comes from measuring the number of finished inferences within the execution time and the batch size.\"), mdx(\"h3\", null, \"Example Benchmarking Output of Synchronous vs. Asynchronous\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"BERT 3-layer FP32 Sparse Throughput\")), mdx(\"p\", null, \"No need to add \", mdx(\"em\", {\n parentName: \"p\"\n }, \"scenario\"), \" argument since \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"async\"), \" is the default option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83\\n\\n> [INFO benchmark_model.py:202 ] Thread pinning to cores enabled\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 0.10.0 (9bba6971) (optimized) (system=avx512, binary=avx512)\\n> [INFO benchmark_model.py:247 ] deepsparse.engine.Engine:\\n> onnx_file_path: /home/mgoin/.cache/sparsezoo/c89f3128-4b87-41ae-91a3-eae8aa8c5a7c/model.onnx\\n> batch_size: 1\\n> num_cores: 18\\n> scheduler: Scheduler.multi_stream\\n> cpu_avx_type: avx512\\n> cpu_vnni: False\\n> [INFO onnx.py:176 ] Generating input 'input_ids', type = int64, shape = [1, 384]\\n> [INFO onnx.py:176 ] Generating input 'attention_mask', type = int64, shape = [1, 384]\\n> [INFO onnx.py:176 ] Generating input 'token_type_ids', type = int64, shape = [1, 384]\\n> [INFO benchmark_model.py:264 ] num_streams default value chosen of 9. This requires tuning and may be sub-optimal\\n> [INFO benchmark_model.py:270 ] Starting 'async' performance measurements for 10 seconds\\n> Original Model Path: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83\\n> Batch Size: 1\\n> Scenario: multistream\\n> Throughput (items/sec): 83.5037\\n> Latency Mean (ms/batch): 107.3422\\n> Latency Median (ms/batch): 107.0099\\n> Latency Std (ms/batch): 12.4016\\n> Iterations: 840\\n\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"BERT 3-layer FP32 Sparse Latency\")), mdx(\"p\", null, \"To select a \", mdx(\"em\", {\n parentName: \"p\"\n }, \"synchronous inference scenario\"), \", add \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"-s sync\"), \":\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83 -s sync\\n\\n> [INFO benchmark_model.py:202 ] Thread pinning to cores enabled\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 0.10.0 (9bba6971) (optimized) (system=avx512, binary=avx512)\\n> [INFO benchmark_model.py:247 ] deepsparse.engine.Engine:\\n> onnx_file_path: /home/mgoin/.cache/sparsezoo/c89f3128-4b87-41ae-91a3-eae8aa8c5a7c/model.onnx\\n> batch_size: 1\\n> num_cores: 18\\n> scheduler: Scheduler.single_stream\\n> cpu_avx_type: avx512\\n> cpu_vnni: False\\n> [INFO onnx.py:176 ] Generating input 'input_ids', type = int64, shape = [1, 384]\\n> [INFO onnx.py:176 ] Generating input 'attention_mask', type = int64, shape = [1, 384]\\n> [INFO onnx.py:176 ] Generating input 'token_type_ids', type = int64, shape = [1, 384]\\n> [INFO benchmark_model.py:270 ] Starting 'sync' performance measurements for 10 seconds\\n> Original Model Path: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83\\n> Batch Size: 1\\n> Scenario: singlestream\\n> Throughput (items/sec): 62.1568\\n> Latency Mean (ms/batch): 16.0732\\n> Latency Median (ms/batch): 15.7850\\n> Latency Std (ms/batch): 1.0427\\n> Iterations: 622\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#benchmarking-onnx-models-with-the-deepsparse-engine","title":"Benchmarking ONNX Models with the DeepSparse Engine","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#quickstart","title":"Quickstart"},{"url":"#usage","title":"Usage","items":[{"url":"#sample-cli-argument-configurations","title":"Sample CLI Argument Configurations"}]},{"url":"#-inference-scenarios","title":"⚡ Inference Scenarios","items":[{"url":"#synchronous-single-stream-scenario","title":"Synchronous (Single-stream) Scenario"},{"url":"#asynchronous-multi-stream-scenario","title":"Asynchronous (Multi-stream) Scenario"},{"url":"#example-benchmarking-output-of-synchronous-vs-asynchronous","title":"Example Benchmarking Output of Synchronous vs. Asynchronous"}]}]}]},"parent":{"relativePath":"user-guide/deepsparse-engine/benchmarking.mdx"},"frontmatter":{"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deepsparse-engine/benchmarking","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","title":"Benchmarking","slug":"/user-guide/deepsparse-engine/benchmarking","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deepsparse-engine/benchmarking.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Benchmarking\",\n \"metaTitle\": \"Benchmarking ONNX Models with DeepSparse\",\n \"metaDescription\": \"Benchmarking ONNX Models with DeepSparse\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Benchmarking ONNX Models with DeepSparse\"), mdx(\"p\", null, \"This page explains how to use DeepSparse Benchmarking utilities.\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.benchmark\"), \" is a command-line (CLI) tool for benchmarking DeepSparse with ONNX models.\\nThe tool will parse the arguments, download/compile the network into the engine, generate input tensors, and\\nexecute the model depending on the chosen scenario. By default, it will choose a multi-stream or asynchronous mode to optimize for throughput.\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"Use of the DeepSparse Benchmarking utilities requires installation of the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Community\"), \".\"), mdx(\"h2\", null, \"Quickstart\"), mdx(\"p\", null, \"To benchmark a dense BERT ONNX model fine-tuned on the SST2 dataset (which is identified by its SparseZoo stub), run:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.benchmark zoo:nlp/text_classification/bert-base/pytorch/huggingface/sst2/base-none\\n\")), mdx(\"h2\", null, \"Usage\"), mdx(\"p\", null, \"In most cases, good performance will be found in the default options so usage can be as simple as running the command with a SparseZoo model stub or your local ONNX model.\\nHowever, if you prefer to customize benchmarking for your personal use case, you can run \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.benchmark -h\"), \" or with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--help\"), \" to view your usage options:\"), mdx(\"p\", null, \"CLI Arguments:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark --help\\n\\n> positional arguments:\\n>\\n> model_path Path to an ONNX model file or SparseZoo model stub.\\n>\\n> optional arguments:\\n>\\n> -h, --help show this help message and exit.\\n>\\n> -b BATCH_SIZE, --batch_size BATCH_SIZE\\n> The batch size to run the analysis for. Must be\\n> greater than 0.\\n>\\n> -shapes INPUT_SHAPES, --input_shapes INPUT_SHAPES\\n> Override the shapes of the inputs, i.e. -shapes\\n> \\\"[1,2,3],[4,5,6],[7,8,9]\\\" results in input0=[1,2,3]\\n> input1=[4,5,6] input2=[7,8,9].\\n>\\n> -ncores NUM_CORES, --num_cores NUM_CORES\\n> The number of physical cores to run the analysis on,\\n> defaults to all physical cores available on the system.\\n>\\n> -s {async,sync,elastic}, --scenario {async,sync,elastic}\\n> Choose between using the async, sync and elastic\\n> scenarios. Sync and async are similar to the single-\\n> stream/multi-stream scenarios. Elastic is a newer\\n> scenario that behaves similarly to the async scenario\\n> but uses a different scheduling backend. Default value\\n> is async.\\n>\\n> -t TIME, --time TIME\\n> The number of seconds the benchmark will run. Default\\n> is 10 seconds.\\n>\\n> -w WARMUP_TIME, --warmup_time WARMUP_TIME\\n> The number of seconds the benchmark will warmup before\\n> running.Default is 2 seconds.\\n>\\n> -nstreams NUM_STREAMS, --num_streams NUM_STREAMS\\n> The number of streams that will submit inferences in\\n> parallel using async scenario. Default is\\n> automatically determined for given hardware and may be\\n> sub-optimal.\\n>\\n> -pin {none,core,numa}, --thread_pinning {none,core,numa}\\n> Enable binding threads to cores ('core' the default),\\n> threads to cores on sockets ('numa'), or disable\\n> ('none').\\n>\\n> -e {deepsparse,onnxruntime}, --engine {deepsparse,onnxruntime}\\n> Inference engine backend to run eval on. Choices are\\n> 'deepsparse', 'onnxruntime'. Default is 'deepsparse'.\\n>\\n> -q, --quiet Lower logging verbosity.\\n>\\n> -x EXPORT_PATH, --export_path EXPORT_PATH\\n> Store results into a JSON file.\\n\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"PRO TIP:\"), \" Save your benchmark results in a convenient JSON file.\"), mdx(\"p\", null, \"The following is an example CLI command for benchmarking an ONNX model from the SparseZoo and saving the results to a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"benchmark.json\"), \" file:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.benchmark zoo:nlp/text_classification/bert-base/pytorch/huggingface/sst2/base-none -x benchmark.json\\n\")), mdx(\"h3\", null, \"Sample CLI Argument Configurations\"), mdx(\"p\", null, \"To run a sparse FP32 MobileNetV1 at batch size 16 for 10 seconds for throughput using 8 streams of requests, use:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.benchmark zoo:cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/pruned-moderate --batch_size 16 --time 10 --scenario async --num_streams 8\\n\")), mdx(\"p\", null, \"To run a sparse quantized INT8 6-layer BERT at batch size 1 for latency, use:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_quant_6layers-aggressive_96 --batch_size 1 --scenario sync\\n\")), mdx(\"h2\", null, \"Inference Scenarios\"), mdx(\"h3\", null, \"Synchronous (Single-stream) Scenario\"), mdx(\"p\", null, \"Set by the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--scenario sync\"), \" argument, the goal metric is latency per batch (ms/batch). This scenario submits a single inference request at a time to the engine, recording the time taken for a request to return an output. This mimics an edge deployment scenario.\"), mdx(\"p\", null, \"The latency value reported is the mean of all latencies recorded during the execution period for the given batch size.\"), mdx(\"h3\", null, \"Asynchronous (Multi-stream) Scenario\"), mdx(\"p\", null, \"Set by the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--scenario async\"), \" argument, the goal metric is throughput in items per second (i/s). This scenario submits \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--num_streams\"), \" concurrent inference requests to the engine, recording the time taken for each request to return an output. This mimics a model server or bulk batch deployment scenario.\"), mdx(\"p\", null, \"The throughput value reported comes from measuring the number of finished inferences within the execution time and the batch size.\"), mdx(\"h3\", null, \"Example Benchmarking Output of Synchronous vs. Asynchronous\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"BERT 3-layer FP32 Sparse Throughput\")), mdx(\"p\", null, \"There is no need to add a \", mdx(\"em\", {\n parentName: \"p\"\n }, \"scenario\"), \" argument since \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"async\"), \" is the default option:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83\\n\\n> [INFO benchmark_model.py:202 ] Thread pinning to cores enabled\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 0.10.0 (9bba6971) (optimized) (system=avx512, binary=avx512)\\n> [INFO benchmark_model.py:247 ] deepsparse.engine.Engine:\\n> onnx_file_path: /home/mgoin/.cache/sparsezoo/c89f3128-4b87-41ae-91a3-eae8aa8c5a7c/model.onnx\\n> batch_size: 1\\n> num_cores: 18\\n> scheduler: Scheduler.multi_stream\\n> cpu_avx_type: avx512\\n> cpu_vnni: False\\n> [INFO onnx.py:176 ] Generating input 'input_ids', type = int64, shape = [1, 384]\\n> [INFO onnx.py:176 ] Generating input 'attention_mask', type = int64, shape = [1, 384]\\n> [INFO onnx.py:176 ] Generating input 'token_type_ids', type = int64, shape = [1, 384]\\n> [INFO benchmark_model.py:264 ] num_streams default value chosen of 9. This requires tuning and may be sub-optimal\\n> [INFO benchmark_model.py:270 ] Starting 'async' performance measurements for 10 seconds\\n> Original Model Path: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83\\n> Batch Size: 1\\n> Scenario: multistream\\n> Throughput (items/sec): 83.5037\\n> Latency Mean (ms/batch): 107.3422\\n> Latency Median (ms/batch): 107.0099\\n> Latency Std (ms/batch): 12.4016\\n> Iterations: 840\\n\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"BERT 3-layer FP32 Sparse Latency\")), mdx(\"p\", null, \"To select a \", mdx(\"em\", {\n parentName: \"p\"\n }, \"synchronous inference scenario\"), \", add \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"-s sync\"), \":\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"$ deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83 -s sync\\n\\n> [INFO benchmark_model.py:202 ] Thread pinning to cores enabled\\n> DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 0.10.0 (9bba6971) (optimized) (system=avx512, binary=avx512)\\n> [INFO benchmark_model.py:247 ] deepsparse.engine.Engine:\\n> onnx_file_path: /home/mgoin/.cache/sparsezoo/c89f3128-4b87-41ae-91a3-eae8aa8c5a7c/model.onnx\\n> batch_size: 1\\n> num_cores: 18\\n> scheduler: Scheduler.single_stream\\n> cpu_avx_type: avx512\\n> cpu_vnni: False\\n> [INFO onnx.py:176 ] Generating input 'input_ids', type = int64, shape = [1, 384]\\n> [INFO onnx.py:176 ] Generating input 'attention_mask', type = int64, shape = [1, 384]\\n> [INFO onnx.py:176 ] Generating input 'token_type_ids', type = int64, shape = [1, 384]\\n> [INFO benchmark_model.py:270 ] Starting 'sync' performance measurements for 10 seconds\\n> Original Model Path: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83\\n> Batch Size: 1\\n> Scenario: singlestream\\n> Throughput (items/sec): 62.1568\\n> Latency Mean (ms/batch): 16.0732\\n> Latency Median (ms/batch): 15.7850\\n> Latency Std (ms/batch): 1.0427\\n> Iterations: 622\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#benchmarking-onnx-models-with-deepsparse","title":"Benchmarking ONNX Models with DeepSparse","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#quickstart","title":"Quickstart"},{"url":"#usage","title":"Usage","items":[{"url":"#sample-cli-argument-configurations","title":"Sample CLI Argument Configurations"}]},{"url":"#inference-scenarios","title":"Inference Scenarios","items":[{"url":"#synchronous-single-stream-scenario","title":"Synchronous (Single-stream) Scenario"},{"url":"#asynchronous-multi-stream-scenario","title":"Asynchronous (Multi-stream) Scenario"},{"url":"#example-benchmarking-output-of-synchronous-vs-asynchronous","title":"Example Benchmarking Output of Synchronous vs. Asynchronous"}]}]}]},"parent":{"relativePath":"user-guide/deepsparse-engine/benchmarking.mdx"},"frontmatter":{"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/deepsparse-engine/diagnostics-debugging/page-data.json b/page-data/user-guide/deepsparse-engine/diagnostics-debugging/page-data.json new file mode 100644 index 00000000000..652fe2be1e2 --- /dev/null +++ b/page-data/user-guide/deepsparse-engine/diagnostics-debugging/page-data.json @@ -0,0 +1 @@ +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deepsparse-engine/diagnostics-debugging","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","title":"Diagnostics/Debugging","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deepsparse-engine/diagnostics-debugging.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Diagnostics/Debugging\",\n \"metaTitle\": \"Logging Guidance for Diagnostics and Debugging\",\n \"metaDescription\": \"Logging Guidance for Diagnostics and Debugging\",\n \"index\": 4000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Logging Guidance for Diagnostics and Debugging\"), mdx(\"p\", null, \"This page explains the diagnostics and debugging features available in DeepSparse.\"), mdx(\"p\", null, \"Unlike traditional software, debugging utilities available to the machine learning community are scarce. Complicated with deployment pipeline design issues, model weights, model architecture, and unoptimized models, debugging performance issues can be very dynamic in your data science ecosystem. Reviewing a log file can be your first line of defense in pinpointing performance issues with optimizing your inference.\"), mdx(\"p\", null, \"DeepSparse ships with diagnostic logging so you can capture real-time monitoring information at model runtime and self-diagnose issues. If you are seeking technical support, we recommend capturing log information first, as described below. You can decide what to share, whether certain parts of the log or the entire content.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Note:\"), \" Our logs may reveal your inference network\\u2019s macro-architecture, including a general list of operators (such as convolution and pooling) and connections between them. Weights, trained parameters, or dataset parameters will not be captured. Consult Neural Magic\\u2019s various legal policies at \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/legal/\"\n }, \"https://neuralmagic.com/legal/\"), \" which include our privacy statement and software agreements. Your use of the software serves as your consent to these practices.\"), mdx(\"h2\", null, \"Performance Tuning\"), mdx(\"p\", null, \"An initial decision point to make in troubleshooting performance issues before enabling logs is whether to prevent threads from migrating from their cores. The default behavior is to disable thread binding (or pinning), allowing your OS to manage the allocation of threads to cores. There is a performance hit associated with this if DeepSparse is the main process running on your machine. If you want to enable thread binding for the possible performance benefit, set:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" NM_BIND_THREADS_TO_CORES=1\\n\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Note 1:\"), \" If DeepSparse is not the only major process running on your machine, binding threads may hurt performance of the other major process(es) by monopolizing system resources.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Note 2:\"), \" If you use OpenMP or TBB (Thread Building Blocks) in your application, then enabling thread binding may result in severe performance degradation due to conflicts between Neural Magic thread pool and OpenMP/TBB thread pools.\"), mdx(\"h2\", null, \"Enabling Logs and Controlling the Amount of Logs Produced by DeepSparse\"), mdx(\"p\", null, \"Logs are controlled by setting the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"NM_LOGGING_LEVEL\"), \" environment variable.\"), mdx(\"p\", null, \"Specify within your shell one of the following verbosity levels (in increasing order of verbosity:\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"fatal, error, warn,\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"diagnose\"), \" with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"diagnose\"), \" as a common default for all logs that will output to stderr:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" NM_LOGGING_LEVEL=diagnose\\n export NM_LOGGING_LEVEL\\n\")), mdx(\"p\", null, \"Alternatively, you can output the logging level by\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" NM_LOGGING_LEVEL=diagnose \\n\")), mdx(\"p\", null, \"To enable diagnostic logs on a per-run basis, specify it manually before each script execution. For example, if you normally run:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" python run_model.py\\n\")), mdx(\"p\", null, \"Then, to enable diagnostic logs, run:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" NM_LOGGING_LEVEL=diagnose python run_model.py\\n\")), mdx(\"p\", null, \"To enable logging for your entire shell instance, execute within your shell:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" export NM_LOGGING_LEVEL=diagnose\\n\")), mdx(\"p\", null, \"By default, logs will print out to the stderr of your process. If you would like to output to a file, add \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"2> .txt\"), \" to the end of your command.\"), mdx(\"h2\", null, \"Parsing an Example Log\"), mdx(\"p\", null, \"If you want to see an example log with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"NM_LOGGING_LEVEL=diagnose\"), \", a truncated sample output is provided at the end of this guide. It will show a super_resolution network, where Neural Magic only supports running 70% of it.\"), mdx(\"p\", null, mdx(\"em\", {\n parentName: \"p\"\n }, \"Different portions of the log are explained below.\")), mdx(\"h3\", null, \"Viewing the Whole Graph\"), mdx(\"p\", null, \"Once a model is in our system, it is parsed to determine what operations it contains. Each operation is made a node and assigned a unique number Its operation type is displayed:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" Printing GraphViewer torch-jit-export:\\n Node 0: Conv\\n Node 1: Relu\\n Node 2: Conv\\n Node 3: Relu\\n Node 4: Conv\\n Node 5: Relu\\n Node 6: Conv\\n Node 7: Reshape\\n Node 8: Transpose\\n Node 9: Reshape\\n\")), mdx(\"h3\", null, \"Finding Supported Nodes for Our Optimized Engine\"), mdx(\"p\", null, \"After the whole graph is loaded in, nodes are analyzed to determine whether they are supported by our optimized runtime engine. Notable \\\"unsupported\\\" operators are indicated by looking for \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Unsupported [type of node]\"), \" in the log. For example, this is an unsupported Reshape node that produces a 6D tensor:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" [nm_ort 7f4fbbd3f740 >DIAGNOSE< unsupported /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/ops.cc:60] Unsupported Reshape , const shape greater than 5D\\n\")), mdx(\"h3\", null, \"Compiling Each Subgraph\"), mdx(\"p\", null, \"Once all the nodes are located that are supported within the optimized engine, the graphs are split into maximal subgraphs and each one is compiled. \\u200BTo find the start of each subgraph compilation, look for \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"== Beginning new subgraph ==\"), \". First, the nodes are displayed in the subgraph: \\u200B\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" Printing subgraph:\\n Node 0: Conv\\n Node 1: Relu\\n Node 2: Conv\\n Node 3: Relu\\n Node 4: Conv\\n Node 5: Relu\\n Node 6: Conv\\n\")), mdx(\"p\", null, \"Simplifications are then performed on the graph to get it in an ideal state for complex optimizations, which are logged:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:706] == Translating subgraph NM_Subgraph_1 to NM intake graph.\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:715] ( L1 graph\\n ( values:\\n (10 float [ 1, 64, 224, 224 ])\\n (11 float [ 1, 64, 224, 224 ])\\n (12 float [ 1, 64, 224, 224 ])\\n (13 float [ 1, 32, 224, 224 ])\\n (14 float [ 1, 32, 224, 224 ])\\n (15 float [ 1, 9, 224, 224 ])\\n (9 float [ 1, 64, 224, 224 ])\\n (conv1.bias float [ 64 ])\\n (conv1.weight float [ 64, 1, 5, 5 ])\\n (conv2.bias float [ 64 ])\\n (conv2.weight float [ 64, 64, 3, 3 ])\\n (conv3.bias float [ 32 ])\\n (conv3.weight float [ 32, 64, 3, 3 ])\\n (conv4.bias float [ 9 ])\\n (conv4.weight float [ 9, 32, 3, 3 ])\\n (input float [ 1, 1, 224, 224 ])\\n )\\n ( operations:\\n (Constant conv1.bias (constant float [ 64 ]))\\n (Constant conv1.weight (constant float [ 64, 1, 5, 5 ]))\\n (Constant conv2.bias (constant float [ 64 ]))\\n (Constant conv2.weight (constant float [ 64, 64, 3, 3 ]))\\n (Constant conv3.bias (constant float [ 32 ]))\\n (Constant conv3.weight (constant float [ 32, 64, 3, 3 ]))\\n (Constant conv4.bias (constant float [ 9 ]))\\n (Constant conv4.weight (constant float [ 9, 32, 3, 3 ]))\\n (Input input (io 0))\\n (Conv input -> 9 (conv kernel = [ 64, 1, 5, 5 ] bias = [ 64 ] padding = {{2, 2}, {2, 2}} strides = {1, 1}))\\n (Elementwise 9 -> 10 (calc Relu))\\n (Conv 10 -> 11 (conv kernel = [ 64, 64, 3, 3 ] bias = [ 64 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))\\n (Elementwise 11 -> 12 (calc Relu))\\n (Conv 12 -> 13 (conv kernel = [ 32, 64, 3, 3 ] bias = [ 32 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))\\n (Elementwise 13 -> 14 (calc Relu))\\n (Conv 14 -> 15 (conv kernel = [ 9, 32, 3, 3 ] bias = [ 9 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))\\n (Output 15 (io 0))\\n )\\n)\\n\")), mdx(\"h3\", null, \"Determining the Number of Cores and Batch Size\"), mdx(\"p\", null, \"This log detail describes the batch size and number of cores that Neural Magic is optimizing against. Look for \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"== Compiling NM_Subgraph\"), \" as in this example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:723] == Compiling NM_Subgraph_1 with batch size 1 using 18 cores.\\n\")), mdx(\"h3\", null, \"Obtaining Subgraph Statistics\"), mdx(\"p\", null, \"Locating \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"== NM Execution Provider supports\"), \" shows how many subgraphs we compiled and what percentage of the network we managed to support running:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:122] Created 1 compiled subgraphs.\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< validate_minimum_supported_fraction /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/utility/graph_util.cc:321] == NM Execution Provider supports 70% of the network\\n\")), mdx(\"h3\", null, \"Viewing Runtime Execution Times\"), mdx(\"p\", null, \"\\u200BFor each subgraph Neural Magic optimizes, the execution time is reported by \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ORT NM EP compute_func:\"), \" for each run as follows:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"\\u200B[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:265] ORT NM EP compute_func: 6.478 ms\\n\")), mdx(\"h3\", null, \"Full Example Log, Verbose Level = diagnose\"), mdx(\"p\", null, \"The following is an example log with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"NM_LOGGING_LEVEL=diagnose\"), \" running a super_resolution network, where we only support running 70% of it. Different portions of the log are explained in \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deepsparse-engine/diagnostics-debugging#parsing-an-example-log\"\n }, \"Parsing an Example Log.\")), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-text\"\n }, \"onnx_filename : test-models/cv-resolution/super_resolution/none-bsd300-onnx-repo/model.onnx\\n[ INFO neuralmagic.py: 112 - neuralmagic_create() ] Construct network from ONNX = test-models/cv-resolution/super_resolution/none-bsd300-onnx-repo/model.onnx\\nNeuralMagic WAND version: 1.0.0.96ce2f6cb23b8ab377012ed9ef38d3da3b9f5313 (optimized) (system=avx512, binary=avx512)\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:104] == NMExecutionProvider::GetCapability ==\\nPrinting GraphViewer torch-jit-export:\\nNode 0: Conv\\nNode 1: Relu\\nNode 2: Conv\\nNode 3: Relu\\nNode 4: Conv\\nNode 5: Relu\\nNode 6: Conv\\nNode 7: Reshape\\nNode 8: Transpose\\nNode 9: Reshape\\n\\u200B\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< unsupported /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/ops.cc:60] Unsupported Reshape , const shape greater than 5D\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< construct_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:595] == Constructing subgraphs from graph info\\n[nm_ort 7f4fbbd3f740 >WARN< construct_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:604] Cannot support patterns, defaulting to non-pattern-matched subgraphs\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:644] == Beginning new subgraph ==\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:667] Runtime inputs for subgraph:\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:679] input (required)\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:684] Printing subgraph:\\nNode 0: Conv\\nNode 1: Relu\\nNode 2: Conv\\nNode 3: Relu\\nNode 4: Conv\\nNode 5: Relu\\nNode 6: Conv\\n\\u200B\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:706] == Translating subgraph NM_Subgraph_1 to NM intake graph.\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:715] ( L1 graph\\n ( values:\\n (10 float [ 1, 64, 224, 224 ])\\n (11 float [ 1, 64, 224, 224 ])\\n (12 float [ 1, 64, 224, 224 ])\\n (13 float [ 1, 32, 224, 224 ])\\n (14 float [ 1, 32, 224, 224 ])\\n (15 float [ 1, 9, 224, 224 ])\\n (9 float [ 1, 64, 224, 224 ])\\n (conv1.bias float [ 64 ])\\n (conv1.weight float [ 64, 1, 5, 5 ])\\n (conv2.bias float [ 64 ])\\n (conv2.weight float [ 64, 64, 3, 3 ])\\n (conv3.bias float [ 32 ])\\n (conv3.weight float [ 32, 64, 3, 3 ])\\n (conv4.bias float [ 9 ])\\n (conv4.weight float [ 9, 32, 3, 3 ])\\n (input float [ 1, 1, 224, 224 ])\\n )\\n ( operations:\\n (Constant conv1.bias (constant float [ 64 ]))\\n (Constant conv1.weight (constant float [ 64, 1, 5, 5 ]))\\n (Constant conv2.bias (constant float [ 64 ]))\\n (Constant conv2.weight (constant float [ 64, 64, 3, 3 ]))\\n (Constant conv3.bias (constant float [ 32 ]))\\n (Constant conv3.weight (constant float [ 32, 64, 3, 3 ]))\\n (Constant conv4.bias (constant float [ 9 ]))\\n (Constant conv4.weight (constant float [ 9, 32, 3, 3 ]))\\n (Input input (io 0))\\n (Conv input -> 9 (conv kernel = [ 64, 1, 5, 5 ] bias = [ 64 ] padding = {{2, 2}, {2, 2}} strides = {1, 1}))\\n (Elementwise 9 -> 10 (calc Relu))\\n (Conv 10 -> 11 (conv kernel = [ 64, 64, 3, 3 ] bias = [ 64 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))\\n (Elementwise 11 -> 12 (calc Relu))\\n (Conv 12 -> 13 (conv kernel = [ 32, 64, 3, 3 ] bias = [ 32 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))\\n (Elementwise 13 -> 14 (calc Relu))\\n (Conv 14 -> 15 (conv kernel = [ 9, 32, 3, 3 ] bias = [ 9 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))\\n (Output 15 (io 0))\\n )\\n)\\n\\u200B\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:723] == Compiling NM_Subgraph_1 with batch size 1 using 18 cores.\\n[7f4fbbd3f740 >DIAGNOSE< allocate_buffers_pass ./src/include/wand/engine/units/planner.hpp:49] compiler: total buffer size = 25690112/33918976, ratio = 0.757396\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:644] == Beginning new subgraph ==\\n[nm_ort 7f4fbbd3f740 >WARN< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:652] Filtered subgraph was empty, ignoring subgraph.\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:122] Created 1 compiled subgraphs.\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< validate_minimum_supported_fraction /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/utility/graph_util.cc:321] == NM Execution Provider supports 70% of the network\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:129] == End NMExecutionProvider::GetCapability ==\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:140] == NMExecutionProvider::Compile ==\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:157] Graph #0: 1 inputs and 1 outputs\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:276] == End NMExecutionProvider::Compile ==\\nGenerating 1 random inputs\\n -- 1 random input of shape = [1, 1, 224, 224]\\n[ INFO execute.py: 242 - nm_exec_test_iters() ] Starting tests\\n[ INFO neuralmagic.py: 121 - neuralmagic_execute() ] Executing TEST_1\\n[ INFO neuralmagic.py: 124 - neuralmagic_execute() ] [1] input_data.shape = (1, 1, 224, 224)\\n[ INFO neuralmagic.py: 126 - neuralmagic_execute() ] -- START\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:265] ORT NM EP compute_func: 6.478 ms\\n[ INFO neuralmagic.py: 130 - neuralmagic_execute() ] -- FINISH\\n[ INFO neuralmagic.py: 132 - neuralmagic_execute() ] [output] output_data.shape = (1, 1, 672, 672)\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#logging-guidance-for-diagnostics-and-debugging","title":"Logging Guidance for Diagnostics and Debugging","items":[{"url":"#performance-tuning","title":"Performance Tuning"},{"url":"#enabling-logs-and-controlling-the-amount-of-logs-produced-by-deepsparse","title":"Enabling Logs and Controlling the Amount of Logs Produced by DeepSparse"},{"url":"#parsing-an-example-log","title":"Parsing an Example Log","items":[{"url":"#viewing-the-whole-graph","title":"Viewing the Whole Graph"},{"url":"#finding-supported-nodes-for-our-optimized-engine","title":"Finding Supported Nodes for Our Optimized Engine"},{"url":"#compiling-each-subgraph","title":"Compiling Each Subgraph"},{"url":"#determining-the-number-of-cores-and-batch-size","title":"Determining the Number of Cores and Batch Size"},{"url":"#obtaining-subgraph-statistics","title":"Obtaining Subgraph Statistics"},{"url":"#viewing-runtime-execution-times","title":"Viewing Runtime Execution Times"},{"url":"#full-example-log-verbose-level--diagnose","title":"Full Example Log, Verbose Level = diagnose"}]}]}]},"parent":{"relativePath":"user-guide/deepsparse-engine/diagnostics-debugging.mdx"},"frontmatter":{"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging","index":4000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/deepsparse-engine/diagnotistics-debugging/page-data.json b/page-data/user-guide/deepsparse-engine/diagnotistics-debugging/page-data.json deleted file mode 100644 index 4374de8403c..00000000000 --- a/page-data/user-guide/deepsparse-engine/diagnotistics-debugging/page-data.json +++ /dev/null @@ -1 +0,0 @@ -{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deepsparse-engine/diagnotistics-debugging","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","title":"Diagnostics/Debugging","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deepsparse-engine/diagnotistics-debugging.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Diagnostics/Debugging\",\n \"metaTitle\": \"Logging Guidance for Diagnostics and Debugging\",\n \"metaDescription\": \"Logging Guidance for Diagnostics and Debugging\",\n \"index\": 4000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Logging Guidance for Diagnostics and Debugging\"), mdx(\"p\", null, \"This page explains the diagnostics and debugging features available in DeepSparse Engine.\"), mdx(\"p\", null, \"Unlike traditional software, debugging utilities available to the machine learning community are scarce. Complicated with deployment pipeline design issues, model weights, model architecture, and unoptimized models, debugging performance issues can be very dynamic in your data science ecosystem. Reviewing a log file can be your first line of defense in pinpointing performance issues with optimizing your inference.\"), mdx(\"p\", null, \"The DeepSparse Engine ships with diagnostic logging so you can capture real-time monitoring information at model runtime and self-diagnose issues. If you are seeking technical support, we recommend capturing log information first, as described below. You can decide what to share, whether certain parts of the log or the entire content.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Note:\"), \" Our logs may reveal your inference network\\u2019s macro-architecture, including a general list of operators (such as convolution and pooling) and connections between them. Weights, trained parameters, or dataset parameters will not be captured. Consult Neural Magic\\u2019s various legal policies at \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/legal/\"\n }, \"https://neuralmagic.com/legal/\"), \" which include our privacy statement and software agreements. Your use of the software serves as your consent to these practices.\"), mdx(\"h2\", null, \"Performance Tuning\"), mdx(\"p\", null, \"An initial decision point to make in troubleshooting performance issues before enabling logs is whether to prevent threads from migrating from their cores. The default behavior is to disable thread binding (or pinning), allowing your OS to manage the allocation of threads to cores. There is a performance hit associated with this if the DeepSparseEngine is the main process running on your machine. If you want to enable thread binding for the possible performance benefit, set:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" NM_BIND_THREADS_TO_CORES=1\\n\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Note 1:\"), \" If the DeepSparse Engine is not the only major process running on your machine, binding threads may hurt performance of the other major process(es) by monopolizing system resources.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Note 2:\"), \" If you use OpenMP or TBB (Thread Building Blocks) in your application, then enabling thread binding may result in severe performance degradation due to conflicts between Neural Magic thread pool and OpenMP/TBB thread pools.\"), mdx(\"h2\", null, \"Enabling Logs and Controlling the Amount of Logs Produced by the DeepSparse Engine\"), mdx(\"p\", null, \"Logs are controlled by setting the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"NM_LOGGING_LEVEL\"), \" environment variable.\"), mdx(\"p\", null, \"Specify within your shell one of the following verbosity levels (in increasing order of verbosity:\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"fatal, error, warn,\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"diagnose\"), \" with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"diagnose\"), \" as a common default for all logs that will output to stderr:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" NM_LOGGING_LEVEL=diagnose\\n export NM_LOGGING_LEVEL\\n\")), mdx(\"p\", null, \"Alternatively, you can output the logging level by\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" NM_LOGGING_LEVEL=diagnose \\n\")), mdx(\"p\", null, \"To enable diagnostic logs on a per-run basis, specify it manually before each script execution. For example, if you normally run:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" python run_model.py\\n\")), mdx(\"p\", null, \"Then, to enable diagnostic logs, run:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" NM_LOGGING_LEVEL=diagnose python run_model.py\\n\")), mdx(\"p\", null, \"To enable logging for your entire shell instance, execute within your shell:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" export NM_LOGGING_LEVEL=diagnose\\n\")), mdx(\"p\", null, \"By default, logs will print out to the stderr of your process. If you would like to output to a file, add \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"2> .txt\"), \" to the end of your command.\"), mdx(\"h2\", null, \"Parsing an Example Log\"), mdx(\"p\", null, \"If you want to see an example log with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"NM_LOGGING_LEVEL=diagnose\"), \", a truncated sample output is provided at the end of this guide. It will show a super_resolution network, where Neural Magic only supports running 70% of it.\"), mdx(\"p\", null, mdx(\"em\", {\n parentName: \"p\"\n }, \"Different portions of the log are explained below.\")), mdx(\"h3\", null, \"Viewing the Whole Graph\"), mdx(\"p\", null, \"Once a model is in our system, it is parsed to determine what operations it contains. Each operation is made a node and assigned a unique number Its operation type is displayed:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" Printing GraphViewer torch-jit-export:\\n Node 0: Conv\\n Node 1: Relu\\n Node 2: Conv\\n Node 3: Relu\\n Node 4: Conv\\n Node 5: Relu\\n Node 6: Conv\\n Node 7: Reshape\\n Node 8: Transpose\\n Node 9: Reshape\\n\")), mdx(\"h3\", null, \"Finding Supported Nodes for Our Optimized Engine\"), mdx(\"p\", null, \"After the whole graph is loaded in, nodes are analyzed to determine whether they are supported by our optimized runtime engine. Notable \\\"unsupported\\\" operators are indicated by looking for \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Unsupported [type of node]\"), \" in the log. For example, this is an unsupported Reshape node that produces a 6D tensor:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" [nm_ort 7f4fbbd3f740 >DIAGNOSE< unsupported /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/ops.cc:60] Unsupported Reshape , const shape greater than 5D\\n\")), mdx(\"h3\", null, \"Compiling Each Subgraph\"), mdx(\"p\", null, \"Once all the nodes are located that are supported within the optimized engine, the graphs are split into maximal subgraphs and each one is compiled. \\u200BTo find the start of each subgraph compilation, look for \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"== Beginning new subgraph ==\"), \". First, the nodes are displayed in the subgraph: \\u200B\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" Printing subgraph:\\n Node 0: Conv\\n Node 1: Relu\\n Node 2: Conv\\n Node 3: Relu\\n Node 4: Conv\\n Node 5: Relu\\n Node 6: Conv\\n\")), mdx(\"p\", null, \"Simplifications are then performed on the graph to get it in an ideal state for complex optimizations, which are logged:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:706] == Translating subgraph NM_Subgraph_1 to NM intake graph.\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:715] ( L1 graph\\n ( values:\\n (10 float [ 1, 64, 224, 224 ])\\n (11 float [ 1, 64, 224, 224 ])\\n (12 float [ 1, 64, 224, 224 ])\\n (13 float [ 1, 32, 224, 224 ])\\n (14 float [ 1, 32, 224, 224 ])\\n (15 float [ 1, 9, 224, 224 ])\\n (9 float [ 1, 64, 224, 224 ])\\n (conv1.bias float [ 64 ])\\n (conv1.weight float [ 64, 1, 5, 5 ])\\n (conv2.bias float [ 64 ])\\n (conv2.weight float [ 64, 64, 3, 3 ])\\n (conv3.bias float [ 32 ])\\n (conv3.weight float [ 32, 64, 3, 3 ])\\n (conv4.bias float [ 9 ])\\n (conv4.weight float [ 9, 32, 3, 3 ])\\n (input float [ 1, 1, 224, 224 ])\\n )\\n ( operations:\\n (Constant conv1.bias (constant float [ 64 ]))\\n (Constant conv1.weight (constant float [ 64, 1, 5, 5 ]))\\n (Constant conv2.bias (constant float [ 64 ]))\\n (Constant conv2.weight (constant float [ 64, 64, 3, 3 ]))\\n (Constant conv3.bias (constant float [ 32 ]))\\n (Constant conv3.weight (constant float [ 32, 64, 3, 3 ]))\\n (Constant conv4.bias (constant float [ 9 ]))\\n (Constant conv4.weight (constant float [ 9, 32, 3, 3 ]))\\n (Input input (io 0))\\n (Conv input -> 9 (conv kernel = [ 64, 1, 5, 5 ] bias = [ 64 ] padding = {{2, 2}, {2, 2}} strides = {1, 1}))\\n (Elementwise 9 -> 10 (calc Relu))\\n (Conv 10 -> 11 (conv kernel = [ 64, 64, 3, 3 ] bias = [ 64 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))\\n (Elementwise 11 -> 12 (calc Relu))\\n (Conv 12 -> 13 (conv kernel = [ 32, 64, 3, 3 ] bias = [ 32 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))\\n (Elementwise 13 -> 14 (calc Relu))\\n (Conv 14 -> 15 (conv kernel = [ 9, 32, 3, 3 ] bias = [ 9 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))\\n (Output 15 (io 0))\\n )\\n)\\n\")), mdx(\"h3\", null, \"Determining the Number of Cores and Batch Size\"), mdx(\"p\", null, \"This log detail describes the batch size and number of cores that Neural Magic is optimizing against. Look for \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"== Compiling NM_Subgraph\"), \" as in this example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:723] == Compiling NM_Subgraph_1 with batch size 1 using 18 cores.\\n\")), mdx(\"h3\", null, \"Obtaining Subgraph Statistics\"), mdx(\"p\", null, \"Locating \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"== NM Execution Provider supports\"), \" shows how many subgraphs we compiled and what percentage of the network we managed to support running:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:122] Created 1 compiled subgraphs.\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< validate_minimum_supported_fraction /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/utility/graph_util.cc:321] == NM Execution Provider supports 70% of the network\\n\")), mdx(\"h3\", null, \"Viewing Runtime Execution Times\"), mdx(\"p\", null, \"\\u200BFor each subgraph Neural Magic optimizes, the execution time is reported by \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ORT NM EP compute_func:\"), \" for each run as follows:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"\\u200B[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:265] ORT NM EP compute_func: 6.478 ms\\n\")), mdx(\"h3\", null, \"Full Example Log, Verbose Level = diagnose\"), mdx(\"p\", null, \"The following is an example log with \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"NM_LOGGING_LEVEL=diagnose\"), \" running a super_resolution network, where we only support running 70% of it. Different portions of the log are explained in \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deepsparse-engine/diagnotistics-debugging#parsing-an-example-log\"\n }, \"Parsing an Example Log.\")), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-text\"\n }, \"onnx_filename : test-models/cv-resolution/super_resolution/none-bsd300-onnx-repo/model.onnx\\n[ INFO neuralmagic.py: 112 - neuralmagic_create() ] Construct network from ONNX = test-models/cv-resolution/super_resolution/none-bsd300-onnx-repo/model.onnx\\nNeuralMagic WAND version: 1.0.0.96ce2f6cb23b8ab377012ed9ef38d3da3b9f5313 (optimized) (system=avx512, binary=avx512)\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:104] == NMExecutionProvider::GetCapability ==\\nPrinting GraphViewer torch-jit-export:\\nNode 0: Conv\\nNode 1: Relu\\nNode 2: Conv\\nNode 3: Relu\\nNode 4: Conv\\nNode 5: Relu\\nNode 6: Conv\\nNode 7: Reshape\\nNode 8: Transpose\\nNode 9: Reshape\\n\\u200B\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< unsupported /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/ops.cc:60] Unsupported Reshape , const shape greater than 5D\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< construct_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:595] == Constructing subgraphs from graph info\\n[nm_ort 7f4fbbd3f740 >WARN< construct_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:604] Cannot support patterns, defaulting to non-pattern-matched subgraphs\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:644] == Beginning new subgraph ==\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:667] Runtime inputs for subgraph:\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:679] input (required)\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:684] Printing subgraph:\\nNode 0: Conv\\nNode 1: Relu\\nNode 2: Conv\\nNode 3: Relu\\nNode 4: Conv\\nNode 5: Relu\\nNode 6: Conv\\n\\u200B\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:706] == Translating subgraph NM_Subgraph_1 to NM intake graph.\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:715] ( L1 graph\\n ( values:\\n (10 float [ 1, 64, 224, 224 ])\\n (11 float [ 1, 64, 224, 224 ])\\n (12 float [ 1, 64, 224, 224 ])\\n (13 float [ 1, 32, 224, 224 ])\\n (14 float [ 1, 32, 224, 224 ])\\n (15 float [ 1, 9, 224, 224 ])\\n (9 float [ 1, 64, 224, 224 ])\\n (conv1.bias float [ 64 ])\\n (conv1.weight float [ 64, 1, 5, 5 ])\\n (conv2.bias float [ 64 ])\\n (conv2.weight float [ 64, 64, 3, 3 ])\\n (conv3.bias float [ 32 ])\\n (conv3.weight float [ 32, 64, 3, 3 ])\\n (conv4.bias float [ 9 ])\\n (conv4.weight float [ 9, 32, 3, 3 ])\\n (input float [ 1, 1, 224, 224 ])\\n )\\n ( operations:\\n (Constant conv1.bias (constant float [ 64 ]))\\n (Constant conv1.weight (constant float [ 64, 1, 5, 5 ]))\\n (Constant conv2.bias (constant float [ 64 ]))\\n (Constant conv2.weight (constant float [ 64, 64, 3, 3 ]))\\n (Constant conv3.bias (constant float [ 32 ]))\\n (Constant conv3.weight (constant float [ 32, 64, 3, 3 ]))\\n (Constant conv4.bias (constant float [ 9 ]))\\n (Constant conv4.weight (constant float [ 9, 32, 3, 3 ]))\\n (Input input (io 0))\\n (Conv input -> 9 (conv kernel = [ 64, 1, 5, 5 ] bias = [ 64 ] padding = {{2, 2}, {2, 2}} strides = {1, 1}))\\n (Elementwise 9 -> 10 (calc Relu))\\n (Conv 10 -> 11 (conv kernel = [ 64, 64, 3, 3 ] bias = [ 64 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))\\n (Elementwise 11 -> 12 (calc Relu))\\n (Conv 12 -> 13 (conv kernel = [ 32, 64, 3, 3 ] bias = [ 32 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))\\n (Elementwise 13 -> 14 (calc Relu))\\n (Conv 14 -> 15 (conv kernel = [ 9, 32, 3, 3 ] bias = [ 9 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))\\n (Output 15 (io 0))\\n )\\n)\\n\\u200B\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:723] == Compiling NM_Subgraph_1 with batch size 1 using 18 cores.\\n[7f4fbbd3f740 >DIAGNOSE< allocate_buffers_pass ./src/include/wand/engine/units/planner.hpp:49] compiler: total buffer size = 25690112/33918976, ratio = 0.757396\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:644] == Beginning new subgraph ==\\n[nm_ort 7f4fbbd3f740 >WARN< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:652] Filtered subgraph was empty, ignoring subgraph.\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:122] Created 1 compiled subgraphs.\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< validate_minimum_supported_fraction /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/utility/graph_util.cc:321] == NM Execution Provider supports 70% of the network\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:129] == End NMExecutionProvider::GetCapability ==\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:140] == NMExecutionProvider::Compile ==\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:157] Graph #0: 1 inputs and 1 outputs\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:276] == End NMExecutionProvider::Compile ==\\nGenerating 1 random inputs\\n -- 1 random input of shape = [1, 1, 224, 224]\\n[ INFO execute.py: 242 - nm_exec_test_iters() ] Starting tests\\n[ INFO neuralmagic.py: 121 - neuralmagic_execute() ] Executing TEST_1\\n[ INFO neuralmagic.py: 124 - neuralmagic_execute() ] [1] input_data.shape = (1, 1, 224, 224)\\n[ INFO neuralmagic.py: 126 - neuralmagic_execute() ] -- START\\n[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:265] ORT NM EP compute_func: 6.478 ms\\n[ INFO neuralmagic.py: 130 - neuralmagic_execute() ] -- FINISH\\n[ INFO neuralmagic.py: 132 - neuralmagic_execute() ] [output] output_data.shape = (1, 1, 672, 672)\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#logging-guidance-for-diagnostics-and-debugging","title":"Logging Guidance for Diagnostics and Debugging","items":[{"url":"#performance-tuning","title":"Performance Tuning"},{"url":"#enabling-logs-and-controlling-the-amount-of-logs-produced-by-the-deepsparse-engine","title":"Enabling Logs and Controlling the Amount of Logs Produced by the DeepSparse Engine"},{"url":"#parsing-an-example-log","title":"Parsing an Example Log","items":[{"url":"#viewing-the-whole-graph","title":"Viewing the Whole Graph"},{"url":"#finding-supported-nodes-for-our-optimized-engine","title":"Finding Supported Nodes for Our Optimized Engine"},{"url":"#compiling-each-subgraph","title":"Compiling Each Subgraph"},{"url":"#determining-the-number-of-cores-and-batch-size","title":"Determining the Number of Cores and Batch Size"},{"url":"#obtaining-subgraph-statistics","title":"Obtaining Subgraph Statistics"},{"url":"#viewing-runtime-execution-times","title":"Viewing Runtime Execution Times"},{"url":"#full-example-log-verbose-level--diagnose","title":"Full Example Log, Verbose Level = diagnose"}]}]}]},"parent":{"relativePath":"user-guide/deepsparse-engine/diagnotistics-debugging.mdx"},"frontmatter":{"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging","index":4000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/deepsparse-engine/hardware-support/page-data.json b/page-data/user-guide/deepsparse-engine/hardware-support/page-data.json index f9c0576779a..75dea00c91b 100644 --- a/page-data/user-guide/deepsparse-engine/hardware-support/page-data.json +++ b/page-data/user-guide/deepsparse-engine/hardware-support/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deepsparse-engine/hardware-support","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","title":"Supported Hardware","slug":"/user-guide/deepsparse-engine/hardware-support","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deepsparse-engine/hardware-support.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Supported Hardware\",\n \"metaTitle\": \"Supported Hardware for the DeepSparse Engine\",\n \"metaDescription\": \"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Supported Hardware for the DeepSparse Engine\"), mdx(\"p\", null, \"With support for AVX2, AVX-512, and VNNI instruction sets, the DeepSparse Engine is validated to work on x86 Intel (Haswell generation and later) and AMD CPUs running Linux.\\nMac and Windows require running Linux in a Docker or virtual machine.\"), mdx(\"p\", null, \"Here is a table detailing specific support for some algorithms over different microarchitectures:\"), mdx(\"table\", null, mdx(\"thead\", {\n parentName: \"table\"\n }, mdx(\"tr\", {\n parentName: \"thead\"\n }, mdx(\"th\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"x86 Extension\"), mdx(\"th\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"Microarchitectures\"), mdx(\"th\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"Activation Sparsity\"), mdx(\"th\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"Kernel Sparsity\"), mdx(\"th\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"Sparse Quantization\"))), mdx(\"tbody\", {\n parentName: \"table\"\n }, mdx(\"tr\", {\n parentName: \"tbody\"\n }, mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#CPUs_with_AVX2\"\n }, \"AMD AVX2\")), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Zen_2\"\n }, \"Zen 2,\"), \" \", mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Zen_3\"\n }, \"Zen 3\")), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"not supported\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"not supported\")), mdx(\"tr\", {\n parentName: \"tbody\"\n }, mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#CPUs_with_AVX2\"\n }, \"Intel AVX2\")), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Haswell_%28microarchitecture%29\"\n }, \"Haswell,\"), \" \", mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Broadwell_%28microarchitecture%29\"\n }, \"Broadwell,\"), \" and newer\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"not supported\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"not supported\")), mdx(\"tr\", {\n parentName: \"tbody\"\n }, mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/AVX-512#CPUs_with_AVX-512\"\n }, \"Intel AVX-512\")), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Skylake_%28microarchitecture%29\"\n }, \"Skylake\"), \" \", mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Cannon_Lake_%28microarchitecture%29\"\n }, \"Cannon Lake,\"), \" and newer\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"emulated\")), mdx(\"tr\", {\n parentName: \"tbody\"\n }, mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/AVX-512#CPUs_with_AVX-512\"\n }, \"Intel AVX-512\"), \" VNNI (DL Boost)\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Cascade_Lake_%28microarchitecture%29\"\n }, \"Cascade Lake.\"), \" \", mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Ice_Lake_%28microprocessor%29\"\n }, \"Ice Lake,\"), \" \", mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Cooper_Lake_%28microarchitecture%29\"\n }, \"Cooper Lake,\"), \" \", mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Tiger_Lake_%28microprocessor%29\"\n }, \"Tiger Lake\")), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\")))));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#supported-hardware-for-the-deepsparse-engine","title":"Supported Hardware for the DeepSparse Engine"}]},"parent":{"relativePath":"user-guide/deepsparse-engine/hardware-support.mdx"},"frontmatter":{"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deepsparse-engine/hardware-support","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","title":"Supported Hardware","slug":"/user-guide/deepsparse-engine/hardware-support","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deepsparse-engine/hardware-support.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Supported Hardware\",\n \"metaTitle\": \"Supported Hardware for DeepSparse\",\n \"metaDescription\": \"Supported Hardware for DeepSparse including CPU types and instruction sets\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Supported Hardware for DeepSparse\"), mdx(\"p\", null, \"With support for AVX2, AVX-512, and VNNI instruction sets, DeepSparse is validated to work on x86 Intel (Haswell generation and later) and AMD CPUs running Linux.\\nMac and Windows require running Linux in a Docker or virtual machine.\"), mdx(\"p\", null, \"Here is a table detailing specific support for some algorithms over different microarchitectures:\"), mdx(\"table\", null, mdx(\"thead\", {\n parentName: \"table\"\n }, mdx(\"tr\", {\n parentName: \"thead\"\n }, mdx(\"th\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"x86 Extension\"), mdx(\"th\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"Microarchitectures\"), mdx(\"th\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"Activation Sparsity\"), mdx(\"th\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"Kernel Sparsity\"), mdx(\"th\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"Sparse Quantization\"))), mdx(\"tbody\", {\n parentName: \"table\"\n }, mdx(\"tr\", {\n parentName: \"tbody\"\n }, mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#CPUs_with_AVX2\"\n }, \"AMD AVX2\")), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Zen_2\"\n }, \"Zen 2,\"), \" \", mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Zen_3\"\n }, \"Zen 3\")), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"not supported\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"not supported\")), mdx(\"tr\", {\n parentName: \"tbody\"\n }, mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#CPUs_with_AVX-512\"\n }, \"AMD AVX512\"), \" VNNI\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Zen_4\"\n }, \"Zen 4\")), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\")), mdx(\"tr\", {\n parentName: \"tbody\"\n }, mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#CPUs_with_AVX2\"\n }, \"Intel AVX2\")), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Haswell_%28microarchitecture%29\"\n }, \"Haswell,\"), \" \", mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Broadwell_%28microarchitecture%29\"\n }, \"Broadwell,\"), \" and newer\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"not supported\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"not supported\")), mdx(\"tr\", {\n parentName: \"tbody\"\n }, mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/AVX-512#CPUs_with_AVX-512\"\n }, \"Intel AVX-512\")), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Skylake_%28microarchitecture%29\"\n }, \"Skylake\"), \" \", mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Cannon_Lake_%28microarchitecture%29\"\n }, \"Cannon Lake,\"), \" and newer\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"emulated\")), mdx(\"tr\", {\n parentName: \"tbody\"\n }, mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/AVX-512#CPUs_with_AVX-512\"\n }, \"Intel AVX-512\"), \" VNNI (DL Boost)\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Cascade_Lake_%28microarchitecture%29\"\n }, \"Cascade Lake.\"), \" \", mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Ice_Lake_%28microprocessor%29\"\n }, \"Ice Lake,\"), \" \", mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Cooper_Lake_%28microarchitecture%29\"\n }, \"Cooper Lake,\"), \" \", mdx(\"a\", {\n parentName: \"td\",\n \"href\": \"https://en.wikipedia.org/wiki/Tiger_Lake_%28microprocessor%29\"\n }, \"Tiger Lake\")), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\"), mdx(\"td\", {\n parentName: \"tr\",\n \"align\": \"center\"\n }, \"optimized\")))));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#supported-hardware-for-deepsparse","title":"Supported Hardware for DeepSparse"}]},"parent":{"relativePath":"user-guide/deepsparse-engine/hardware-support.mdx"},"frontmatter":{"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/deepsparse-engine/logging/page-data.json b/page-data/user-guide/deepsparse-engine/logging/page-data.json new file mode 100644 index 00000000000..17cc4a31c6f --- /dev/null +++ b/page-data/user-guide/deepsparse-engine/logging/page-data.json @@ -0,0 +1 @@ +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deepsparse-engine/logging","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","title":"Logging","slug":"/user-guide/deepsparse-engine/logging","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deepsparse-engine/logging.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Logging\",\n \"metaTitle\": \"DeepSparse Logging\",\n \"metaDescription\": \"System and Data Logging with DeepSparse\",\n \"index\": 6000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"DeepSparse Logging\"), mdx(\"p\", null, \"This page explains how to use DeepSparse Logging to monitor your deployment.\"), mdx(\"p\", null, \"There are many types of monitoring tasks that you may want to perform to confirm your production system is working correctly.\\nThe difficulty of the tasks varies from relatively easy (simple system performance analysis) to challenging\\n(assessing the accuracy of the system in the wild by manually labeling the input data distribution post-factum). Examples include:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"System performance:\"), \" what is the latency/throughput of a query?\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Data quality:\"), \" is there an issue getting data to my model?\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Data distribution shift:\"), \" does the input data distribution deviates over time to the point where the model stops to deliver reliable predictions?\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"strong\", {\n parentName: \"li\"\n }, \"Model accuracy:\"), \" what is the percentage of correct predictions that a model achieves?\")), mdx(\"p\", null, \"DeepSparse Logging is designed to provide maximum flexibility for you to extract whatever data is needed from a\\nproduction inference pipeline into the logging system of your choice. \"), mdx(\"h2\", null, \"Installation\"), mdx(\"p\", null, \"This page requires the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Server Install\"), \".\"), mdx(\"h2\", null, \"Metrics\"), mdx(\"p\", null, \"DeepSparse Logging provides access to two types of metrics.\"), mdx(\"h3\", null, \"System Logging Metrics\"), mdx(\"p\", null, \"System Logging gives you access to granular performance metrics for quick and efficient diagnosis of system health.\"), mdx(\"p\", null, \"There is one group of System Logging Metrics currently available: Inference Latency. For each inference request, DeepSparse Server logs the following:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, \"Pre-processing Time - seconds in the pre-processing step\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Engine Time - seconds in the engine forward pass step\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Post-processing Time - seconds in the post-processing step\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Total Time - second for the end-to-end response time (sum of the prior three)\")), mdx(\"h3\", null, \"Data Logging Metrics\"), mdx(\"p\", null, \"Data Logging gives you access to data at each stage of an inference pipeline.\\nThis facilitates inspection of the data, understanding of its properties, detecting edge cases, and possible data drift.\"), mdx(\"p\", null, \"There are four stages in the inference pipeline where Data Logging can occur:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"pipeline_inputs\"), \": raw input passed to the inference pipeline by the user\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"engine_inputs\"), \": pre-processed tensors passed to the engine for the forward pass\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"engine_outputs\"), \": result of the engine forward pass (e.g., the raw logits)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"pipeline_outputs\"), \": final output returned to the pipeline caller\")), mdx(\"p\", null, \"At each stage, you can specify functions to be applied to the data before logging. Example functions include the identity function\\n(for logging the raw input/output) or the mean function (e.g., for monitoring the mean pixel value of an image).\"), mdx(\"p\", null, \"There are three types of functions that can be applied to target data at each stage:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Built-in functions: pre-written functions provided by DeepSparse (\", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/loggers/metric_functions/built_ins.py\"\n }, \"see list on GitHub\"), \") \"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Framework functions: functions from \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"torch\"), \" or \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"numpy\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Custom functions: custom user-provided functions\")), mdx(\"h2\", null, \"Configuration\"), mdx(\"p\", null, \"The YAML-based Server Config file is used to configure both System and Data Logging.\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"System Logging is \", mdx(\"em\", {\n parentName: \"li\"\n }, \"enabled\"), \" by default. If no logger is specified, Python Logger is used.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Data Logging is \", mdx(\"em\", {\n parentName: \"li\"\n }, \"disabled\"), \" by default. The config allows you to specify what data to log.\")), mdx(\"p\", null, \"See \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/user-guide/deploying-deepsparse/deepsparse-server\"\n }, \"the Server documentation\"), \" for more details on the Server config file.\"), mdx(\"h3\", null, \"Logging YAML Syntax\"), mdx(\"p\", null, \"There are two key elements that should be added to the Server Config to setup logging.\"), mdx(\"p\", null, \"First is \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"loggers\"), \". This element configures the loggers that are used by the Server. Each element is a dictionary of the form \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"{logger_name: {arg_1: arg_value}}\"), \". \"), mdx(\"p\", null, \"Second is \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"data_logging\"), \". This element identifies which/how data should be logged for an endpoint. It is a dictionary of the form \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"{identifier: [log_config]}\"), \". \"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"identifier\"), \" specifies the stages where logging should occur. It can either be a pipeline \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"stage\"), \" (see stages above) or \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"stage.property\"), \" if the data type\\nat a particular stage has a property. If the data type at a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"stage\"), \" is a dictionary or list, you can access via slicing, indexing, or dict access,\\nfor example \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"stage[0][:,:,0]['key3']\"), \".\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"p\", {\n parentName: \"li\"\n }, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"log_config\"), \" specifies which function to apply, which logger(s) to use, and how often to log. It is a dictionary of the form\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"{func: name, frequency: freq, target_loggers: [logger_names]}\"), \". \"))), mdx(\"h3\", null, \"Tangible Example\"), mdx(\"p\", null, \"Here's an example for an image classification server:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"# example-config.yaml\\nloggers:\\n python: # logs to stdout\\n prometheus: # logs to prometheus on port 6100\\n port: 6100\\n\\nendpoints:\\n - task: image_classification\\n route: /image_classification/predict\\n model: zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none\\n data_logging:\\n pipeline_inputs.images: # applies to the images (of the form stage.property)\\n - func: np.shape # framework function\\n frequency: 1\\n target_loggers:\\n - python \\n\\n pipeline_inputs.images[0]: # applies to the first image (of the form stage.property[idx])\\n - func: mean_pixels_per_channel # built-in function\\n frequency: 2\\n target_loggers:\\n - python \\n - func: fraction_zeros # built-in function\\n frequency: 2\\n target_loggers:\\n - prometheus\\n \\n engine_inputs: # applies to the engine_inputs data (of the form stage)\\n - func: np.shape # framework function\\n frequency: 1\\n target_loggers:\\n - python\\n\")), mdx(\"p\", null, \"This configuration does the following data logging at each respective stage of the pipeline:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"System logging is enabled by default and logs to Prometheus and StdOut\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Logs the shape of the input batch provided by the user to stdout\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Logs the mean pixels and % of 0 pixels of the first image in the batch to Prometheus\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Logs the raw data and shape of the input passed to the engine to Python\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"No logging occurs at any other pipeline stages\")), mdx(\"h2\", null, \"Loggers\"), mdx(\"p\", null, \"DeepSparse Logging includes options to log to Standard Output and to Prometheus out of the box as well as\\nthe ability to create a Custom Logger.\"), mdx(\"h3\", null, \"Python Logger\"), mdx(\"p\", null, \"Python Logger logs data to Standard Output. It is useful for debugging and inspecting an inference pipeline. It\\naccepts no arguments and is configured with the following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"loggers:\\n python:\\n\")), mdx(\"h3\", null, \"Prometheus Logger\"), mdx(\"p\", null, \"DeepSparse is integrated with Prometheus, enabling you to easily instrument your model service.\\nThe Prometheus Logger accepts some optional arguments and is configured as follows:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"loggers:\\n prometheus:\\n port: 6100\\n text_log_save_frequency: 10 # optional\\n text_log_save_dir: text/log/save/dir # optional\\n text_log_file_name: text_log_file_name # optional\\n\")), mdx(\"p\", null, \"There are four types of metrics in Prometheus (Counter, Gauge, Summary, and Histogram). DeepSparse uses\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://prometheus.io/docs/concepts/metric_types/#summary\"\n }, \"Summary\"), \" under the hood, so make sure the data you\\nare logging to Prometheus is an Int or a Float.\"), mdx(\"h3\", null, \"Custom Logger\"), mdx(\"p\", null, \"If you need a custom logger, you can create a class that inherits from the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"BaseLogger\"), \"\\nand implements the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"log\"), \" method. The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"log\"), \" method is called at each pipeline stage and should handle exposing the metric to the Logger. \"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from deepsparse.loggers import BaseLogger\\nfrom typing import Any, Optional\\n\\nclass CustomLogger(BaseLogger):\\n def log(self, identifier: str, value: Any, category: Optional[str]=None):\\n \\\"\\\"\\\"\\n :param identifier: The name of the item that is being logged.\\n By default, in the simplest case, that would be a string in the form\\n of \\\"/\\\"\\n e.g. \\\"image_classification/pipeline_inputs\\\"\\n :param value: The item that is logged along with the identifier\\n :param category: The metric category that the log belongs to. \\n By default, we recommend sticking to our internal convention\\n established in the MetricsCategories enum.\\n \\\"\\\"\\\"\\n print(\\\"Logging from a custom logger\\\")\\n print(identifier)\\n print(value)\\n\")), mdx(\"p\", null, \"Once a custom logger is implemented, it can be referenced from a config file:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"# server-config-with-custom-logger.yaml\\nloggers:\\n custom_logger:\\n path: example_custom_logger.py:CustomLogger\\n # arg_1: your_arg_1\\n\\nendpoints:\\n - task: sentiment_analysis\\n route: /sentiment_analysis/predict\\n model: zoo:nlp/sentiment_analysis/bert-base/pytorch/huggingface/sst2/12layer_pruned80_quant-none-vnni\\n name: sentiment_analysis_pipeline\\n data_logging:\\n pipeline_inputs:\\n - func: identity\\n frequency: 1\\n target_loggers:\\n - custom_logger\\n\")), mdx(\"p\", null, \"Download the following for an example of a custom logger:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"wget https://raw.githubusercontent.com/neuralmagic/docs/rs/logging-feature/src/files-for-examples/logging/example_custom_logger.py\\nwget https://raw.githubusercontent.com/neuralmagic/docs/rs/logging-feature/src/files-for-examples/logging/server-config-with-custom-logger.yaml\\n\")), mdx(\"p\", null, \"Launch the server:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server --config-file server-config-with-custom-logger.yaml\\n\")), mdx(\"p\", null, \"Submit a request:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\nurl = \\\"http://0.0.0.0:5543/sentiment_analysis/predict\\\"\\nobj = {\\\"sequences\\\": \\\"Snorlax loves my Tesla!\\\"}\\nresp = requests.post(url=url, json=obj)\\nprint(resp.text)\\n\")), mdx(\"p\", null, \"You should see data printed to the Server's standard output.\"), mdx(\"p\", null, \"See \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/loggers/prometheus_logger.py\"\n }, \"our Prometheus logger implementation\"), \"\\nfor inspiration on implementing a logger.\"), mdx(\"h2\", null, \"Usage\"), mdx(\"p\", null, \"DeepSparse Logging is currently supported for usage with DeepSparse Server. \"), mdx(\"h3\", null, \"Server Usage\"), mdx(\"p\", null, \"The Server startup CLI command accepts a YAML configuration file (which contains both logging-specific and general\\nconfiguration details) via the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--config-file\"), \" argument.\"), mdx(\"p\", null, \"Data Logging is configured at the endpoint level. The configuration file below creates a Server with two endpoints\\n(one for image classification and one for sentiment analysis):\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"# server-config.yaml\\nloggers:\\n python:\\n prometheus:\\n port: 6100\\n \\nendpoints:\\n - task: image_classification\\n route: /image_classification/predict\\n model: zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none\\n name: image_classification_pipeline\\n data_logging:\\n pipeline_inputs.images:\\n - func: np.shape\\n frequency: 1\\n target_loggers:\\n - python\\n\\n pipeline_inputs.images[0]:\\n - func: max_pixels_per_channel\\n frequency: 1\\n target_loggers:\\n - python\\n - func: mean_pixels_per_channel\\n frequency: 1\\n target_loggers:\\n - python\\n - func: fraction_zeros\\n frequency: 1\\n target_loggers:\\n - prometheus\\n \\n pipeline_outputs.scores[0]:\\n - func: identity\\n frequency: 1\\n target_loggers:\\n - prometheus\\n\\n - task: sentiment_analysis\\n route: /sentiment_analysis/predict\\n model: zoo:nlp/sentiment_analysis/bert-base/pytorch/huggingface/sst2/12layer_pruned80_quant-none-vnni\\n name: sentiment_analysis_pipeline\\n data_logging:\\n engine_inputs:\\n - func: example_custom_fn.py:sequence_length\\n frequency: 1\\n target_loggers:\\n - python\\n - prometheus\\n \\n pipeline_outputs.scores[0]:\\n - func: identity\\n frequency: 1\\n target_loggers:\\n - python\\n - prometheus\\n\")), mdx(\"h4\", null, \"Custom Data Logging Function\"), mdx(\"p\", null, \"The example above included a custom function for computing sequence lengths. Custom\\nFunctions should be defined in a local Python file. They should accept one argument\\nand return a single output.\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"example_custom_fn.py\"), \" file could look like the following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import numpy as np\\nfrom typing import List\\n\\n# Engine inputs to transformers is 3 lists of np.arrays representing\\n# the encoded input, the attention mask, and token types.\\n# Each of the np.arrays is of shape (batch, max_seq_len), so\\n# engine_inputs[0][0] gives the encodings of the first item in the batch.\\n# The number of non-zeros in this slice is the sequence length.\\ndef sequence_length(engine_inputs: List[np.ndarray]):\\n return np.count_nonzero(engine_inputs[0][0])\\n\")), mdx(\"h4\", null, \"Launching the Server and Logging Metrics\"), mdx(\"p\", null, \"Download the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"server-config.yaml\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"example_custom_fn.py\"), \", and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"goldfish.jpeg\"), \" for the demo.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"wget https://raw.githubusercontent.com/neuralmagic/docs/rs/logging-feature/src/files-for-examples/logging/server-config.yaml\\nwget https://raw.githubusercontent.com/neuralmagic/docs/rs/logging-feature/src/files-for-examples/logging/example_custom_fn.py\\nwget https://raw.githubusercontent.com/neuralmagic/docs/rs/logging-feature/src/files-for-examples/logging/goldfish.jpg\\n\\n\")), mdx(\"p\", null, \"Launch the Server with the following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server --config-file server-config.yaml\\n\")), mdx(\"p\", null, \"Submit a request to the image classification endpoint.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\nurl = \\\"http://0.0.0.0:5543/image_classification/predict/from_files\\\"\\npaths = [\\\"goldfish.jpg\\\"]\\nfiles = [(\\\"request\\\", open(img, 'rb')) for img in paths]\\nresp = requests.post(url=url, files=files)\\nprint(resp.text)\\n\")), mdx(\"p\", null, \"Submit a request to the sentiment analysis endpoint with the following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\nurl = \\\"http://0.0.0.0:5543/sentiment_analysis/predict\\\"\\nobj = {\\\"sequences\\\": \\\"Snorlax loves my Tesla!\\\"}\\nresp = requests.post(url=url, json=obj)\\nprint(resp.text)\\n\")), mdx(\"p\", null, \"You should see the metrics logged to the Server's standard output and to Prometheus (see at \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"http://localhost:6100\"), \" to quickly inspect the exposed metrics).\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deepsparse-logging","title":"DeepSparse Logging","items":[{"url":"#installation","title":"Installation"},{"url":"#metrics","title":"Metrics","items":[{"url":"#system-logging-metrics","title":"System Logging Metrics"},{"url":"#data-logging-metrics","title":"Data Logging Metrics"}]},{"url":"#configuration","title":"Configuration","items":[{"url":"#logging-yaml-syntax","title":"Logging YAML Syntax"},{"url":"#tangible-example","title":"Tangible Example"}]},{"url":"#loggers","title":"Loggers","items":[{"url":"#python-logger","title":"Python Logger"},{"url":"#prometheus-logger","title":"Prometheus Logger"},{"url":"#custom-logger","title":"Custom Logger"}]},{"url":"#usage","title":"Usage","items":[{"url":"#server-usage","title":"Server Usage","items":[{"url":"#custom-data-logging-function","title":"Custom Data Logging Function"},{"url":"#launching-the-server-and-logging-metrics","title":"Launching the Server and Logging Metrics"}]}]}]}]},"parent":{"relativePath":"user-guide/deepsparse-engine/logging.mdx"},"frontmatter":{"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse","index":6000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/deepsparse-engine/numactl-utility/page-data.json b/page-data/user-guide/deepsparse-engine/numactl-utility/page-data.json index e65679a89b7..1a0d62bc1c6 100644 --- a/page-data/user-guide/deepsparse-engine/numactl-utility/page-data.json +++ b/page-data/user-guide/deepsparse-engine/numactl-utility/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deepsparse-engine/numactl-utility","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","title":"numactl Utility","slug":"/user-guide/deepsparse-engine/numactl-utility","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deepsparse-engine/numactl-utility.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"numactl Utility\",\n \"metaTitle\": \"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine\",\n \"metaDescription\": \"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine\",\n \"index\": 5000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine\"), mdx(\"p\", null, \"The DeepSparse Engine achieves better performance on multiple-socket systems as well as with hyperthreading disabled; models with larger batch sizes are likely to see an improvement. One standard way of controlling compute/memory resources when running processes is to use the \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"numactl\"), \" utility. \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"numactl\"), \" can be used when multiple processes need to run on the same hardware but require their own CPU/memory resources to run optimally.\"), mdx(\"p\", null, \"To run the DeepSparse Engine on a single socket (N) of a multi-socket system, you would start the DeepSparse Engine using \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"numactl\"), \". For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" numactl --cpunodebind N \\n\")), mdx(\"p\", null, \"To run the DeepSparse Engine on multiple sockets (N,M), run:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" numactl --cpunodebind N,M \\n\")), mdx(\"p\", null, \"It is advised to also allocate memory from the same socket on which the engine is running. So, \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--membind\"), \" or \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--preferred\"), \" should be used when using \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--cpunodebind.\"), \" For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" numactl --cpunodebind N --preferred N \\n or\\n numactl --cpunodebind N --membind N \\n\")), mdx(\"p\", null, \"The difference between \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--membind\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--preferred\"), \" is that \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--preferred\"), \" allows memory from other sockets to be allocated if the current socket is out of memory. \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--membind\"), \" does not allow memory to be allocated outside the specified socket.\"), mdx(\"p\", null, \"For more fine-grained control, \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"numactl\"), \" can be used to bind the process running the DeepSparse Engine to a set of specific CPUs using \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--physcpubind\"), \". CPUs are numbered from 0-N, where N is the maximum number of logical cores available on the system. On systems with hyper-threading (or SMT), there may be more than one logical thread per physical CPU. Usually, the logical CPUs/threads are numbered after all the physical CPUs/threads. For example, in a system with two threads per CPU and N physical CPUs, the threads for a particular CPU (K) will be K and K+N for all 0\", \"<\", \"=K\", \"<\", \"N. The DeepSparse Engine currently works best with hyper-threading/SMT disabled, so only one set of threads should be selected using \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"numactl\"), \", i.e., 0 through (N-1) or N through (N-1).\"), mdx(\"p\", null, \"Similarly, for a multi-socket system with N sockets and C physical CPUs per socket, the CPUs located on a single socket will range from K\", mdx(\"em\", {\n parentName: \"p\"\n }, \"C to ((K+1)\"), \"C)-1 where 0\", \"<\", \"=K\", \"<\", \"N. For multi-socket, multi-thread systems, the logical threads are separated by N*C. For example, for a two socket, two thread per CPU system with 8 cores per CPU, the logical threads for socket 0 would be numbered 0-7 and 16-23, and the threads for socket 1 would be numbered 8-15 and 24-31.\"), mdx(\"p\", null, \"Given the architecture above, to run the DeepSparse Engine on the first four CPUs on the second socket, you would use the following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" numactl --physcpubind 8-11 --preferred 1 \\n\")), mdx(\"p\", null, \"Appending \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--preferred 1\"), \" is needed here since the DeepSparse Engine is being bound to CPUs on the second socket.\"), mdx(\"p\", null, \"Note: When running on multiple sockets using a batch size that is evenly divisible by the number of sockets will yield the best performance.\"), mdx(\"h2\", null, \"DeepSparse Engine and Thread Pinning\"), mdx(\"p\", null, \"When using \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"numactl\"), \" to specify which CPUs/sockets the engine is allowed to run on, there is no restriction as to which CPU a particular computation thread is executed on. A single thread of computation may run on one or more CPUs during the course of execution. This is desirable if the system is being shared between multiple processes so that idle CPU threads are not prevented from doing other work.\"), mdx(\"p\", null, \"However, the engine works best when threads are pinned (i.e., not allowed to migrate from one CPU to another). Thread pinning can be enabled using the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"NM_BIND_THREADS_TO_CORES\"), \" environment variable. For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" NM_BIND_THREADS_TO_CORES=1 \\n or\\n export NM_BIND_THREADS_TO_CORES=1 \\n\")), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"NM_BIND_THREADS_TO_CORES\"), \" should be used with care since it forces the DeepSparse Engine to run on only the threads it has been allocated at startup. If any other process ends up running on the same threads, it could result in a major degradation of performance.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Note:\"), \" The threads-to-cores mappings described above are specific to Intel only. AMD has a different mapping. For AMD, all the threads for a single core are consecutive, i.e., if each core has two threads and there are N cores, the threads for a particular core K are 2\", mdx(\"em\", {\n parentName: \"p\"\n }, \"K and 2\"), \"K+1. The mapping of cores to sockets is also straightforward, for a N socket system with C cores per socket, the cores for a particular socket S are numbered S\", mdx(\"em\", {\n parentName: \"p\"\n }, \"C to ((S+1)\"), \"C)-1.\"), mdx(\"h2\", null, \"Additional Notes\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"numactl --hardware\")), mdx(\"p\", null, \"Displays the inventory of available sockets/CPUs on a system.\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"numactl --show\")), mdx(\"p\", null, \"Displays the resources available to the current process.\"), mdx(\"p\", null, \"For further details about these and other parameters, see the man page on \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"numactl\"), \":\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" man numactl\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#using-the-numactl-utility-to-control-resource-utilization-with-the-deepsparse-engine","title":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","items":[{"url":"#deepsparse-engine-and-thread-pinning","title":"DeepSparse Engine and Thread Pinning"},{"url":"#additional-notes","title":"Additional Notes"}]}]},"parent":{"relativePath":"user-guide/deepsparse-engine/numactl-utility.mdx"},"frontmatter":{"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","index":5000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deepsparse-engine/numactl-utility","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","title":"numactl Utility","slug":"/user-guide/deepsparse-engine/numactl-utility","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deepsparse-engine/numactl-utility.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"numactl Utility\",\n \"metaTitle\": \"Using the numactl Utility to Control Resource Utilization with DeepSparse\",\n \"metaDescription\": \"Using the numactl Utility to Control Resource Utilization with DeepSparse\",\n \"index\": 5000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Using the numactl Utility to Control Resource Utilization with DeepSparse\"), mdx(\"p\", null, \"DeepSparse achieves better performance on multiple-socket systems as well as with hyperthreading disabled; models with larger batch sizes are likely to see an improvement. One standard way of controlling compute/memory resources when running processes is to use the \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"numactl\"), \" utility. \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"numactl\"), \" can be used when multiple processes need to run on the same hardware but require their own CPU/memory resources to run optimally.\"), mdx(\"p\", null, \"To run DeepSparse on a single socket (N) of a multi-socket system, you would start the DeepSparse using \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"numactl\"), \". For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" numactl --cpunodebind N \\n\")), mdx(\"p\", null, \"To run DeepSparse on multiple sockets (N,M), run:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" numactl --cpunodebind N,M \\n\")), mdx(\"p\", null, \"It is advised to also allocate memory from the same socket on which the engine is running. So, \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--membind\"), \" or \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--preferred\"), \" should be used when using \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--cpunodebind.\"), \" For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" numactl --cpunodebind N --preferred N \\n or\\n numactl --cpunodebind N --membind N \\n\")), mdx(\"p\", null, \"The difference between \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--membind\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--preferred\"), \" is that \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--preferred\"), \" allows memory from other sockets to be allocated if the current socket is out of memory. \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--membind\"), \" does not allow memory to be allocated outside the specified socket.\"), mdx(\"p\", null, \"For more fine-grained control, \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"numactl\"), \" can be used to bind the process running DeepSparse to a set of specific CPUs using \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--physcpubind\"), \". CPUs are numbered from 0-N, where N is the maximum number of logical cores available on the system. On systems with hyper-threading (or SMT), there may be more than one logical thread per physical CPU. Usually, the logical CPUs/threads are numbered after all the physical CPUs/threads. For example, in a system with two threads per CPU and N physical CPUs, the threads for a particular CPU (K) will be K and K+N for all 0\", \"<\", \"=K\", \"<\", \"N. DeepSparse currently works best with hyper-threading/SMT disabled, so only one set of threads should be selected using \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"numactl\"), \", i.e., 0 through (N-1) or N through (N-1).\"), mdx(\"p\", null, \"Similarly, for a multi-socket system with N sockets and C physical CPUs per socket, the CPUs located on a single socket will range from K\", mdx(\"em\", {\n parentName: \"p\"\n }, \"C to ((K+1)\"), \"C)-1 where 0\", \"<\", \"=K\", \"<\", \"N. For multi-socket, multi-thread systems, the logical threads are separated by N*C. For example, for a two socket, two thread per CPU system with 8 cores per CPU, the logical threads for socket 0 would be numbered 0-7 and 16-23, and the threads for socket 1 would be numbered 8-15 and 24-31.\"), mdx(\"p\", null, \"Given the architecture above, to run DeepSparse on the first four CPUs on the second socket, you would use:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" numactl --physcpubind 8-11 --preferred 1 \\n\")), mdx(\"p\", null, \"Appending \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"--preferred 1\"), \" is needed here since DeepSparse is being bound to CPUs on the second socket.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Note:\"), \" When running on multiple sockets, using a batch size that is evenly divisible by the number of sockets will yield the best performance.\"), mdx(\"h2\", null, \"DeepSparse and Thread Pinning\"), mdx(\"p\", null, \"When using \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"numactl\"), \" to specify the CPUs/sockets on which the engine is allowed to run, there is no restriction as to the CPU on which a particular computation thread is executed. A single thread of computation may run on one or more CPUs during the course of execution. This is desirable if the system is being shared between multiple processes so that idle CPU threads are not prevented from doing other work.\"), mdx(\"p\", null, \"However, the engine works best when threads are pinned (i.e., not allowed to migrate from one CPU to another). Thread pinning can be enabled using the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"NM_BIND_THREADS_TO_CORES\"), \" environment variable. For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" NM_BIND_THREADS_TO_CORES=1 \\n or\\n export NM_BIND_THREADS_TO_CORES=1 \\n\")), mdx(\"p\", null, \"Use \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"NM_BIND_THREADS_TO_CORES\"), \" with care since it forces DeepSparse to run on only the threads it has been allocated at startup. If any other process ends up running on the same threads, it could result in a major degradation of performance.\"), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Note:\"), \" The threads-to-cores mappings described above are specific to Intel only. AMD has a different mapping. For AMD, all the threads for a single core are consecutive; that is, if each core has two threads and there are N cores, the threads for a particular core K are 2\", mdx(\"em\", {\n parentName: \"p\"\n }, \"K and 2\"), \"K+1. The mapping of cores to sockets is also straightforward. For an N socket system with C cores per socket, the cores for a particular socket S are numbered S\", mdx(\"em\", {\n parentName: \"p\"\n }, \"C to ((S+1)\"), \"C)-1.\"), mdx(\"h2\", null, \"Additional Notes\"), mdx(\"p\", null, \"This displays the inventory of available sockets/CPUs on a system:\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"numactl --hardware\")), mdx(\"p\", null, \"This displays the resources available to the current process:\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"numactl --show\")), mdx(\"p\", null, \"For further details about these and other parameters, see the man page on \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"numactl\"), \":\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \" man numactl\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#using-the-numactl-utility-to-control-resource-utilization-with-deepsparse","title":"Using the numactl Utility to Control Resource Utilization with DeepSparse","items":[{"url":"#deepsparse-and-thread-pinning","title":"DeepSparse and Thread Pinning"},{"url":"#additional-notes","title":"Additional Notes"}]}]},"parent":{"relativePath":"user-guide/deepsparse-engine/numactl-utility.mdx"},"frontmatter":{"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse","index":5000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/deepsparse-engine/page-data.json b/page-data/user-guide/deepsparse-engine/page-data.json index 892cb3c9737..9b351da1dfc 100644 --- a/page-data/user-guide/deepsparse-engine/page-data.json +++ b/page-data/user-guide/deepsparse-engine/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deepsparse-engine","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","title":"DeepSparse Engine","slug":"/user-guide/deepsparse-engine","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deepsparse-engine.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"DeepSparse Engine\",\n \"metaTitle\": \"User Guides for the DeepSparse Engine\",\n \"metaDescription\": \"User Guides for the DeepSparse Engine\",\n \"index\": 4000\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"User Guides for the DeepSparse Engine\"), mdx(\"p\", null, \"This user guide offers more information for exploring additional and advanced functionality for the DeepSparse Engine.\"), mdx(\"h2\", null, \"Guides\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./hardware-support\",\n heading: \"Supported Hardware\",\n mdxType: \"LinkCard\"\n }, \"Supported hardware for the DeepSparse Engine, including CPU types and instruction sets.\"), mdx(LinkCard, {\n href: \"./scheduler\",\n heading: \"Inference Types\",\n mdxType: \"LinkCard\"\n }, \"Inference types and the tradeoffs with the DeepSparse Scheduler, such as single and multi-stream.\"), mdx(LinkCard, {\n href: \"./benchmarking\",\n heading: \"Benchmarking\",\n mdxType: \"LinkCard\"\n }, \"Benchmarking ONNX models in the DeepSparse Engine.\"), mdx(LinkCard, {\n href: \"./diagnostics-debugging\",\n heading: \"Diagnostics/Debugging\",\n mdxType: \"LinkCard\"\n }, \"Logging guidance for diagnosing and debugging any issues.\"), mdx(LinkCard, {\n href: \"./numactl-utility\",\n heading: \"numactl Utility\",\n mdxType: \"LinkCard\"\n }, \"Controlling resource utilization with the DeepSparse Engine using the numactl utility.\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#user-guides-for-the-deepsparse-engine","title":"User Guides for the DeepSparse Engine","items":[{"url":"#guides","title":"Guides"}]}]},"parent":{"relativePath":"user-guide/deepsparse-engine.mdx"},"frontmatter":{"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine","index":4000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deepsparse-engine","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","title":"DeepSparse","slug":"/user-guide/deepsparse-engine","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deepsparse-engine.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"DeepSparse\",\n \"metaTitle\": \"User Guides for DeepSparse Engine\",\n \"metaDescription\": \"User Guides for DeepSparse Engine\",\n \"index\": 4000\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"User Guides for DeepSparse\"), mdx(\"p\", null, \"This user guide offers more information for exploring additional and advanced functionality for DeepSparse.\"), mdx(\"h2\", null, \"Guides\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./hardware-support\",\n heading: \"Supported Hardware\",\n mdxType: \"LinkCard\"\n }, \"Lists supported hardware for DeepSparse, including CPU types and instruction sets.\"), mdx(LinkCard, {\n href: \"./scheduler\",\n heading: \"Inference Types\",\n mdxType: \"LinkCard\"\n }, \"Describes inference types and tradeoffs with DeepSparse Scheduler, such as single and multi-stream.\"), mdx(LinkCard, {\n href: \"./benchmarking\",\n heading: \"Benchmarking\",\n mdxType: \"LinkCard\"\n }, \"Explains how to benchmark ONNX models with DeepSparse.\"), mdx(LinkCard, {\n href: \"./diagnostics-debugging\",\n heading: \"Diagnostics/Debugging\",\n mdxType: \"LinkCard\"\n }, \"Provides logging guidance for diagnosing and debugging any issues.\"), mdx(LinkCard, {\n href: \"./numactl-utility\",\n heading: \"numactl Utility\",\n mdxType: \"LinkCard\"\n }, \"Explains how to use the numactl utility for controlling resource utilization with DeepSparse.\"), mdx(LinkCard, {\n href: \"./logging\",\n heading: \"DeepSparse Logging\",\n mdxType: \"LinkCard\"\n }, \"Explains how to use DeepSparse Logging for monitoring production models.\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#user-guides-for-deepsparse","title":"User Guides for DeepSparse","items":[{"url":"#guides","title":"Guides"}]}]},"parent":{"relativePath":"user-guide/deepsparse-engine.mdx"},"frontmatter":{"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine","index":4000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/deepsparse-engine/scheduler/page-data.json b/page-data/user-guide/deepsparse-engine/scheduler/page-data.json index 3fa04fd51de..b5360252cd4 100644 --- a/page-data/user-guide/deepsparse-engine/scheduler/page-data.json +++ b/page-data/user-guide/deepsparse-engine/scheduler/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deepsparse-engine/scheduler","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","title":"Inference Types","slug":"/user-guide/deepsparse-engine/scheduler","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deepsparse-engine/scheduler.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Inference Types\",\n \"metaTitle\": \"Inference Types with the DeepSparse Scheduler\",\n \"metaDescription\": \"Inference Types with the DeepSparse Scheduler\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Inference Types with the DeepSparse Scheduler\"), mdx(\"p\", null, \"This page explains the various settings for DeepSparse, which enable you to tune the performance to your workload.\"), mdx(\"p\", null, \"Schedulers are special system software which handle the distribution of work across cores in parallel computation.\\nThe goal of a good scheduler is to ensure that while work is available, cores aren\\u2019t sitting idle.\\nOn the contrary, as long as parallel tasks are available, all cores should be kept busy.\"), mdx(\"h2\", null, \"Single Stream (Default)\"), mdx(\"p\", null, \"In most use cases, the default scheduler is the preferred choice when running inferences with the DeepSparse Engine.\\nIt's highly optimized for minimum per-request latency, using all of the system's resources provided to it on every request it gets.\\nOften, particularly when working with large batch sizes, the scheduler is able to distribute the workload of a single request across as many cores as it's provided.\"), mdx(\"p\", null, mdx(\"em\", {\n parentName: \"p\"\n }, \"Single-stream scheduling; requests execute serially by default:\")), mdx(\"img\", {\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/single-stream.png\",\n \"alt\": \"single stream diagram\"\n }), mdx(\"h2\", null, \"Multi Stream\"), mdx(\"p\", null, \"However, there are circumstances in which more cores does not imply better performance. If the computation can't be divided up to produce enough parallelism (while maximizing use of the CPU cache), then adding more cores simply adds more compute power with little to apply it to.\"), mdx(\"p\", null, \"An alternative, \\\"multi-stream\\\" scheduler is provided with the software. In cases where parallelism is low, sending multiple requests simultaneously can more adequately saturate the available cores. In other words, if speedup can't be achieved by adding more cores, then perhaps speedup can be achieved by adding more work.\"), mdx(\"p\", null, \"If increasing core count doesn't decrease latency, that's a strong indicator that parallelism is low in your particular model/batch-size combination. It may be that total throughput can be increased by making more requests simultaneously. Using the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/api/deepsparse.html\"\n }, \"deepsparse.engine.Scheduler API,\"), \" the multi-stream scheduler can be selected, and requests made by multiple Python threads will be handled concurrently.\"), mdx(\"p\", null, mdx(\"em\", {\n parentName: \"p\"\n }, \"Multi-stream scheduling; requests execute in parallel and may utilize HW resources better:\")), mdx(\"img\", {\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/multi-stream.png\",\n \"alt\": \"multi stream diagram\"\n }), mdx(\"p\", null, \"Whereas the default scheduler will queue up requests made simultaneously and handle them serially, the multi-stream scheduler allows multiple requests to be run in parallel. The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"num_streams\"), \" argument to the Engine/Context classes controls how the multi-streams scheduler partitions up the machine. Each stream maps to a contiguous set of hardware threads. By default, only one hyperthread per core is used. There is no sharing amongst the partitions and it is generally good practice make sure that the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"num_streams\"), \" value evenly divides into your number of cores. By default \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"num_streams\"), \" is set to multiplex requests across L3 caches.\"), mdx(\"p\", null, \"Here's an example: Consider a machine with 2 sockets, each with 8 cores. In this case the multi-stream scheduler will create two streams, one per socket by default. The first stream will contain cores 0-7 and the second stream will contain cores 8-15.\"), mdx(\"p\", null, \"Manually increasing \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"num_streams\"), \" to 3 will result in the following stream breakdown: threads 0-5 in the first stream, 6-10 in the second, and 11-15 in the last. This is problematic for our two socket system. The second stream (threads 6-10) is straddling both sockets, meaning that each request being serviced by that stream is going to incur a performance penalty each time one of its threads makes a remote memory access. The impact of this penalty will depend on the workload, but it will likely be significant.\"), mdx(\"p\", null, \"Manually increasing \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"num_streams\"), \" to 4 is interesting. Here's the stream breakdown: threads 0-3 in the first stream, 4-7 in the second, 8-11 in the third, and 12-15 in the fourth. Each stream is only making memory accesses that are local to its socket which is good. However, the first two and last two streams are sharing the same L3 cache which can result in worse performance due to cache thrashing. Depending on the workload, the performance gain from the increased parallelism may negate this penalty, though.\"), mdx(\"p\", null, \"The most common use cases for the multi-stream scheduler are where parallelism is low with respect to core count, and where requests need to be made asynchronously without time to batch them. Implementing a model server may fit such a scenario and be ideal for using multi-stream scheduling.\"), mdx(\"h2\", null, \"Enabling a Scheduler\"), mdx(\"p\", null, \"Depending on your engine execution strategy, enable one of these options by running:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"engine = compile_model(model_path, scheduler=\\\"single_stream\\\")\\n\")), mdx(\"p\", null, \"or\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"engine = compile_model(model_path, scheduler=\\\"multi_stream\\\", num_streams=None) # None is the default\\n\")), mdx(\"p\", null, \"or pass in the enum value directly, since\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \" \\\"multi_stream\\\" == Scheduler.multi_stream\")), mdx(\"p\", null, \"By default, the scheduler will map to a single stream.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#inference-types-with-the-deepsparse-scheduler","title":"Inference Types with the DeepSparse Scheduler","items":[{"url":"#single-stream-default","title":"Single Stream (Default)"},{"url":"#multi-stream","title":"Multi Stream"},{"url":"#enabling-a-scheduler","title":"Enabling a Scheduler"}]}]},"parent":{"relativePath":"user-guide/deepsparse-engine/scheduler.mdx"},"frontmatter":{"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deepsparse-engine/scheduler","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","title":"Inference Types","slug":"/user-guide/deepsparse-engine/scheduler","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deepsparse-engine/scheduler.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Inference Types\",\n \"metaTitle\": \"Inference Types with DeepSparse Scheduler\",\n \"metaDescription\": \"Inference Types with DeepSparse Scheduler\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Inference Types with DeepSparse Scheduler\"), mdx(\"p\", null, \"This page explains the various settings for DeepSparse, which enable you to tune the performance to your workload.\"), mdx(\"p\", null, \"Schedulers are special system software, which handle the distribution of work across cores in parallel computation.\\nThe goal of a good scheduler is to ensure that, while work is available, cores are not sitting idle.\\nOn the contrary, as long as parallel tasks are available, all cores should be kept busy.\"), mdx(\"h2\", null, \"Single Stream (Default)\"), mdx(\"p\", null, \"In most use cases, the default scheduler is the preferred choice when running inferences with DeepSparse.\\nThe default scheduler is highly optimized for minimum per-request latency, using all of the system's resources provided to it on every request it gets.\\nOften, particularly when working with large batch sizes, the scheduler is able to distribute the workload of a single request across as many cores as it's provided.\"), mdx(\"p\", null, mdx(\"em\", {\n parentName: \"p\"\n }, \"Single-stream scheduling; requests execute serially by default:\")), mdx(\"img\", {\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/single-stream.png\",\n \"alt\": \"single stream diagram\"\n }), mdx(\"h2\", null, \"Multi-Stream\"), mdx(\"p\", null, \"There are circumstances in which more cores does not imply better performance. If the computation can't be divided up to produce enough parallelism (while maximizing use of the CPU cache), then adding more cores simply adds more compute power with little to apply it to.\"), mdx(\"p\", null, \"An alternative, multi-stream scheduler is provided with the software. In cases where parallelism is low, sending multiple requests simultaneously can more adequately saturate the available cores. In other words, if speedup can't be achieved by adding more cores, then perhaps speedup can be achieved by adding more work.\"), mdx(\"p\", null, \"If increasing core count does not decrease latency, that's a strong indicator that parallelism is low in your particular model/batch-size combination. It may be that total throughput can be increased by making more requests simultaneously. Using the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.neuralmagic.com/deepsparse/api/deepsparse.html\"\n }, \"deepsparse.engine.Scheduler API,\"), \" the multi-stream scheduler can be selected, and requests made by multiple Python threads will be handled concurrently.\"), mdx(\"p\", null, mdx(\"em\", {\n parentName: \"p\"\n }, \"Multi-stream scheduling; requests execute in parallel and may better utilize hardware resources:\")), mdx(\"img\", {\n \"src\": \"https://raw.githubusercontent.com/neuralmagic/deepsparse/main/docs/source/multi-stream.png\",\n \"alt\": \"multi stream diagram\"\n }), mdx(\"p\", null, \"Whereas the default scheduler will queue up requests made simultaneously and handle them serially, the multi-stream scheduler allows multiple requests to be run in parallel. The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"num_streams\"), \" argument to the Engine/Context classes controls how the multi-streams scheduler partitions up the machine. Each stream maps to a contiguous set of hardware threads. By default, only one hyperthread per core is used. There is no sharing amongst the partitions and it is generally good practice to make sure the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"num_streams\"), \" value evenly divides into your number of cores. By default \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"num_streams\"), \" is set to multiplex requests across L3 caches.\"), mdx(\"p\", null, \"Here's an example. Consider a machine with 2 sockets, each with 8 cores. In this case, the multi-stream scheduler will create two streams, one per socket by default. The first stream will contain cores 0-7 and the second stream will contain cores 8-15.\"), mdx(\"p\", null, \"Manually increasing \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"num_streams\"), \" to 3 will result in the following stream breakdown: threads 0-5 in the first stream, 6-10 in the second, and 11-15 in the last. This is problematic for our 2-socket system. The second stream (threads 6-10) is straddling both sockets, meaning that each request being serviced by that stream is going to incur a performance penalty each time one of its threads makes a remote memory access. The impact of this penalty will depend on the workload, but it will likely be significant.\"), mdx(\"p\", null, \"Manually increasing \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"num_streams\"), \" to 4 is interesting. Here's the stream breakdown: threads 0-3 in the first stream, 4-7 in the second, 8-11 in the third, and 12-15 in the fourth. Each stream is only making memory accesses that are local to its socket, which is good. However, the first two and last two streams are sharing the same L3 cache, which can result in worse performance due to cache thrashing. Depending on the workload, though, the performance gain from the increased parallelism may negate this penalty.\"), mdx(\"p\", null, \"The most common use cases for the multi-stream scheduler are where parallelism is low with respect to core count, and where requests need to be made asynchronously without time to batch them. Implementing a model server may fit such a scenario and be ideal for using multi-stream scheduling.\"), mdx(\"h2\", null, \"Enabling a Scheduler\"), mdx(\"p\", null, \"Depending on your engine execution strategy, enable one of these options by running:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"engine = compile_model(model_path, scheduler=\\\"single_stream\\\")\\n\")), mdx(\"p\", null, \"or:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"engine = compile_model(model_path, scheduler=\\\"multi_stream\\\", num_streams=None) # None is the default\\n\")), mdx(\"p\", null, \"or pass in the enum value directly, since\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \" \\\"multi_stream\\\" == Scheduler.multi_stream\"), \".\"), mdx(\"p\", null, \"By default, the scheduler will map to a single stream.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#inference-types-with-deepsparse-scheduler","title":"Inference Types with DeepSparse Scheduler","items":[{"url":"#single-stream-default","title":"Single Stream (Default)"},{"url":"#multi-stream","title":"Multi-Stream"},{"url":"#enabling-a-scheduler","title":"Enabling a Scheduler"}]}]},"parent":{"relativePath":"user-guide/deepsparse-engine/scheduler.mdx"},"frontmatter":{"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/deploying-deepsparse/aws-lambda/page-data.json b/page-data/user-guide/deploying-deepsparse/aws-lambda/page-data.json new file mode 100644 index 00000000000..4e1c630bbed --- /dev/null +++ b/page-data/user-guide/deploying-deepsparse/aws-lambda/page-data.json @@ -0,0 +1 @@ +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deploying-deepsparse/aws-lambda","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","title":"AWS Lambda","slug":"/user-guide/deploying-deepsparse/aws-lambda","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deploying-deepsparse/aws-lambda.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"AWS Lambda\",\n \"metaTitle\": \"Using DeepSparse on AWS Lambda\",\n \"metaDescription\": \"Deploy DeepSparse in a Serverless framework with AWS Lambda\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploying with DeepSparse on AWS Lambda\"), mdx(\"p\", null, \"AWS Lambda is an event-driven, serverless computing infrastructure for deploying applications at minimal cost. Since\\nDeepSparse runs on commodity CPUs, you can deploy DeepSparse on Lambda!\"), mdx(\"p\", null, \"The DeepSparse GitHub repo contains a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/examples/aws-lambda\"\n }, \"guided example\"), \"\\nfor deploying a DeepSparse Pipeline on AWS Lambda for the sentiment analysis task.\"), mdx(\"p\", null, \"The scope of this application encompasses:\"), mdx(\"ol\", null, mdx(\"li\", {\n parentName: \"ol\"\n }, \"The construction of a local Docker image.\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"The creation of an ECR repo in AWS.\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"Pushing the local image to ECR.\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"The creation of the appropriate IAM permissions for handling Lambda.\"), mdx(\"li\", {\n parentName: \"ol\"\n }, \"The creation of a Lambda function alongside an API Gateway in a CloudFormation stack. \")), mdx(\"h2\", null, \"Requirements\"), mdx(\"p\", null, \"The following credentials, tools, and libraries are also required:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html\"\n }, \"AWS CLI\"), \" version 2.X that is \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html\"\n }, \"configured\"), \". Double check if the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"region\"), \" that is configured in your AWS CLI matches the region passed in the SparseLambda class found in the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"endpoint.py\"), \" file. Currently, the default region being used is \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"us-east-1\"), \".\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The AWS Serverless Application Model \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-is-sam.html\"\n }, \"(AWS SAM)\"), \", an open-source CLI framework used for building serverless applications on AWS.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.docker.com/get-docker/\"\n }, \"Docker and the \", mdx(\"inlineCode\", {\n parentName: \"a\"\n }, \"docker\"), \" cli\"), \".\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"boto3\"), \" python AWS SDK: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"pip install boto3\"), \".\")), mdx(\"h2\", null, \"Quick Start\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"git clone https://github.com/neuralmagic/deepsparse.git\\ncd deepsparse/examples/aws-lambda\\npip install -r requirements.txt\\n\")), mdx(\"h2\", null, \"Model Configuration\"), mdx(\"p\", null, \"To use a different sparse model please edit the model zoo stub in the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Dockerfile\"), \".\\nTo change pipeline configuration (e.g., change task, engine), edit the pipeline object in the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"app.py\"), \" file. Both files can be found in the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/lambda-deepsparse/app\"), \" directory.\"), mdx(\"h2\", null, \"Create Endpoint\"), mdx(\"p\", null, \"Run the following command to build your Lambda endpoint.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"python endpoint.py create\\n\")), mdx(\"h2\", null, \"Call Endpoint\"), mdx(\"p\", null, \"After the endpoint has been staged (~3 minutes), AWS SAM will provide your API Gateway endpoint URL in CLI. You can start making requests by passing this URL into the LambdaClient object. Afterwards, you can run inference by passing in your text input:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from client import LambdaClient\\n\\nLC = LambdaClient(\\\"https://#########.execute-api.us-east-1.amazonaws.com/inference\\\")\\nanswer = LC.client({\\\"sequences\\\": \\\"i like pizza\\\"})\\n\\nprint(answer)\\n\")), mdx(\"p\", null, \"answer: \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"{'labels': ['positive'], 'scores': [0.9990884065628052]}\")), mdx(\"p\", null, \"On your first cold start, it will take a ~30 seconds to get your first inference, but afterwards, it should be in milliseconds.\"), mdx(\"h2\", null, \"Delete Endpoint\"), mdx(\"p\", null, \"If you want to delete your Lambda endpoint, run:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"python endpoint.py destroy\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploying-with-deepsparse-on-aws-lambda","title":"Deploying with DeepSparse on AWS Lambda","items":[{"url":"#requirements","title":"Requirements"},{"url":"#quick-start","title":"Quick Start"},{"url":"#model-configuration","title":"Model Configuration"},{"url":"#create-endpoint","title":"Create Endpoint"},{"url":"#call-endpoint","title":"Call Endpoint"},{"url":"#delete-endpoint","title":"Delete Endpoint"}]}]},"parent":{"relativePath":"user-guide/deploying-deepsparse/aws-lambda.mdx"},"frontmatter":{"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/deploying-deepsparse/aws-sagemaker/page-data.json b/page-data/user-guide/deploying-deepsparse/aws-sagemaker/page-data.json new file mode 100644 index 00000000000..39e5bcfd522 --- /dev/null +++ b/page-data/user-guide/deploying-deepsparse/aws-sagemaker/page-data.json @@ -0,0 +1 @@ +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deploying-deepsparse/aws-sagemaker","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","title":"AWS SageMaker","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deploying-deepsparse/aws-sagemaker.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"AWS SageMaker\",\n \"metaTitle\": \"Deploying with DeepSparse on AWS SageMaker\",\n \"metaDescription\": \"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploying with DeepSparse on AWS SageMaker\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.aws.amazon.com/sagemaker/index.html\"\n }, \"Amazon SageMaker\"), \"\\noffers an easy-to-use infrastructure for deploying deep learning models at scale.\\nThis directory provides a guided example for deploying a\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse\"\n }, \"DeepSparse\"), \" inference server on SageMaker for the question answering NLP task.\\nDeployments benefit from both sparse-CPU acceleration with\\nDeepSparse and automatic scaling from SageMaker.\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"The listed steps can be easily completed using \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"python\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"bash\"), \". The following\\ncredentials, tools, and libraries are also required:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html\"\n }, \"AWS CLI\"), \" version 2.X that is \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html\"\n }, \"configured\"), \". Double-check if the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"region\"), \" that is configured in your AWS CLI matches the region in the SparseMaker class found in the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"endpoint.py\"), \" file. Currently, the default region being used is \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"us-east-1\"), \".\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html\"\n }, \"ARN\"), \" of your AWS role requires access to full SageMaker permissions.\", mdx(\"ul\", {\n parentName: \"li\"\n }, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"AmazonSageMakerFullAccess\")), mdx(\"li\", {\n parentName: \"ul\"\n }, \"In the following steps, we will refer to this as \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ROLE_ARN\"), \". It should take the form \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"\\\"arn:aws:iam::XXX:role/service-role/XXX\\\"\"), \". In addition to role permissions, make sure the AWS user who configured the AWS CLI configuration has ECR/SageMaker permissions.\"))), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.docker.com/get-docker/\"\n }, \"Docker and the \", mdx(\"inlineCode\", {\n parentName: \"a\"\n }, \"docker\"), \" CLI\"), \".\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"boto3\"), \" Python AWS SDK (\", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"pip install boto3\"), \").\")), mdx(\"h3\", null, \"Quick Start\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"git clone https://github.com/neuralmagic/deepsparse.git\\ncd deepsparse/examples/aws-sagemaker\\npip install -r requirements.txt\\n\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Before starting, replace the \", mdx(\"inlineCode\", {\n parentName: \"strong\"\n }, \"role_arn\"), \" PLACEHOLDER string with your AWS \", mdx(\"a\", {\n parentName: \"strong\",\n \"href\": \"https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html\"\n }, \"ARN\"), \" at the bottom of SparseMaker class on the \", mdx(\"inlineCode\", {\n parentName: \"strong\"\n }, \"endpoint.py\"), \" file. Your ARN should look something like this:\"), \" \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"\\\"arn:aws:iam::XXX:role/service-role/XXX\\\"\")), mdx(\"p\", null, \"Run the following command to build your SageMaker endpoint.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"python endpoint.py create\\n\")), mdx(\"p\", null, \"After the endpoint has been staged (~1 minute), you can start making requests by passing your endpoint \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"region name\"), \" and your \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"endpoint name\"), \". Afterwards, you can run inference by passing in your question and context:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from qa_client import Endpoint\\n\\n\\nqa = Endpoint(\\\"us-east-1\\\", \\\"question-answering-example-endpoint\\\")\\nanswer = qa.predict(question=\\\"who is batman?\\\", context=\\\"Mark is batman.\\\")\\n\\nprint(answer)\\n\")), mdx(\"p\", null, \"The answer is: \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"b'{\\\"score\\\":0.6484262943267822,\\\"answer\\\":\\\"Mark\\\",\\\"start\\\":0,\\\"end\\\":4}'\")), mdx(\"p\", null, \"If you want to delete your endpoint, use:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"python endpoint.py destroy\\n\")), mdx(\"p\", null, \"Continue reading to learn more about the files in this directory, the build requirements, and a descriptive step-by-step guide for launching a SageMaker endpoint.\"), mdx(\"h2\", null, \"Contents\"), mdx(\"p\", null, \"In addition to the step-by-step instructions below, the directory contains\\nfiles to aid in the deployment.\"), mdx(\"h3\", null, \"Dockerfile\"), mdx(\"p\", null, \"The included \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Dockerfile\"), \" builds an image on top of the standard \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"python:3.8\"), \" image\\nwith \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse\"), \" installed, and creates an executable command \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"serve\"), \" that runs\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.server\"), \" on port 8080. SageMaker will execute this image by running\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"docker run serve\"), \" and expects the image to serve inference requests at the\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"invocations/\"), \" endpoint.\"), mdx(\"p\", null, \"For general customization of the server, changes should not need to be made\\nto the Dockerfile but, instead, to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \" file from which the Dockerfile reads.\"), mdx(\"h3\", null, \"config.yaml\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \" is used to configure DeepSparse Server running in the Dockerfile.\\nThe configuration must contain the line \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"integration: sagemaker\"), \" so\\nendpoints may be provisioned correctly to match SageMaker specifications.\"), mdx(\"p\", null, \"Notice that the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"task\"), \" are set to run a sparse-quantized\\nquestion answering model from \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://sparsezoo.neuralmagic.com/\"\n }, \"SparseZoo\"), \".\\nTo use a model directory stored in \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"s3\"), \", set \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"model_path\"), \" to \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/opt/ml/model\"), \" in\\nthe configuration and add \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ModelDataUrl=\"), \" to the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"CreateModel\"), \" arguments.\\nSageMaker will automatically copy the files from the s3 path into \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/opt/ml/model\"), \"\\nfrom which the server then can read.\"), mdx(\"h3\", null, \"push_image.sh\"), mdx(\"p\", null, \"This is a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Bash\"), \" script for pushing your local Docker image to the AWS ECR repository.\"), mdx(\"h3\", null, \"endpoint.py\"), mdx(\"p\", null, \"This file contains the SparseMaker object for automating the build of a SageMaker endpoint from a Docker image. You have the option to customize the parameters of the class in order to match the prefered state of your deployment.\"), mdx(\"h3\", null, \"qa_client.py\"), mdx(\"p\", null, \"This file contains a client object for making requests to the SageMaker inference endpoint for the question answering task.\"), mdx(\"p\", null, \"Review \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/server#readme\"\n }, \"DeepSparse Server\"), \" for more information about the server and its configuration.\"), mdx(\"h2\", null, \"Deploying to SageMaker\"), mdx(\"p\", null, \"The following steps are required to provision and deploy DeepSparse to SageMaker\\nfor inference:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"Build the DeepSparse-SageMaker \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"Dockerfile\"), \" into a local docker image.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Create an \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://aws.amazon.com/ecr/\"\n }, \"Amazon ECR\"), \" repository to host the image.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Push the image to the ECR repository.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Create a SageMaker \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"Model\"), \" that reads from the hosted ECR image.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Build a SageMaker \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"EndpointConfig\"), \" that defines how to provision the model deployment.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Launch the SageMaker \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"Endpoint\"), \" defined by the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"Model\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"EndpointConfig\"), \".\")), mdx(\"h3\", null, \"Building the DeepSparse-SageMaker Image Locally\"), mdx(\"p\", null, \"Build the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Dockerfile\"), \" from this directory from a bash shell using the following command.\\nThe image will be tagged locally as \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse-sagemaker-example\"), \".\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"docker build -t deepsparse-sagemaker-example .\\n\")), mdx(\"h3\", null, \"Creating an ECR Repository\"), mdx(\"p\", null, \"Use the following code snippet in Python to create an ECR repository.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"region_name\"), \" can be swapped to a preferred region. The repository will be named\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse-sagemaker\"), \". If the repository is already created, you may skip this step.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import boto3\\n\\necr = boto3.client(\\\"ecr\\\", region_name='us-east-1')\\ncreate_repository_res = ecr.create_repository(repositoryName=\\\"deepsparse-sagemaker\\\")\\n\")), mdx(\"h3\", null, \"Pushing the Local Image to the ECR Repository\"), mdx(\"p\", null, \"Once the image is built and the ECR repository is created, you can push the image using the following\\nbash commands.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"account=$(aws sts get-caller-identity --query Account | sed -e 's/^\\\"//' -e 's/\\\"$//')\\nregion=$(aws configure get region)\\necr_account=${account}.dkr.ecr.${region}.amazonaws.com\\n\\naws ecr get-login-password --region $region | docker login --username AWS --password-stdin $ecr_account\\nfullname=$ecr_account/deepsparse-sagemaker:latest\\n\\ndocker tag deepsparse-sagemaker-example:latest $fullname\\ndocker push $fullname\\n\")), mdx(\"p\", null, \"An abbreviated successful output will look like:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\"\n }, \"Login Succeeded\\nThe push refers to repository [XXX.dkr.ecr.us-east-1.amazonaws.com/deepsparse-example]\\n3c2284f66840: Preparing\\n08fa02ce37eb: Preparing\\na037458de4e0: Preparing\\nbafdbe68e4ae: Preparing\\na13c519c6361: Preparing\\n6817758dd480: Waiting\\n6d95196cbe50: Waiting\\ne9872b0f234f: Waiting\\nc18b71656bcf: Waiting\\n2174eedecc00: Waiting\\n03ea99cd5cd8: Pushed\\n585a375d16ff: Pushed\\n5bdcc8e2060c: Pushed\\nlatest: digest: sha256:XXX size: 3884\\n\")), mdx(\"h3\", null, \"Creating a SageMaker Model\"), mdx(\"p\", null, \"Create a SageMaker \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Model\"), \" referencing the pushed image.\\nThe example model will be named \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"question-answering-example\"), \".\\nAs mentioned in the requirements, \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ROLE_ARN\"), \" should be a string arn of an AWS\\nrole with full access to SageMaker.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import boto3\\n\\nsm_boto3 = boto3.client(\\\"sagemaker\\\", region_name=\\\"us-east-1\\\")\\n\\nregion = boto3.Session().region_name\\naccount_id = boto3.client(\\\"sts\\\").get_caller_identity()[\\\"Account\\\"]\\n\\nimage_uri = \\\"{}.dkr.ecr.{}.amazonaws.com/deepsparse-sagemaker:latest\\\".format(account_id, region)\\n\\ncreate_model_res = sm_boto3.create_model(\\n ModelName=\\\"question-answering-example\\\",\\n Containers=[\\n {\\n \\\"Image\\\": image_uri,\\n },\\n ],\\n ExecutionRoleArn=ROLE_ARN,\\n EnableNetworkIsolation=False,\\n)\\n\")), mdx(\"p\", null, \"Refer to \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html\"\n }, \"AWS documentation\"), \" for more information about options for configuring SageMaker \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Model\"), \" instances.\"), mdx(\"h3\", null, \"Building a SageMaker EndpointConfig\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"EndpointConfig\"), \" is used to set the instance type to provision, how many, scaling\\nrules, and other deployment settings. The following code snippet defines an endpoint\\nwith a single machine using an \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ml.c5.large\"), \" CPU.\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-available-instance-types.html\"\n }, \"Full list of available instances\"), \" (See Compute optimized (no GPUs) section)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html\"\n }, \"EndpointConfig documentation and options\"))), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"model_name = \\\"question-answering-example\\\" # model defined above\\ninitial_instance_count = 1\\ninstance_type = \\\"ml.c5.2xlarge\\\" # 8 vcpus\\n\\nvariant_name = \\\"QuestionAnsweringDeepSparseDemo\\\" # ^[a-zA-Z0-9](-*[a-zA-Z0-9]){0,62}\\n\\nproduction_variants = [\\n {\\n \\\"VariantName\\\": variant_name,\\n \\\"ModelName\\\": model_name,\\n \\\"InitialInstanceCount\\\": initial_instance_count,\\n \\\"InstanceType\\\": instance_type,\\n }\\n]\\n\\nendpoint_config_name = \\\"QuestionAnsweringExampleConfig\\\" # ^[a-zA-Z0-9](-*[a-zA-Z0-9]){0,62}\\n\\nendpoint_config = {\\n \\\"EndpointConfigName\\\": endpoint_config_name,\\n \\\"ProductionVariants\\\": production_variants,\\n}\\n\\nendpoint_config_res = sm_boto3.create_endpoint_config(**endpoint_config)\\n\")), mdx(\"h3\", null, \"Launching a SageMaker Endpoint\"), mdx(\"p\", null, \"Once the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"EndpointConfig\"), \" is defined, launch the endpoint using\\nthe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"create_endpoint\"), \" command:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"endpoint_name = \\\"question-answering-example-endpoint\\\"\\nendpoint_res = sm_boto3.create_endpoint(\\n EndpointName=endpoint_name, EndpointConfigName=endpoint_config_name\\n)\\n\")), mdx(\"p\", null, \"After creating the endpoint, you can check its status by running the following.\\nInitially, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"EndpointStatus\"), \" will be \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Creating\"), \". Checking after the image is\\nsuccessfully launched, it will be \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"InService\"), \". If there are any errors, it will\\nbe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Failed\"), \".\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from pprint import pprint\\npprint(sm_boto3.describe_endpoint(EndpointName=endpoint_name))\\n\")), mdx(\"h2\", null, \"Making a Request to the Endpoint\"), mdx(\"p\", null, \"After the endpoint is in service, you can make requests to it through the\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"invoke_endpoint\"), \" API. Inputs will be passed as a JSON payload.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import json\\n\\nsm_runtime = boto3.client(\\\"sagemaker-runtime\\\", region_name=\\\"us-east-1\\\")\\n\\nbody = json.dumps(\\n dict(\\n question=\\\"Where do I live?\\\",\\n context=\\\"I am a student and I live in Cambridge\\\",\\n )\\n)\\n\\ncontent_type = \\\"application/json\\\"\\naccept = \\\"text/plain\\\"\\n\\nres = sm_runtime.invoke_endpoint(\\n EndpointName=endpoint_name,\\n Body=body,\\n ContentType=content_type,\\n Accept=accept,\\n)\\n\\nprint(res[\\\"Body\\\"].readlines())\\n\")), mdx(\"h3\", null, \"Cleanup\"), mdx(\"p\", null, \"You can delete the model and endpoint with the following commands:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"sm_boto3.delete_endpoint(EndpointName=endpoint_name)\\nsm_boto3.delete_endpoint_config(EndpointConfigName=endpoint_config_name)\\nsm_boto3.delete_model(ModelName=model_name)\\n\")), mdx(\"h2\", null, \"Next Steps\"), mdx(\"p\", null, \"These steps create an invokable SageMaker inference endpoint powered by DeepSparse.\", mdx(\"br\", {\n parentName: \"p\"\n }), \"\\n\", \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"EndpointConfig\"), \" settings may be adjusted to set instance scaling rules based\\non deployment needs.\"), mdx(\"p\", null, \"Refer to \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html\"\n }, \"AWS documentation\"), \" for more information on deploying custom models with SageMaker.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploying-with-deepsparse-on-aws-sagemaker","title":"Deploying with DeepSparse on AWS SageMaker","items":[{"url":"#installation-requirements","title":"Installation Requirements","items":[{"url":"#quick-start","title":"Quick Start"}]},{"url":"#contents","title":"Contents","items":[{"url":"#dockerfile","title":"Dockerfile"},{"url":"#configyaml","title":"config.yaml"},{"url":"#push_imagesh","title":"push_image.sh"},{"url":"#endpointpy","title":"endpoint.py"},{"url":"#qa_clientpy","title":"qa_client.py"}]},{"url":"#deploying-to-sagemaker","title":"Deploying to SageMaker","items":[{"url":"#building-the-deepsparse-sagemaker-image-locally","title":"Building the DeepSparse-SageMaker Image Locally"},{"url":"#creating-an-ecr-repository","title":"Creating an ECR Repository"},{"url":"#pushing-the-local-image-to-the-ecr-repository","title":"Pushing the Local Image to the ECR Repository"},{"url":"#creating-a-sagemaker-model","title":"Creating a SageMaker Model"},{"url":"#building-a-sagemaker-endpointconfig","title":"Building a SageMaker EndpointConfig"},{"url":"#launching-a-sagemaker-endpoint","title":"Launching a SageMaker Endpoint"}]},{"url":"#making-a-request-to-the-endpoint","title":"Making a Request to the Endpoint","items":[{"url":"#cleanup","title":"Cleanup"}]},{"url":"#next-steps","title":"Next Steps"}]}]},"parent":{"relativePath":"user-guide/deploying-deepsparse/aws-sagemaker.mdx"},"frontmatter":{"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/deploying-deepsparse/deepsparse-server/page-data.json b/page-data/user-guide/deploying-deepsparse/deepsparse-server/page-data.json new file mode 100644 index 00000000000..71c0c9c6487 --- /dev/null +++ b/page-data/user-guide/deploying-deepsparse/deepsparse-server/page-data.json @@ -0,0 +1 @@ +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deploying-deepsparse/deepsparse-server","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","title":"DeepSparse Server","slug":"/user-guide/deploying-deepsparse/deepsparse-server","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deploying-deepsparse/deepsparse-server.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"DeepSparse Server\",\n \"metaTitle\": \"Deploying with DeepSparse Server\",\n \"metaDescription\": \"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploying with DeepSparse Server\"), mdx(\"p\", null, \"This section explains how to deploy with DeepSparse Server.\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"This use case requires the installation of \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/deepsparse\"\n }, \"DeepSparse Server\"), \".\"), mdx(\"h2\", null, \"Usage\"), mdx(\"p\", null, \"DeepSparse Server allows you to serve models and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" for deployment in HTTP. The server runs on top of the popular FastAPI web framework and Uvicorn web server.\\nThe server supports any task from DeepSparse, such as \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Pipelines\"), \" including NLP, image classification, and object detection tasks.\\nAn updated list of available tasks can be found\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/PIPELINES.md\"\n }, \"in the DeepSparse Pipelines Introduction\"), \".\"), mdx(\"p\", null, \"Run the help CLI to look up the available arguments.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\"\n }, \"$ deepsparse.server --help\\n\\n> Usage: deepsparse.server [OPTIONS] COMMAND [ARGS]...\\n>\\n> Start a DeepSparse inference server for serving the models and pipelines.\\n>\\n> 1. `deepsparse.server config [OPTIONS] `\\n>\\n> 2. `deepsparse.server task [OPTIONS] \\n>\\n> Examples for using the server:\\n>\\n> `deepsparse.server config server-config.yaml`\\n>\\n> `deepsparse.server task question_answering --batch-size 2`\\n>\\n> `deepsparse.server task question_answering --host \\\"0.0.0.0\\\"`\\n>\\n> Example config.yaml for serving:\\n>\\n> \\\\```yaml\\n> num_cores: 2\\n> num_workers: 2\\n> endpoints:\\n> - task: question_answering\\n> route: /unpruned/predict\\n> model: zoo:some/zoo/stub\\n> - task: question_answering\\n> route: /pruned/predict\\n> model: /path/to/local/model\\n> \\\\```\\n>\\n> Options:\\n> --help Show this message and exit.\\n>\\n> Commands:\\n> config Run the server using configuration from a .yaml file.\\n> task Run the server using configuration with CLI options, which can...\\n\")), mdx(\"h2\", null, \"Single Model Inference\"), mdx(\"p\", null, \"Here is an example CLI command for serving a single model for the question answering task:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server \\\\\\n task question_answering \\\\\\n --model_path \\\"zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\\"\\n\")), mdx(\"p\", null, \"To make a request to your server, use the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"requests\"), \" library and pass the request URL:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\n\\nurl = \\\"http://localhost:5543/predict\\\"\\n\\nobj = {\\n \\\"question\\\": \\\"Who is Mark?\\\",\\n \\\"context\\\": \\\"Mark is batman.\\\"\\n}\\n\\nresponse = requests.post(url, json=obj)\\n\")), mdx(\"p\", null, \"In addition, you can make a request with a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"curl\"), \" command from the terminal:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"curl -X POST \\\\\\n 'http://localhost:5543/predict' \\\\\\n -H 'accept: application/json' \\\\\\n -H 'Content-Type: application/json' \\\\\\n -d '{\\n \\\"question\\\": \\\"Who is Mark?\\\",\\n \\\"context\\\": \\\"Mark is batman.\\\"\\n}'\\n\")), mdx(\"h2\", null, \"Multiple Model Inference\"), mdx(\"p\", null, \"To serve multiple models, you can build a \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \" file.\\nIn the sample YAML file below, we are defining two BERT models to be served by the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"deepsparse.server\"), \" for the question answering task:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"num_cores: 2\\nnum_workers: 2\\nendpoints:\\n - task: question_answering\\n route: /unpruned/predict\\n model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none\\n batch_size: 1\\n - task: question_answering\\n route: /pruned/predict\\n model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni\\n batch_size: 1\\n\")), mdx(\"p\", null, \"You can now run the server with the configuration file path using the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config\"), \" subcommand:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"deepsparse.server config config.yaml\\n\")), mdx(\"p\", null, \"You can send requests to a specific model by appending the model's \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"alias\"), \" from the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \" to the end of the request url. For example, to call the second model, you can send a request to its configured route:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import requests\\n\\nurl = \\\"http://localhost:5543/pruned/predict\\\"\\n\\nobj = {\\n \\\"question\\\": \\\"Who is Mark?\\\",\\n \\\"context\\\": \\\"Mark is batman.\\\"\\n}\\n\\nresponse = requests.post(url, json=obj)\\n\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"PRO TIP:\"), \" While your server is running, you can always use the awesome swagger UI that's built into FastAPI to view your model's pipeline \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"POST\"), \" routes.\\nThe UI also enables you to easily make sample requests to your server.\\nAll you need is to add \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/docs\"), \" at the end of your host URL:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\"\n }, \"localhost:5543/docs\\n\")), mdx(\"p\", null, mdx(\"img\", {\n parentName: \"p\",\n \"src\": \"https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/server/img/swagger_ui.png\",\n \"alt\": \"Swagger UI For Viewing Model Pipeline\"\n })));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploying-with-deepsparse-server","title":"Deploying with DeepSparse Server","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#usage","title":"Usage"},{"url":"#single-model-inference","title":"Single Model Inference"},{"url":"#multiple-model-inference","title":"Multiple Model Inference"}]}]},"parent":{"relativePath":"user-guide/deploying-deepsparse/deepsparse-server.mdx"},"frontmatter":{"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/deploying-deepsparse/google-cloud-run/page-data.json b/page-data/user-guide/deploying-deepsparse/google-cloud-run/page-data.json new file mode 100644 index 00000000000..8e9ded7924a --- /dev/null +++ b/page-data/user-guide/deploying-deepsparse/google-cloud-run/page-data.json @@ -0,0 +1 @@ +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deploying-deepsparse/google-cloud-run","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","title":"Google Cloud Run","slug":"/user-guide/deploying-deepsparse/google-cloud-run","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deploying-deepsparse/google-cloud-run.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Google Cloud Run\",\n \"metaTitle\": \"Using DeepSparse on Google Cloud Run\",\n \"metaDescription\": \"Deploy DeepSparse in a Serverless framework with Google Cloud Run\",\n \"index\": 4000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Deploying with DeepSparse on GCP Cloud Run\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://cloud.google.com/run\"\n }, \"GCP's Cloud Run\"), \" is a serverless, event-driven environment for making quick deployments for various applications including machine learning in various programming languages.\\nSince DeepSparse runs on commodity CPUs, you can deploy DeepSparse on Cloud Run!\"), mdx(\"p\", null, \"The DeepSparse GitHub repo contains a \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse/tree/main/examples/google-cloud-run\"\n }, \"guided example\"), \"\\nfor deploying a DeepSparse Pipeline on GCP Cloud Run for the token classification task.\"), mdx(\"h2\", null, \"Requirements\"), mdx(\"p\", null, \"The listed steps can be easily completed using \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Python\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"Bash\"), \". The following tools, and libraries are also required:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"The \", mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://cloud.google.com/sdk/gcloud\"\n }, \"gcloud CLI\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"a\", {\n parentName: \"li\",\n \"href\": \"https://docs.docker.com/get-docker/\"\n }, \"Docker and the \", mdx(\"inlineCode\", {\n parentName: \"a\"\n }, \"docker\"), \" cli\"), \".\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Before starting, replace the \", mdx(\"inlineCode\", {\n parentName: \"strong\"\n }, \"billing_id\"), \" PLACEHOLDER with your own GCP billing ID at the bottom of the SparseRun class in the \", mdx(\"inlineCode\", {\n parentName: \"strong\"\n }, \"endpoint.py\"), \" file. It should be alphanumeric and look something like this: \", mdx(\"inlineCode\", {\n parentName: \"strong\"\n }, \"XXXXX-XXXXX-XXXXX\"), \".\")), mdx(\"p\", null, mdx(\"strong\", {\n parentName: \"p\"\n }, \"Your billing id can be found in the \", mdx(\"inlineCode\", {\n parentName: \"strong\"\n }, \"BILLING\"), \" menu of your GCP console or you can run the following \", mdx(\"inlineCode\", {\n parentName: \"strong\"\n }, \"gcloud\"), \" command to get a list of all of your billing ids:\")), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"gcloud beta billing accounts list\\n\")), mdx(\"h2\", null, \"Installation\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"git clone https://github.com/neuralmagic/deepsparse.git\\ncd deepsparse/examples/google-cloud-run\\n\")), mdx(\"h2\", null, \"Model Configuration\"), mdx(\"p\", null, \"The current server configuration is running \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"token classification\"), \". To alter the model, task or other parameters (e.g., number of cores, workers, routes or batch size), edit the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \" file.\"), mdx(\"h2\", null, \"Create Endpoint\"), mdx(\"p\", null, \"Run the following command to build the Cloud Run endpoint.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"python endpoint.py create\\n\")), mdx(\"h2\", null, \"Call Endpoint\"), mdx(\"p\", null, \"After the endpoint has been staged (~3 minutes), gcloud CLI will output the API Service URL. You can start making requests by passing this URL \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"AND\"), \" its route (found in \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"config.yaml\"), \") into the CloudRunClient object.\"), mdx(\"p\", null, \"For example, if the Service URL is \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"https://deepsparse-cloudrun-qsi36y4uoa-ue.a.run.app\"), \" and the route is \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"/inference\"), \", the URL passed into the client would be: \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"https://deepsparse-cloudrun-qsi36y4uoa-ue.a.run.app/inference\")), mdx(\"p\", null, \"Afterwards, call your endpoint by passing in the text input:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from client import CloudRunClient\\n\\nCR = CloudRunClient(\\\"https://deepsparse-cloudrun-qsi36y4uoa-ue.a.run.app/inference\\\")\\nanswer = CR.client(\\\"Drive from California to Texas!\\\")\\nprint(answer)\\n\")), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"[{'entity': 'LABEL_0','word': 'drive', ...}, \\n{'entity': 'LABEL_0','word': 'from', ...}, \\n{'entity': 'LABEL_5','word': 'california', ...}, \\n{'entity': 'LABEL_0','word': 'to', ...}, \\n{'entity': 'LABEL_5','word': 'texas', ...}, \\n{'entity': 'LABEL_0','word': '!', ...}]\")), mdx(\"p\", null, \"Additionally, you can also call the endpoint via a cURL command:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"curl -X 'POST' \\\\\\n 'https://deepsparse-cloudrun-qsi36y4uoa-ue.a.run.app/inference' \\\\\\n -H 'accept: application/json' \\\\\\n -H 'Content-Type: application/json' \\\\\\n -d '{\\n \\\"inputs\\\": [\\n \\\"Drive from California to Texas!\\\"\\n ],\\n \\\"is_split_into_words\\\": false\\n}'\\n\")), mdx(\"p\", null, \"FYI, on the first cold start, it will take a ~60 seconds to get your first inference, but afterwards, it should be in milliseconds.\"), mdx(\"h2\", null, \"Delete Endpoint\"), mdx(\"p\", null, \"If you want to delete the Cloud Run endpoint, run:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-bash\"\n }, \"python endpoint.py destroy\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#deploying-with-deepsparse-on-gcp-cloud-run","title":"Deploying with DeepSparse on GCP Cloud Run","items":[{"url":"#requirements","title":"Requirements"},{"url":"#installation","title":"Installation"},{"url":"#model-configuration","title":"Model Configuration"},{"url":"#create-endpoint","title":"Create Endpoint"},{"url":"#call-endpoint","title":"Call Endpoint"},{"url":"#delete-endpoint","title":"Delete Endpoint"}]}]},"parent":{"relativePath":"user-guide/deploying-deepsparse/google-cloud-run.mdx"},"frontmatter":{"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run","index":4000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/deploying-deepsparse/page-data.json b/page-data/user-guide/deploying-deepsparse/page-data.json new file mode 100644 index 00000000000..fa28c4c3f7c --- /dev/null +++ b/page-data/user-guide/deploying-deepsparse/page-data.json @@ -0,0 +1 @@ +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/deploying-deepsparse","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","title":"Deploying DeepSparse","slug":"/user-guide/deploying-deepsparse","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/deploying-deepsparse.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Deploying DeepSparse\",\n \"metaTitle\": \"Deploying DeepSparse\",\n \"metaDescription\": \"Deploying Deepsparse\",\n \"index\": 5000\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"User Guides For Deploying DeepSparse\"), mdx(\"p\", null, \"This user guide offers more information for Deploying DeepSparse.\"), mdx(\"h2\", null, \"Guides\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./deepsparse-server\",\n heading: \"DeepSparse Server\",\n mdxType: \"LinkCard\"\n }, \"Deploying DeepSparse as a model service endpoint\"), mdx(LinkCard, {\n href: \"./aws-sagemaker\",\n heading: \"AWS SageMaker\",\n mdxType: \"LinkCard\"\n }, \"Deploying DeepSparse with AWS SageMaker\"), mdx(LinkCard, {\n href: \"./aws-lambda\",\n heading: \"AWS Lambda\",\n mdxType: \"LinkCard\"\n }, \"Deploying DeepSparse with AWS Lambda\"), mdx(LinkCard, {\n href: \"./google-cloud-run\",\n heading: \"Google Cloud Run\",\n mdxType: \"LinkCard\"\n }, \"Deploying DeepSparse with GCP Cloud Run\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#user-guides-for-deploying-deepsparse","title":"User Guides For Deploying DeepSparse","items":[{"url":"#guides","title":"Guides"}]}]},"parent":{"relativePath":"user-guide/deploying-deepsparse.mdx"},"frontmatter":{"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse","index":5000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/onnx-export/page-data.json b/page-data/user-guide/onnx-export/page-data.json index 8101e03661f..fbc9c132d8a 100644 --- a/page-data/user-guide/onnx-export/page-data.json +++ b/page-data/user-guide/onnx-export/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/user-guide/onnx-export","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","title":"ONNX Export","slug":"/user-guide/onnx-export","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/onnx-export.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"ONNX Export\",\n \"metaTitle\": \"Exporting to the ONNX Format\",\n \"metaDescription\": \"Exporting to the ONNX Format\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Exporting to the ONNX Format\"), mdx(\"p\", null, \"This page explains how to export a model to the ONNX format for use with DeepSparse Engine.\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://onnx.ai/\"\n }, \"ONNX\"), \" is a generic representation for neural network graphs that most ML frameworks can be converted to.\\nSome inference engines such as \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/deepsparse\"\n }, \"DeepSparse\"), \" natively take in ONNX for deployment pipelines, so convenience functions for conversion and export are provided for the supported frameworks.\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"See \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML installation page\"), \" for installation requirements of each integration.\"), mdx(\"h2\", null, \"Exporting PyTorch to ONNX\"), mdx(\"p\", null, \"ONNX is built into the PyTorch system natively.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ModuleExporter\"), \" class under the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.pytorch.utils\"), \" package features an \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"export_onnx\"), \" function built on this native support.\\nExample code:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import os\\nimport torch\\nfrom sparseml.pytorch.models import mnist_net\\nfrom sparseml.pytorch.utils import ModuleExporter\\n\\nmodel = mnist_net()\\nexporter = ModuleExporter(model, output_dir=os.path.join(\\\".\\\", \\\"onnx-export\\\"))\\nexporter.export_onnx(sample_batch=torch.randn(1, 1, 28, 28))\\n\")), mdx(\"h2\", null, \"Exporting Keras to ONNX\"), mdx(\"p\", null, \"ONNX is not built into the Keras system but is supported through an ONNX official tool \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/keras-onnx\"\n }, \"keras2onnx.\"), \" The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ModelExporter\"), \" class under the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.keras.utils\"), \" package features an \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"export_onnx\"), \" function built on top of keras2onnx.\\nExample code:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import os\\nfrom sparseml.keras.utils import ModelExporter\\n\\nmodel = None # fill in with your model\\nexporter = ModelExporter(model, output_dir=os.path.join(\\\".\\\", \\\"onnx-export\\\"))\\nexporter.export_onnx()\\n\")), mdx(\"h2\", null, \"Exporting TensorFlow V1 to ONNX\"), mdx(\"p\", null, \"ONNX is not built into the TensorFlow system but is supported through an ONNX official tool\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/tensorflow-onnx\"\n }, \"tf2onnx.\"), \"\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"GraphExporter\"), \" class under the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.tensorflow_v1.utils\"), \" package features an\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"export_onnx\"), \" function built on top of tf2onnx.\\nNote that the ONNX file is created from the protobuf graph representation, so \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"export_pb\"), \" must be called first.\\nExample code:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import os\\nfrom sparseml.tensorflow_v1.utils import tf_compat, GraphExporter\\nfrom sparseml.tensorflow_v1.models import mnist_net\\n\\nexporter = GraphExporter(output_dir=os.path.join(\\\".\\\", \\\"mnist-tf-export\\\"))\\n\\nwith tf_compat.Graph().as_default() as graph:\\n inputs = tf_compat.placeholder(\\n tf_compat.float32, [None, 28, 28, 1], name=\\\"inputs\\\"\\n )\\n logits = mnist_net(inputs)\\n input_names = [inputs.name]\\n output_names = [logits.name]\\n\\n with tf_compat.Session() as sess:\\n sess.run(tf_compat.global_variables_initializer())\\n exporter.export_pb(outputs=[logits])\\n\\nexporter.export_onnx(inputs=input_names, outputs=output_names)\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#exporting-to-the-onnx-format","title":"Exporting to the ONNX Format","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#exporting-pytorch-to-onnx","title":"Exporting PyTorch to ONNX"},{"url":"#exporting-keras-to-onnx","title":"Exporting Keras to ONNX"},{"url":"#exporting-tensorflow-v1-to-onnx","title":"Exporting TensorFlow V1 to ONNX"}]}]},"parent":{"relativePath":"user-guide/onnx-export.mdx"},"frontmatter":{"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/onnx-export","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","title":"ONNX Export","slug":"/user-guide/onnx-export","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/onnx-export.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"ONNX Export\",\n \"metaTitle\": \"Exporting to the ONNX Format\",\n \"metaDescription\": \"Exporting to the ONNX Format\",\n \"index\": 3000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Exporting to the ONNX Format\"), mdx(\"p\", null, \"You can export a model to the ONNX format for use with DeepSparse.\"), mdx(\"p\", null, mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://onnx.ai/\"\n }, \"ONNX\"), \" is a generic representation for neural network graphs to which most ML frameworks can be converted.\\nSome inference engines such as DeepSparse natively take in ONNX for deployment pipelines, so convenience functions for conversion and export are provided for the supported frameworks.\"), mdx(\"h2\", null, \"Installation Requirements\"), mdx(\"p\", null, \"See the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML installation page\"), \" for installation requirements of each integration.\"), mdx(\"h2\", null, \"Exporting PyTorch to ONNX\"), mdx(\"p\", null, \"ONNX is built into the PyTorch system natively.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ModuleExporter\"), \" class under the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.pytorch.utils\"), \" package features an \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"export_onnx\"), \" function built on this native support.\\nExample code is:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import os\\nimport torch\\nfrom sparseml.pytorch.models import mnist_net\\nfrom sparseml.pytorch.utils import ModuleExporter\\n\\nmodel = mnist_net()\\nexporter = ModuleExporter(model, output_dir=os.path.join(\\\".\\\", \\\"onnx-export\\\"))\\nexporter.export_onnx(sample_batch=torch.randn(1, 1, 28, 28))\\n\")), mdx(\"h2\", null, \"Exporting Keras to ONNX\"), mdx(\"p\", null, \"ONNX is not built into the Keras system, but is supported through an ONNX official tool, \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/keras-onnx\"\n }, \"keras2onnx.\"), \" The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ModelExporter\"), \" class under the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.keras.utils\"), \" package features an \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"export_onnx\"), \" function built on top of keras2onnx.\\nExample code is:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import os\\nfrom sparseml.keras.utils import ModelExporter\\n\\nmodel = None # fill in with your model\\nexporter = ModelExporter(model, output_dir=os.path.join(\\\".\\\", \\\"onnx-export\\\"))\\nexporter.export_onnx()\\n\")), mdx(\"h2\", null, \"Exporting TensorFlow V1 to ONNX\"), mdx(\"p\", null, \"ONNX is not built into the TensorFlow system, but is supported through an ONNX official tool,\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/onnx/tensorflow-onnx\"\n }, \"tf2onnx.\"), \"\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"GraphExporter\"), \" class under the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.tensorflow_v1.utils\"), \" package features an\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"export_onnx\"), \" function built on top of tf2onnx.\\nNote that the ONNX file is created from the protobuf graph representation, so \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"export_pb\"), \" must be called first.\\nExample code is:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"import os\\nfrom sparseml.tensorflow_v1.utils import tf_compat, GraphExporter\\nfrom sparseml.tensorflow_v1.models import mnist_net\\n\\nexporter = GraphExporter(output_dir=os.path.join(\\\".\\\", \\\"mnist-tf-export\\\"))\\n\\nwith tf_compat.Graph().as_default() as graph:\\n inputs = tf_compat.placeholder(\\n tf_compat.float32, [None, 28, 28, 1], name=\\\"inputs\\\"\\n )\\n logits = mnist_net(inputs)\\n input_names = [inputs.name]\\n output_names = [logits.name]\\n\\n with tf_compat.Session() as sess:\\n sess.run(tf_compat.global_variables_initializer())\\n exporter.export_pb(outputs=[logits])\\n\\nexporter.export_onnx(inputs=input_names, outputs=output_names)\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#exporting-to-the-onnx-format","title":"Exporting to the ONNX Format","items":[{"url":"#installation-requirements","title":"Installation Requirements"},{"url":"#exporting-pytorch-to-onnx","title":"Exporting PyTorch to ONNX"},{"url":"#exporting-keras-to-onnx","title":"Exporting Keras to ONNX"},{"url":"#exporting-tensorflow-v1-to-onnx","title":"Exporting TensorFlow V1 to ONNX"}]}]},"parent":{"relativePath":"user-guide/onnx-export.mdx"},"frontmatter":{"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format","index":3000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/page-data.json b/page-data/user-guide/page-data.json index 7bd2afbe8f0..432254fd629 100644 --- a/page-data/user-guide/page-data.json +++ b/page-data/user-guide/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/user-guide","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","title":"User Guide","slug":"/user-guide","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"User Guide\",\n \"metaTitle\": \"User Guide\",\n \"metaDescription\": \"User Guide\",\n \"index\": 3000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"User Guide\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#user-guide","title":"User Guide"}]},"parent":{"relativePath":"user-guide.mdx"},"frontmatter":{"metaTitle":"User Guide","metaDescription":"User Guide","index":3000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/user-guide","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","title":"User Guide","slug":"/user-guide","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"User Guide\",\n \"metaTitle\": \"User Guide\",\n \"metaDescription\": \"User Guide\",\n \"index\": 3000,\n \"skipToChild\": true\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"User Guide\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#user-guide","title":"User Guide"}]},"parent":{"relativePath":"user-guide.mdx"},"frontmatter":{"metaTitle":"User Guide","metaDescription":"User Guide","index":3000,"skipToChild":true}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/recipes/creating/page-data.json b/page-data/user-guide/recipes/creating/page-data.json index fbc123905a0..1e92b68934c 100644 --- a/page-data/user-guide/recipes/creating/page-data.json +++ b/page-data/user-guide/recipes/creating/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/user-guide/recipes/creating","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","title":"Creating","slug":"/user-guide/recipes/creating","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/recipes/creating.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Creating\",\n \"metaTitle\": \"Creating Sparsification Recipes\",\n \"metaDescription\": \"Creating Sparsification Recipes\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Creating Sparsification Recipes\"), mdx(\"p\", null, \"This page explains how to create recipes.\"), mdx(\"p\", null, \"All SparseML Sparsification APIs are designed to work with recipes.\\nThe files encode the instructions needed for modifying the model and/or training process as a list of modifiers.\\nExample modifiers can be anything from setting the learning rate for the optimizer to gradual magnitude pruning.\\nThe files are written in \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://yaml.org/\"\n }, \"YAML\"), \" and stored in YAML or\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.markdownguide.org/\"\n }, \"markdown\"), \" files using\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://assemble.io/docs/YAML-front-matter.html\"\n }, \"YAML front matter.\"), \"\\nThe rest of the SparseML system is coded to parse the recipe files into a native format for the desired framework\\nand apply the modifications to the model and training pipeline.\"), mdx(\"p\", null, \"In a recipe, modifiers must be written in a list that includes \\\"modifiers\\\" in its name.\"), mdx(\"p\", null, \"The easiest ways to get or create recipes are by either using the pre-configured recipes in \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo\"\n }, \"SparseZoo\"), \" or using \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsify\"\n }, \"Sparsify's\"), \" automatic creation.\\nEspecially for users performing sparse transfer learning from our pre-sparsified models in the SparseZoo, we highly reccomend using the\\npre-made transfer learning recipes found on SparseZoo. However, power users may be inclined to create their recipes by hand to enable more\\nfine-grained control or add custom modifiers when sparsifying a new model from scratch.\"), mdx(\"p\", null, \"A sample recipe for pruning a model generally looks like the following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"version: 0.1.0\\nmodifiers:\\n - !EpochRangeModifier\\n start_epoch: 0.0\\n end_epoch: 70.0\\n\\n - !LearningRateModifier\\n start_epoch: 0\\n end_epoch: -1.0\\n update_frequency: -1.0\\n init_lr: 0.005\\n lr_class: MultiStepLR\\n lr_kwargs: {'milestones': [43, 60], 'gamma': 0.1}\\n\\n - !GMPruningModifier\\n start_epoch: 0\\n end_epoch: 40\\n update_frequency: 1.0\\n init_sparsity: 0.05\\n final_sparsity: 0.85\\n mask_type: unstructured\\n params: ['sections.0.0.conv1.weight', 'sections.0.0.conv2.weight', 'sections.0.0.conv3.weight']\\n\")), mdx(\"h2\", null, \"Modifiers Intro\"), mdx(\"p\", null, \"Recipes can contain multiple modifiers, each modifying a portion of the training process in a different way.\\nIn general, each modifier will have a start and an end epoch for when the modifier should be active.\\nThe modifiers will start at \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"start_epoch\"), \" and run until \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"end_epoch\"), \".\\nNote that it does not run through \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"end_epoch\"), \".\\nAdditionally, all epoch values support decimal values such that they can be started somewhere in the middle of an epoch.\\nFor example, \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"start_epoch: 2.5\"), \" will start in the middle of the second training epoch.\"), mdx(\"p\", null, \"The most commonly used modifiers are enumerated as subsections below.\"), mdx(\"h2\", null, \"Training Epoch Modifiers\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"EpochRangeModifier\"), \" controls the range of epochs for training a model.\\nEach supported ML framework has an implementation to enable easily retrieving this number of epochs.\\nNote, that this is not a hard rule and if other modifiers have a larger \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"end_epoch\"), \" or smaller \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"start_epoch\"), \"\\nthen those values will be used instead.\"), mdx(\"p\", null, \"The only parameters that can be controlled for \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"EpochRangeModifier\"), \" are the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"start_epoch\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"end_epoch\"), \".\\nBoth parameters are required.\"), mdx(\"p\", null, \"Required Parameters:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \": The start range for the epoch (0 indexed)\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"end_epoch\"), \": The end range for the epoch\")), mdx(\"p\", null, \"Example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !EpochRangeModifier\\n start_epoch: 0.0\\n end_epoch: 25.0\\n\")), mdx(\"h2\", null, \"Pruning Modifiers\"), mdx(\"p\", null, \"The pruning modifiers handle \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/blog/pruning-overview/\"\n }, \"pruning\"), \"\\nthe specified layer(s) in a given model.\"), mdx(\"h3\", null, \"ConstantPruningModifier\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ConstantPruningModifier\"), \" enforces the sparsity structure and level for an already pruned layer(s) in a model.\\nThe modifier is generally used for transfer learning from an already pruned model or\\nto enforce sparsity while quantizing.\\nThe weights remain trainable in this setup; however, the sparsity is unchanged.\"), mdx(\"p\", null, \"Required Parameters:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"params\"), \": The parameters in the model to prune.\\nThis can be set to a string containing \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"__ALL__\"), \" to prune all parameters, a list to specify the targeted parameters,\\nor regex patterns prefixed by 're:' of parameter name patterns to match.\\nFor example: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['blocks.1.conv']\"), \" for PyTorch and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['mnist_net/blocks/conv0/conv']\"), \" for TensorFlow.\\nRegex can also be used to match all conv params: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['re:.*conv']\"), \" for PyTorch and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['re:.*/conv']\"), \" for TensorFlow.\")), mdx(\"p\", null, \"Example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !ConstantPruningModifier\\n params: __ALL__\\n\")), mdx(\"h4\", null, \"GMPruningModifier\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"GMPruningModifier\"), \" prunes the parameter(s) in a model to a\\ntarget sparsity (percentage of 0's for a layer's param/variable)\\nusing \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/blog/pruning-gmp/\"\n }, \"gradual magnitude pruning.\"), \"\\nThis is done gradually from an initial to final sparsity (\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"init_sparsity\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"final_sparsity\"), \")\\nover a range of epochs (\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"start_epoch\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"end_epoch\"), \") and updated at a specific interval defined by the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"update_frequency\"), \".\\nFor example, using the following settings \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"start_epoch: 0\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"end_epoch: 5\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"update_frequency: 1\"), \",\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"init_sparsity: 0.05\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"final_sparsity: 0.8\"), \" will do the following:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"at epoch 0 set the sparsity for the specified param(s) to 5%\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"once every epoch, gradually increase the sparsity towards 80%\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"by the start of epoch 5, stop pruning and set the final sparsity for the specified param(s) to 80%\")), mdx(\"p\", null, \"Required Parameters:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"params\"), \": The parameters in the model to prune.\\nThis can be set to a string containing \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"__ALL__\"), \" to prune all parameters, a list to specify the targeted parameters,\\nor regex patterns prefixed by 're:' of parameter name patterns to match.\\nFor example: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['blocks.1.conv']\"), \" for PyTorch and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['mnist_net/blocks/conv0/conv']\"), \" for TensorFlow.\\nRegex can also be used to match all conv params: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['re:.*conv']\"), \" for PyTorch and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['re:.*/conv']\"), \" for TensorFlow.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"init_sparsity\"), \": The decimal value for the initial sparsity to start pruning with.\\nAt \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \" will set the sparsity for the param/variable to this value.\\nGenerally, this is kept at 0.05 (5%).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"final_sparsity\"), \": The decimal value for the final sparsity to end pruning with.\\nBy the start of \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"end_epoch\"), \" will set the sparsity for the param/variable to this value.\\nGenerally, this is kept in a range from 0.6 to 0.95 depending on the model and layer.\\nAnything less than 0.4 is not useful for performance.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \": The epoch to start the pruning at (0 indexed).\\nThis supports floating-point values to enable starting pruning between epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"end_epoch\"), \": The epoch before which to stop pruning.\\nThis supports floating-point values to enable stopping pruning between epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"update_frequency\"), \": The number of epochs/fractions of an epoch between each pruning step.\\nIt supports floating-point values to enable updating inside of epochs.\\nGenerally, this is set to update once per epoch (\", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"1.0\"), \").\\nHowever, if the loss for the model recovers quickly, it should be set to a lesser value.\\nFor example: set it to \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"0.5\"), \" for once every half epoch (twice per epoch).\")), mdx(\"p\", null, \"Example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !GMPruningModifier\\n params: ['blocks.1.conv']\\n init_sparsity: 0.05\\n final_sparsity: 0.8\\n start_epoch: 5.0\\n end_epoch: 20.0\\n update_frequency: 1.0\\n\")), mdx(\"h3\", null, \"Quantization Modifiers\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"QuantizationModifier\"), \" sets the model to run with\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://pytorch.org/docs/stable/quantization.html\"\n }, \"quantization aware training (QAT).\"), \"\\nQAT emulates the precision loss of int8 quantization during training so weights can be\\nlearned to limit any accuracy loss from quantization.\\nOnce the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"QuantizationModifier\"), \" is enabled, it cannot be disabled (no \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"end_epoch\"), \").\\nQuantization zero points are set to be asymmetric for activations and symmetric for weights.\\nCurrently only available in PyTorch.\"), mdx(\"p\", null, \"Notes:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"ONNX exports of PyTorch QAT models will be QAT models themselves (emulated quantization).\\nTo convert your QAT ONNX model to a fully quantizerd model use\\nthe script \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"scripts/pytorch/model_quantize_qat_export.py\"), \" or the function\\n\", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"neuralmagicML.pytorch.quantization.quantize_qat_export\"), \".\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"If performing QAT on a sparse model, you must preserve sparsity during QAT by\\napplying a \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ConstantPruningModifier\"), \" or have already used a \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"GMPruningModifier\"), \" with\\n\", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"leave_enabled\"), \" set to True.\")), mdx(\"p\", null, \"Required Parameters:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \": The epoch to start QAT. This supports floating-point values to enable\\nstarting pruning between epochs.\")), mdx(\"p\", null, \"Example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !QuantizationModifier\\n start_epoch: 0.0\\n\")), mdx(\"h3\", null, \"Learning Rate Modifiers\"), mdx(\"p\", null, \"The learning rate modifiers set the learning rate (LR) for an optimizer during training.\\nIf you are using an Adam optimizer, then generally, these are not useful.\\nIf you are using a standard stochastic gradient descent optimizer, then these give a convenient way to control the LR.\"), mdx(\"h4\", null, \"SetLearningRateModifier\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"SetLearningRateModifier\"), \" sets the learning rate (LR) for the optimizer to a specific value at a specific point\\nin the training process.\"), mdx(\"p\", null, \"Required Parameters:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \": The epoch in the training process to set the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"learning_rate\"), \" value for the optimizer.\\nThis supports floating-point values to enable setting the LR between epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"learning_rate\"), \": The floating-point value to set as the learning rate for the optimizer at \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \".\")), mdx(\"p\", null, \"Example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !SetLearningRateModifier\\n start_epoch: 5.0\\n learning_rate: 0.1\\n\")), mdx(\"h4\", null, \"LearningRateModifier\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"LearningRateModifier\"), \" sets schedules for controlling the learning rate for an optimizer during training.\\nIf you are using an Adam optimizer, then generally, these are not useful.\\nIf you are using a standard stochastic gradient descent optimizer, then these give a convenient way to control the LR.\\nProvided schedules to choose from are the following:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ExponentialLR\"), \": Multiplies the learning rate by a \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"gamma\"), \" value every epoch.\\nTo use this one, \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"lr_kwargs\"), \" should be set to a dictionary containing \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"gamma\"), \".\\nFor example: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"{'gamma': 0.9}\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"StepLR\"), \": Multiplies the learning rate by a \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"gamma\"), \" value after a certain epoch period defined by \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"step\"), \".\\nTo use this one, \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"lr_kwargs\"), \" must be set to a dictionary containing \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"gamma\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"step_size\"), \".\\nFor example: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"{'gamma': 0.9, 'step_size': 2.0}\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"MultiStepLR\"), \": Multiplies the learning rate by a \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"gamma\"), \" value at specific epoch points defined by \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"milestones\"), \".\\nTo use this one, \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"lr_kwargs\"), \" must be set to a dictionary containing \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"gamma\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"milestones\"), \".\\nFor example: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"{'gamma': 0.9, 'milestones': [2.0, 5.5, 10.0]}\"))), mdx(\"p\", null, \"Required Parameters:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \": The epoch to start modifying the LR at (0 indexed).\\nThis supports floating-point values to enable starting pruning between epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"end_epoch\"), \": The epoch to stop modifying the LR before.\\nThis supports floating-point values to enable stopping pruning between epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"lr_class\"), \": The LR class to use, one of \", \"[\", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ExponentialLR\"), \", \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"StepLR\"), \", \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"MultiStepLR\"), \"]\", \".\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"lr_kwargs\"), \": The named arguments for the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"lr_class\"), \".\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"init_lr\"), \": \", \"[Optional]\", \" The initial LR to set at \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \" and to use for creating the schedules.\\nIf not given, the optimizer's current LR will be used at startup.\")), mdx(\"p\", null, \"Example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !LearningRateModifier\\n start_epoch: 0.0\\n end_epoch: 25.0\\n lr_class: MultiStepLR\\n lr_kwargs:\\n gamma: 0.9\\n milestones: [2.0, 5.5, 10.0]\\n init_lr: 0.1\\n\")), mdx(\"h3\", null, \"Params/Variables Modifiers\"), mdx(\"h4\", null, \"TrainableParamsModifier\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"TrainableParamsModifier\"), \" controls the params that are marked as trainable for the current optimizer.\\nThis is generally useful when transfer learning to easily mark which parameters should or should not be frozen/trained.\"), mdx(\"p\", null, \"Required Parameters:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"params\"), \": The names of parameters to mark as trainable or not.\\nThis can be set to a string containing \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"__ALL__\"), \" to mark all parameters, a list to specify the targeted parameters,\\nor regex patterns prefixed by 're:' of parameter name patterns to match.\\nFor example: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['blocks.1.conv']\"), \" for PyTorch and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['mnist_net/blocks/conv0/conv']\"), \" for TensorFlow.\\nRegex can also be used to match all conv params: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['re:.*conv']\"), \" for PyTorch and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['re:.*/conv']\"), \" for TensorFlow.\")), mdx(\"p\", null, \"Example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !TrainableParamsModifier\\n params: __ALL__\\n\")), mdx(\"h3\", null, \"Optimizer Modifiers\"), mdx(\"h4\", null, \"SetWeightDecayModifier\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"SetWeightDecayModifier\"), \" sets the weight decay (L2 penalty) for the optimizer to a\\nspecific value at a specific point in the training process.\"), mdx(\"p\", null, \"Required Parameters:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \": The epoch in the training process to set the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"weight_decay\"), \" value for the\\noptimizer. This supports floating-point values to enable setting the weight decay\\nbetween epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"weight_decay\"), \": The floating-point value to set as the weight decay for the optimizer\\nat \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \".\")), mdx(\"p\", null, \"Example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !SetWeightDecayModifier\\n start_epoch: 5.0\\n weight_decay: 0.0\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#creating-sparsification-recipes","title":"Creating Sparsification Recipes","items":[{"url":"#modifiers-intro","title":"Modifiers Intro"},{"url":"#training-epoch-modifiers","title":"Training Epoch Modifiers"},{"url":"#pruning-modifiers","title":"Pruning Modifiers","items":[{"url":"#constantpruningmodifier","title":"ConstantPruningModifier","items":[{"url":"#gmpruningmodifier","title":"GMPruningModifier"}]},{"url":"#quantization-modifiers","title":"Quantization Modifiers"},{"url":"#learning-rate-modifiers","title":"Learning Rate Modifiers","items":[{"url":"#setlearningratemodifier","title":"SetLearningRateModifier"},{"url":"#learningratemodifier","title":"LearningRateModifier"}]},{"url":"#paramsvariables-modifiers","title":"Params/Variables Modifiers","items":[{"url":"#trainableparamsmodifier","title":"TrainableParamsModifier"}]},{"url":"#optimizer-modifiers","title":"Optimizer Modifiers","items":[{"url":"#setweightdecaymodifier","title":"SetWeightDecayModifier"}]}]}]}]},"parent":{"relativePath":"user-guide/recipes/creating.mdx"},"frontmatter":{"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/recipes/creating","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","title":"Creating","slug":"/user-guide/recipes/creating","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/recipes/creating.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Creating\",\n \"metaTitle\": \"Creating Sparsification Recipes\",\n \"metaDescription\": \"Creating Sparsification Recipes\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Creating Sparsification Recipes\"), mdx(\"p\", null, \"All SparseML Sparsification APIs are designed to work with recipes.\\nThe files encode the instructions needed for modifying the model and/or training process as a list of modifiers.\\nExample modifiers can be anything from setting the learning rate for the optimizer to gradual magnitude pruning.\\nThe files are written in \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://yaml.org/\"\n }, \"YAML\"), \" and stored in YAML or\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://www.markdownguide.org/\"\n }, \"Markdown\"), \" files using\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://assemble.io/docs/YAML-front-matter.html\"\n }, \"YAML front matter.\"), \"\\nThe rest of the SparseML system is coded to parse the recipe files into a native format for the desired framework,\\nand apply the modifications to the model and training pipeline.\"), mdx(\"p\", null, \"In a recipe, modifiers must be written in a list that includes \\\"modifiers\\\" in its name.\"), mdx(\"p\", null, \"The easiest ways to get or create recipes are by either using the pre-configured recipes in \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsezoo\"\n }, \"SparseZoo\"), \" or using \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://github.com/neuralmagic/sparsify\"\n }, \"Sparsify's\"), \" automatic creation.\\nEspecially for users performing sparse transfer learning from our pre-sparsified models in the SparseZoo, we highly reccomend using the\\npre-made transfer learning recipes found on SparseZoo. However, power users may be inclined to create their recipes to enable more\\nfine-grained control or add custom modifiers when sparsifying a new model from scratch.\"), mdx(\"p\", null, \"A sample recipe for pruning a model generally looks like the following:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \"version: 0.1.0\\nmodifiers:\\n - !EpochRangeModifier\\n start_epoch: 0.0\\n end_epoch: 70.0\\n\\n - !LearningRateModifier\\n start_epoch: 0\\n end_epoch: -1.0\\n update_frequency: -1.0\\n init_lr: 0.005\\n lr_class: MultiStepLR\\n lr_kwargs: {'milestones': [43, 60], 'gamma': 0.1}\\n\\n - !GMPruningModifier\\n start_epoch: 0\\n end_epoch: 40\\n update_frequency: 1.0\\n init_sparsity: 0.05\\n final_sparsity: 0.85\\n mask_type: unstructured\\n params: ['sections.0.0.conv1.weight', 'sections.0.0.conv2.weight', 'sections.0.0.conv3.weight']\\n\")), mdx(\"h2\", null, \"Modifiers Intro\"), mdx(\"p\", null, \"Recipes can contain multiple modifiers, each modifying a portion of the training process in a different way.\\nIn general, each modifier will have a start and end epoch for when the modifier should be active.\\nThe modifiers will start at \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"start_epoch\"), \" and run until \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"end_epoch\"), \".\\nNote that it does not run \", mdx(\"em\", {\n parentName: \"p\"\n }, \"through\"), \" \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"end_epoch\"), \".\\nAdditionally, all epoch values support decimal values such that they can be started anywhere within an epoch.\\nFor example, \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"start_epoch: 2.5\"), \" will start in the middle of the second training epoch.\"), mdx(\"p\", null, \"The most commonly used modifiers are enumerated as subsections below.\"), mdx(\"h2\", null, \"Training Epoch Modifiers\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"EpochRangeModifier\"), \" controls the range of epochs for training a model.\\nEach supported ML framework has an implementation to enable easily retrieving this number of epochs.\\nNote that this is not a hard rule and, if other modifiers have a larger \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"end_epoch\"), \" or smaller \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"start_epoch\"), \",\\nthose values will be used instead.\"), mdx(\"p\", null, \"The only parameters that can be controlled for \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"EpochRangeModifier\"), \" are the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"start_epoch\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"end_epoch\"), \".\\nBoth parameters are required:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \" indicates the start range for the epoch (0 indexed).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"end_epoch\"), \" indicates the end range for the epoch.\")), mdx(\"p\", null, \"For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !EpochRangeModifier\\n start_epoch: 0.0\\n end_epoch: 25.0\\n\")), mdx(\"h2\", null, \"Pruning Modifiers\"), mdx(\"p\", null, \"The pruning modifiers handle \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/blog/pruning-overview/\"\n }, \"pruning\"), \"\\nthe specified layer(s) in a given model.\"), mdx(\"h3\", null, \"ConstantPruningModifier\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ConstantPruningModifier\"), \" enforces the sparsity structure and level for an already pruned layer(s) in a model.\\nThe modifier is generally used for transfer learning from an already pruned model or\\nto enforce sparsity while quantizing.\\nThe weights remain trainable in this setup; however, the sparsity is unchanged.\"), mdx(\"p\", null, \"The required parameter is:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"params\"), \"indicates the parameters in the model to prune.\\nThis can be set to a string containing \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"__ALL__\"), \" to prune all parameters, a list to specify the targeted parameters,\\nor regex patterns prefixed by 're:' of parameter name patterns to match.\\nFor example: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['blocks.1.conv']\"), \" for PyTorch and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['mnist_net/blocks/conv0/conv']\"), \" for TensorFlow.\\nRegex can also be used to match all conv params: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['re:.*conv']\"), \" for PyTorch and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['re:.*/conv']\"), \" for TensorFlow.\")), mdx(\"p\", null, \"For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !ConstantPruningModifier\\n params: __ALL__\\n\")), mdx(\"h4\", null, \"GMPruningModifier\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"GMPruningModifier\"), \" prunes the parameter(s) in a model to a\\ntarget sparsity (percentage of 0s for a layer's parameter/variable)\\nusing \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/blog/pruning-gmp/\"\n }, \"gradual magnitude pruning.\"), \"\\nThis is done gradually from an initial to final sparsity (\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"init_sparsity\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"final_sparsity\"), \")\\nover a range of epochs (\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"start_epoch\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"end_epoch\"), \") and updated at a specific interval defined by the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"update_frequency\"), \".\\nFor example, using the following settings:\"), mdx(\"p\", null, mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"start_epoch: 0\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"end_epoch: 5\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"update_frequency: 1\"), \",\\n\", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"init_sparsity: 0.05\"), \", \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"final_sparsity: 0.8\"), \" \"), mdx(\"p\", null, \"will do the following.\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"At epoch 0, set the sparsity for the specified param(s) to 5%\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"Once every epoch, gradually increase the sparsity toward 80%\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"By the start of epoch 5, stop pruning and set the final sparsity for the specified parameter(s) to 80%\")), mdx(\"p\", null, \"The required parameters are:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"params\"), \" indicates the parameters in the model to prune.\\nThis can be set to a string containing \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"__ALL__\"), \" to prune all parameters, a list to specify the targeted parameters,\\nor regex patterns prefixed by 're:' of parameter name patterns to match.\\nFor example: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['blocks.1.conv']\"), \" for PyTorch and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['mnist_net/blocks/conv0/conv']\"), \" for TensorFlow.\\nRegex can also be used to match all conv params: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['re:.*conv']\"), \" for PyTorch and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['re:.*/conv']\"), \" for TensorFlow.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"init_sparsity\"), \" is the decimal value for the initial sparsity with which to start pruning.\\n\", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \" will set the sparsity for the parameter/variable to this value.\\nGenerally, this is kept at 0.05 (5%).\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"final_sparsity\"), \" is the decimal value for the final sparsity with which to end pruning.\\nBy the start of \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"end_epoch\"), \" will set the sparsity for the parameter/variable to this value.\\nGenerally, this is kept in a range from 0.6 to 0.95, depending on the model and layer.\\nAnything less than 0.4 is not useful for performance.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \" sets the epoch at which to start the pruning (0 indexed).\\nThis supports floating point values to enable starting pruning between epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"end_epoch\"), \" sets the epoch before which to stop pruning.\\nThis supports floating point values to enable stopping pruning between epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"update_frequency\"), \" is the number of epochs/fractions of an epoch between each pruning step.\\nIt supports floating point values to enable updating inside of epochs.\\nGenerally, this is set to update once per epoch (\", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"1.0\"), \").\\nHowever, if the loss for the model recovers quickly, it should be set to a lesser value.\\nFor example, set it to \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"0.5\"), \" for once every half epoch (twice per epoch).\")), mdx(\"p\", null, \"For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !GMPruningModifier\\n params: ['blocks.1.conv']\\n init_sparsity: 0.05\\n final_sparsity: 0.8\\n start_epoch: 5.0\\n end_epoch: 20.0\\n update_frequency: 1.0\\n\")), mdx(\"h3\", null, \"Quantization Modifiers\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"QuantizationModifier\"), \" sets the model to run with\\n\", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://pytorch.org/docs/stable/quantization.html\"\n }, \"quantization aware training (QAT).\"), \"\\nQAT emulates the precision loss of int8 quantization during training so weights can be\\nlearned to limit any accuracy loss from quantization.\\nOnce the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"QuantizationModifier\"), \" is enabled, it cannot be disabled (no \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"end_epoch\"), \").\\nQuantization zero points are set to be asymmetric for activations and symmetric for weights.\\nCurrently, quantization modifiers are available only in PyTorch.\"), mdx(\"p\", null, \"Notes:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, \"ONNX exports of PyTorch QAT models will be QAT models themselves (emulated quantization).\\nTo convert your QAT ONNX model to a fully quantizerd model, use\\nthe script \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"scripts/pytorch/model_quantize_qat_export.py\"), \" or the function\\n\", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"neuralmagicML.pytorch.quantization.quantize_qat_export\"), \".\"), mdx(\"li\", {\n parentName: \"ul\"\n }, \"If performing QAT on a sparse model, you must preserve sparsity during QAT by\\napplying a \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ConstantPruningModifier\"), \" or have already used a \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"GMPruningModifier\"), \" with\\n\", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"leave_enabled\"), \" set to True.\")), mdx(\"p\", null, \"The required parameter is:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \" sets the epoch to start QAT. This supports floating-point values to enable\\nstarting pruning between epochs.\")), mdx(\"p\", null, \"For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !QuantizationModifier\\n start_epoch: 0.0\\n\")), mdx(\"h3\", null, \"Learning Rate Modifiers\"), mdx(\"p\", null, \"The learning rate modifiers set the learning rate (LR) for an optimizer during training.\\nIf you are using an Adam optimizer, then generally, these are not useful.\\nIf you are using a standard stochastic gradient descent optimizer, these give a convenient way to control the LR.\"), mdx(\"h4\", null, \"SetLearningRateModifier\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"SetLearningRateModifier\"), \" sets the LR for the optimizer to a specific value at a specific point\\nin the training process.\"), mdx(\"p\", null, \"Required parameters are:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \" is the epoch in the training process to set the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"learning_rate\"), \" value for the optimizer.\\nThis supports floating point values to enable setting the LR between epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"learning_rate\"), \" is the floating-point value to set as the LR for the optimizer at \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \".\")), mdx(\"p\", null, \"For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !SetLearningRateModifier\\n start_epoch: 5.0\\n learning_rate: 0.1\\n\")), mdx(\"h4\", null, \"LearningRateModifier\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"LearningRateModifier\"), \" sets schedules for controlling the LR for an optimizer during training.\\nIf you are using an Adam optimizer, then generally, these are not useful.\\nIf you are using a standard stochastic gradient descent optimizer, these give a convenient way to control the LR.\\nProvided schedules from which to choose are:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ExponentialLR\"), \" multiplies the LR by a \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"gamma\"), \" value every epoch.\\nTo use this, \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"lr_kwargs\"), \" should be set to a dictionary containing \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"gamma\"), \".\\nFor example: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"{'gamma': 0.9}\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"StepLR\"), \" multiplies the LR by a \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"gamma\"), \" value after a certain epoch period defined by \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"step\"), \".\\nTo use this, \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"lr_kwargs\"), \" must be set to a dictionary containing \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"gamma\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"step_size\"), \".\\nFor example: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"{'gamma': 0.9, 'step_size': 2.0}\")), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"MultiStepLR\"), \" multiplies the LR by a \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"gamma\"), \" value at specific epoch points defined by \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"milestones\"), \".\\nTo use this, \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"lr_kwargs\"), \" must be set to a dictionary containing \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"gamma\"), \" and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"milestones\"), \".\\nFor example: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"{'gamma': 0.9, 'milestones': [2.0, 5.5, 10.0]}\"))), mdx(\"p\", null, \"Required parameters are:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \" sets the epoch at which to start modifying the LR (0 indexed).\\nThis supports floating point values to enable starting pruning between epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"end_epoch\"), \" sets the epoch before which to stop modifying the LR.\\nThis supports floating point values to enable stopping pruning between epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"lr_class\"), \" is the LR class to use, one of \", \"[\", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"ExponentialLR\"), \", \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"StepLR\"), \", \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"MultiStepLR\"), \"]\", \".\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"lr_kwargs\"), \" is the named argument for the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"lr_class\"), \".\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"init_lr\"), \" \", \"[Optional]\", \" is the initial LR to set at \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \" and to use for creating the schedules.\\nIf not given, the optimizer's current LR will be used at startup.\")), mdx(\"p\", null, \"For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !LearningRateModifier\\n start_epoch: 0.0\\n end_epoch: 25.0\\n lr_class: MultiStepLR\\n lr_kwargs:\\n gamma: 0.9\\n milestones: [2.0, 5.5, 10.0]\\n init_lr: 0.1\\n\")), mdx(\"h3\", null, \"Params/Variables Modifiers\"), mdx(\"h4\", null, \"TrainableParamsModifier\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"TrainableParamsModifier\"), \" controls the parameters that are marked as trainable for the current optimizer.\\nThis is generally useful when transfer learning to easily mark which parameters should or should not be frozen/trained.\"), mdx(\"p\", null, \"The required parameter is:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"params\"), \" indicates the names of parameters to mark as trainable or not.\\nThis can be set to a string containing \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"__ALL__\"), \" to mark all parameters, a list to specify the targeted parameters,\\nor regex patterns prefixed by 're:' of parameter name patterns to match.\\nFor example: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['blocks.1.conv']\"), \" for PyTorch and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['mnist_net/blocks/conv0/conv']\"), \" for TensorFlow.\\nRegex can also be used to match all conv params: \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['re:.*conv']\"), \" for PyTorch and \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"['re:.*/conv']\"), \" for TensorFlow.\")), mdx(\"p\", null, \"For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !TrainableParamsModifier\\n params: __ALL__\\n\")), mdx(\"h3\", null, \"Optimizer Modifiers\"), mdx(\"h4\", null, \"SetWeightDecayModifier\"), mdx(\"p\", null, \"The \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"SetWeightDecayModifier\"), \" sets the weight decay (L2 penalty) for the optimizer to a\\nspecific value at a specific point in the training process.\"), mdx(\"p\", null, \"Required parameters are:\"), mdx(\"ul\", null, mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \" is the epoch in the training process to set the \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"weight_decay\"), \" value for the\\noptimizer. This supports floating point values to enable setting the weight decay\\nbetween epochs.\"), mdx(\"li\", {\n parentName: \"ul\"\n }, mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"weight_decay\"), \" is the floating point value to set as the weight decay for the optimizer\\nat \", mdx(\"inlineCode\", {\n parentName: \"li\"\n }, \"start_epoch\"), \".\")), mdx(\"p\", null, \"For example:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-yaml\"\n }, \" - !SetWeightDecayModifier\\n start_epoch: 5.0\\n weight_decay: 0.0\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#creating-sparsification-recipes","title":"Creating Sparsification Recipes","items":[{"url":"#modifiers-intro","title":"Modifiers Intro"},{"url":"#training-epoch-modifiers","title":"Training Epoch Modifiers"},{"url":"#pruning-modifiers","title":"Pruning Modifiers","items":[{"url":"#constantpruningmodifier","title":"ConstantPruningModifier","items":[{"url":"#gmpruningmodifier","title":"GMPruningModifier"}]},{"url":"#quantization-modifiers","title":"Quantization Modifiers"},{"url":"#learning-rate-modifiers","title":"Learning Rate Modifiers","items":[{"url":"#setlearningratemodifier","title":"SetLearningRateModifier"},{"url":"#learningratemodifier","title":"LearningRateModifier"}]},{"url":"#paramsvariables-modifiers","title":"Params/Variables Modifiers","items":[{"url":"#trainableparamsmodifier","title":"TrainableParamsModifier"}]},{"url":"#optimizer-modifiers","title":"Optimizer Modifiers","items":[{"url":"#setweightdecaymodifier","title":"SetWeightDecayModifier"}]}]}]}]},"parent":{"relativePath":"user-guide/recipes/creating.mdx"},"frontmatter":{"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/recipes/enabling/page-data.json b/page-data/user-guide/recipes/enabling/page-data.json index 3012b90199f..80850546335 100644 --- a/page-data/user-guide/recipes/enabling/page-data.json +++ b/page-data/user-guide/recipes/enabling/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/user-guide/recipes/enabling","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","title":"Enabling Pipelines","slug":"/user-guide/recipes/enabling","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/recipes/enabling.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Enabling Pipelines\",\n \"metaTitle\": \"Enabling Pipelines to work with SparseML Recipes\",\n \"metaDescription\": \"Enabling Pipelines to work with SparseML Recipess\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Enabling Pipelines to work with SparseML Recipes\"), mdx(\"p\", null, \"This page explains how to use recipes with common training pipelines to sparsify your custom model.\"), mdx(\"p\", null, \"We currently support PyTorch, Keras, and TensorFlow. The pseudocode below will work for both sparse transfer learning and sparsifying from scratch,\\nsimply by passing the appropriate recipe.\"), mdx(\"p\", null, \"See \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML installation page\"), \" for installation requirements of each integration.\"), mdx(\"h2\", null, \"PyTorch Pipelines\"), mdx(\"p\", null, \"The PyTorch sparsification libraries are located under the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.pytorch.optim\"), \" package.\\nInside are APIs designed to make model sparsification as easy as possible by integrating seamlessly into PyTorch training pipelines.\"), mdx(\"p\", null, \"First, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager\"), \" is created. This class accepts a recipe file and parses the hyperparameters at initialization.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"modify()\"), \" function wraps an optimizer or optimizer-like object (contains a step function) to override the step invocation.\\nWith this setup, the training process can then be modified to sparsify the model.\"), mdx(\"p\", null, \"To enable all of this, the integration code is accomplished by writing a handful of lines:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparseml.pytorch.optim import ScheduledModifierManager\\n\\n## fill in definitions below\\nmodel = Model() # model definition\\noptimizer = Optimizer() # optimizer definition\\ntrain_data = TrainData() # train data definition\\nbatch_size = BATCH_SIZE # training batch size\\nsteps_per_epoch = len(train_data) // batch_size\\n\\nmanager = ScheduledModifierManager.from_yaml(PATH_TO_RECIPE)\\noptimizer = manager.modify(model, optimizer, steps_per_epoch)\\n\\n# PyTorch training code\\n\\nmanager.finalize(model)\\n\")), mdx(\"h2\", null, \"Keras Pipelines\"), mdx(\"p\", null, \"The Keras sparsification libraries are located under the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.keras.optim\"), \" package.\\nInside are APIs designed to make model sparsification as easy as possible by integrating seamlessly into Keras training pipelines.\"), mdx(\"p\", null, \"The integration is done using the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager\"), \" class, which can be created from a recipe file.\\nThis class modifies the Keras objects for the desired algorithms using the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"modify\"), \" method.\\nThe edited model, optimizer, and any callbacks necessary to modify the training process are returned.\\nThe model and optimizer can be used typically, and the callbacks must be passed into the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"fit\"), \" or \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"fit_generator\"), \" function.\\nIf using \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"train_on_batch\"), \", the callbacks must be invoked after each call.\\nAfter training is completed, call into the manager's \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"finalize\"), \" method to clean up the graph for exporting.\"), mdx(\"p\", null, \"To enable all of this, the integration code you'll need to write is only a handful of lines:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparseml.keras.optim import ScheduledModifierManager\\n\\n## fill in definitions below\\nmodel = None # your model definition\\noptimizer = None # your optimizer definition\\nnum_train_batches = len(train_data) / batch_size # your number of batches per training epoch\\n\\nmanager = ScheduledModifierManager.from_yaml(\\\"/PATH/TO/recipe.yaml\\\")\\nmodel, optimizer, callbacks = manager.modify(\\n model, optimizer, steps_per_epoch=num_train_batches\\n)\\n\\n# Keras compilation and training code...\\n# Be sure to compile the model after calling modify and pass the callbacks into the fit or fit_generator function.\\n# Note, if you are using train_on_batch, then you will need to invoke the callbacks after every step.\\nmodel.compile(...)\\nmodel.fit(..., callbacks=callbacks)\\n\\n# finalize cleans up the graph for export\\nsave_model = manager.finalize(model)\\n\")), mdx(\"h2\", null, \"TensorFlow V1 Pipelines\"), mdx(\"p\", null, \"The TensorFlow sparsification libraries for TensorFlow version 1.X are located under the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.tensorflow_v1.optim\"), \" package.\\nInside are APIs designed to make model sparsification as easy as possible by integrating seamlessly into TensorFlow V1 training pipelines.\"), mdx(\"p\", null, \"The integration is done using the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager\"), \" class, which can be created from a recipe file.\\nThis class handles modifying the TensorFlow graph for the desired algorithms.\\nWith this setup, the training process can then be modified to sparsify the model.\"), mdx(\"h3\", null, \"Estimator-Based Pipelines\"), mdx(\"p\", null, \"Estimator-based pipelines are simpler to integrate with as compared to session-based pipelines.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager\"), \" can override the necessary callbacks in the estimator to modify the graph using the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"modify_estimator\"), \" function.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparseml.tensorflow_v1.optim import ScheduledModifierManager\\n\\n## fill in definitions below\\nestimator = None # your estimator definition\\nnum_train_batches = len(train_data) / batch_size # your number of batches per training epoch\\n\\nmanager = ScheduledModifierManager.from_yaml(\\\"/PATH/TO/config.yaml\\\")\\nmanager.modify_estimator(estimator, steps_per_epoch=num_train_batches)\\n\\n# Normal estimator training code...\\n\")), mdx(\"h3\", null, \"Session-Based Pipelines\"), mdx(\"p\", null, \"Session-based pipelines need a little bit more compared to estimator-based pipelines; however,\\nit is still designed to require only a few lines of code for integration.\\nAfter graph creation, the manager's \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"create_ops\"), \" method must be called.\\nThis will modify the graph as needed for the algorithms and return modifying ops and extras.\\nAfter creating the session and training, call into \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"session.run\"), \" with the modifying ops after each step.\\nModifying extras contain objects such as tensorboard summaries of the modifiers to be used if desired.\\nFinally, once completed, \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"complete_graph\"), \" must be called to remove the modifying ops for saving and export.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparseml.tensorflow_v1.utils import tf_compat\\nfrom sparseml.tensorflow_v1.optim import ScheduledModifierManager\\n\\n\\n## fill in definitions below\\nwith tf_compat.Graph().as_default() as graph:\\n # Normal graph setup....\\n num_train_batches = len(train_data) / batch_size # your number of batches per training epoch\\n\\n # Modifying graphs, be sure this is called after graph is created and before session is created\\n manager = ScheduledModifierManager.from_yaml(\\\"/PATH/TO/config.yaml\\\")\\n mod_ops, mod_extras = manager.create_ops(steps_per_epoch=num_train_batches)\\n\\n with tf_compat.Session() as sess:\\n # Normal training code...\\n # Call sess.run with the mod_ops after every batch update\\n sess.run(mod_ops)\\n\\n # Call into complete_graph after training is done\\n manager.complete_graph()\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#enabling-pipelines-to-work-with-sparseml-recipes","title":"Enabling Pipelines to work with SparseML Recipes","items":[{"url":"#pytorch-pipelines","title":"PyTorch Pipelines"},{"url":"#keras-pipelines","title":"Keras Pipelines"},{"url":"#tensorflow-v1-pipelines","title":"TensorFlow V1 Pipelines","items":[{"url":"#estimator-based-pipelines","title":"Estimator-Based Pipelines"},{"url":"#session-based-pipelines","title":"Session-Based Pipelines"}]}]}]},"parent":{"relativePath":"user-guide/recipes/enabling.mdx"},"frontmatter":{"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/recipes/enabling","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","title":"Enabling Pipelines","slug":"/user-guide/recipes/enabling","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/recipes/enabling.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Enabling Pipelines\",\n \"metaTitle\": \"Enabling Pipelines to work with SparseML Recipes\",\n \"metaDescription\": \"Enabling Pipelines to work with SparseML Recipess\",\n \"index\": 2000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"Enabling Pipelines to Work with SparseML Recipes\"), mdx(\"p\", null, \"You can use recipes with common training pipelines to sparsify your custom model.\"), mdx(\"p\", null, \"We currently support PyTorch, Keras, and TensorFlow. The pseudocode below will work for both sparse transfer learning and sparsifying from scratch,\\nsimply by passing the appropriate recipe.\"), mdx(\"p\", null, \"See the \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"/get-started/install/sparseml\"\n }, \"SparseML installation page\"), \" for installation requirements of each integration.\"), mdx(\"h2\", null, \"PyTorch Pipelines\"), mdx(\"p\", null, \"The PyTorch sparsification libraries are located under the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.pytorch.optim\"), \" package.\\nInside are APIs designed to make model sparsification as easy as possible by integrating seamlessly into PyTorch training pipelines.\"), mdx(\"p\", null, \"First, the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager\"), \" is created. This class accepts a recipe file and parses the hyperparameters at initialization.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"modify()\"), \" function wraps an optimizer or optimizer-like object (contains a step function) to override the step invocation.\\nWith this setup, the training process can be modified to sparsify the model.\"), mdx(\"p\", null, \"To enable all of this, the integration code is accomplished by writing a handful of lines:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparseml.pytorch.optim import ScheduledModifierManager\\n\\n## fill in definitions below\\nmodel = Model() # model definition\\noptimizer = Optimizer() # optimizer definition\\ntrain_data = TrainData() # train data definition\\nbatch_size = BATCH_SIZE # training batch size\\nsteps_per_epoch = len(train_data) // batch_size\\n\\nmanager = ScheduledModifierManager.from_yaml(PATH_TO_RECIPE)\\noptimizer = manager.modify(model, optimizer, steps_per_epoch)\\n\\n# PyTorch training code\\n\\nmanager.finalize(model)\\n\")), mdx(\"h2\", null, \"Keras Pipelines\"), mdx(\"p\", null, \"The Keras sparsification libraries are located under the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.keras.optim\"), \" package.\\nInside are APIs designed to make model sparsification as easy as possible by integrating seamlessly into Keras training pipelines.\"), mdx(\"p\", null, \"The integration is done using the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager\"), \" class, which can be created from a recipe file.\\nThis class modifies the Keras objects for the desired algorithms using the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"modify\"), \" method.\\nThe edited model, optimizer, and any callbacks necessary to modify the training process are returned.\\nThe model and optimizer can be used typically, and the callbacks must be passed into the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"fit\"), \" or \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"fit_generator\"), \" function.\\nIf using \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"train_on_batch\"), \", the callbacks must be invoked after each call.\\nAfter training is completed, call into the manager's \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"finalize\"), \" method to clean up the graph for exporting.\"), mdx(\"p\", null, \"To enable all of this, the integration code you'll need to write is only a handful of lines:\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparseml.keras.optim import ScheduledModifierManager\\n\\n## fill in definitions below\\nmodel = None # your model definition\\noptimizer = None # your optimizer definition\\nnum_train_batches = len(train_data) / batch_size # your number of batches per training epoch\\n\\nmanager = ScheduledModifierManager.from_yaml(\\\"/PATH/TO/recipe.yaml\\\")\\nmodel, optimizer, callbacks = manager.modify(\\n model, optimizer, steps_per_epoch=num_train_batches\\n)\\n\\n# Keras compilation and training code...\\n# Be sure to compile the model after calling modify and pass the callbacks into the fit or fit_generator function.\\n# Note, if you are using train_on_batch, then you will need to invoke the callbacks after every step.\\nmodel.compile(...)\\nmodel.fit(..., callbacks=callbacks)\\n\\n# finalize cleans up the graph for export\\nsave_model = manager.finalize(model)\\n\")), mdx(\"h2\", null, \"TensorFlow V1 Pipelines\"), mdx(\"p\", null, \"The TensorFlow sparsification libraries for TensorFlow version 1.X are located under the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"sparseml.tensorflow_v1.optim\"), \" package.\\nInside are APIs designed to make model sparsification as easy as possible by integrating seamlessly into TensorFlow V1 training pipelines.\"), mdx(\"p\", null, \"The integration is done using the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager\"), \" class, which can be created from a recipe file.\\nThis class handles modifying the TensorFlow graph for the desired algorithms.\\nWith this setup, the training process can be modified to sparsify the model.\"), mdx(\"h3\", null, \"Estimator-Based Pipelines\"), mdx(\"p\", null, \"It is simpler to integrate with estimator-based pipelines as compared to session-based pipelines.\\nThe \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"ScheduledModifierManager\"), \" can override the necessary callbacks in the estimator to modify the graph using the \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"modify_estimator\"), \" function.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparseml.tensorflow_v1.optim import ScheduledModifierManager\\n\\n## fill in definitions below\\nestimator = None # your estimator definition\\nnum_train_batches = len(train_data) / batch_size # your number of batches per training epoch\\n\\nmanager = ScheduledModifierManager.from_yaml(\\\"/PATH/TO/config.yaml\\\")\\nmanager.modify_estimator(estimator, steps_per_epoch=num_train_batches)\\n\\n# Normal estimator training code...\\n\")), mdx(\"h3\", null, \"Session-Based Pipelines\"), mdx(\"p\", null, \"Session-based pipelines need a little bit more compared to estimator-based pipelines; however,\\nsession-based pipelines are designed to require only a few lines of code for integration.\\nAfter graph creation, the manager's \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"create_ops\"), \" method must be called.\\nThis will modify the graph as needed for the algorithms and return modifying ops and extras.\\nAfter creating the session and training, call into \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"session.run\"), \" with the modifying ops after each step.\\nModifying extras contain objects such as TensorBoard summaries of the modifiers to be used, if desired.\\nFinally, once completed, \", mdx(\"inlineCode\", {\n parentName: \"p\"\n }, \"complete_graph\"), \" must be called to remove the modifying ops for saving and exporting.\"), mdx(\"pre\", null, mdx(\"code\", {\n parentName: \"pre\",\n \"className\": \"language-python\"\n }, \"from sparseml.tensorflow_v1.utils import tf_compat\\nfrom sparseml.tensorflow_v1.optim import ScheduledModifierManager\\n\\n\\n## fill in definitions below\\nwith tf_compat.Graph().as_default() as graph:\\n # Normal graph setup....\\n num_train_batches = len(train_data) / batch_size # your number of batches per training epoch\\n\\n # Modifying graphs, be sure this is called after graph is created and before session is created\\n manager = ScheduledModifierManager.from_yaml(\\\"/PATH/TO/config.yaml\\\")\\n mod_ops, mod_extras = manager.create_ops(steps_per_epoch=num_train_batches)\\n\\n with tf_compat.Session() as sess:\\n # Normal training code...\\n # Call sess.run with the mod_ops after every batch update\\n sess.run(mod_ops)\\n\\n # Call into complete_graph after training is done\\n manager.complete_graph()\\n\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#enabling-pipelines-to-work-with-sparseml-recipes","title":"Enabling Pipelines to Work with SparseML Recipes","items":[{"url":"#pytorch-pipelines","title":"PyTorch Pipelines"},{"url":"#keras-pipelines","title":"Keras Pipelines"},{"url":"#tensorflow-v1-pipelines","title":"TensorFlow V1 Pipelines","items":[{"url":"#estimator-based-pipelines","title":"Estimator-Based Pipelines"},{"url":"#session-based-pipelines","title":"Session-Based Pipelines"}]}]}]},"parent":{"relativePath":"user-guide/recipes/enabling.mdx"},"frontmatter":{"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/recipes/page-data.json b/page-data/user-guide/recipes/page-data.json index 879262afc51..3895b2acc83 100644 --- a/page-data/user-guide/recipes/page-data.json +++ b/page-data/user-guide/recipes/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/user-guide/recipes","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","title":"Recipes","slug":"/user-guide/recipes","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/recipes.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Recipes\",\n \"metaTitle\": \"What are Sparsification Recipes?\",\n \"metaDescription\": \"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning\",\n \"index\": 2000\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"What are Sparsification Recipes?\"), mdx(\"p\", null, \"Sparsification recipes are YAML or MarkDown files that encode the instructions for how to sparsify or sparse transfer learn a model.\\nThese instructions include the sparsification algorithms to apply along with any hyperparameters.\\nRecipes work with the SparseML library to easily apply sparse transfer learning or sparsification algorithms to any neural network and training pipeline.\"), mdx(\"p\", null, \"All SparseML Sparsification APIs are designed to work with recipes.\\nThe files encode the instructions needed for modifying the model and training process as a list of modifiers.\\nExample modifiers can be anything from setting the learning rate for the optimizer to gradual magnitude pruning.\\nThe rest of the SparseML system is coded to parse the recipe files into a native format for the desired framework and apply the modifications to the model and training pipeline.\"), mdx(\"p\", null, \"The easiest ways to get or create recipes are by using the pre-configured recipes in SparseZoo or using Sparsify's automatic creation.\\nEspecially for users performing sparse transfer learning from our pre-sparsified models in the SparseZoo, we highly reccomend using the\\npre-made transfer learning recipes found on SparseZoo. However, power users may be inclined to create their recipes by hand to enable more\\nfine-grained control or add custom modifiers when sparsifying a new model from scratch.\"), mdx(\"p\", null, \"Follow the links below for more detail on how to create and use recipes.\"), mdx(\"h2\", null, \"Guides\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./creating\",\n heading: \"Creating Sparsification Recipes\",\n mdxType: \"LinkCard\"\n }, \"User guide walking through creating different types of sparsification recipes.\"), mdx(LinkCard, {\n href: \"./enabling\",\n heading: \"Enabling Pipelines\",\n mdxType: \"LinkCard\"\n }, \"User guide walking through enabling pipelines to work with SparseML recipes.\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#what-are-sparsification-recipes","title":"What are Sparsification Recipes?","items":[{"url":"#guides","title":"Guides"}]}]},"parent":{"relativePath":"user-guide/recipes.mdx"},"frontmatter":{"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/recipes","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","title":"Recipes","slug":"/user-guide/recipes","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/recipes.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Recipes\",\n \"metaTitle\": \"What are Sparsification Recipes?\",\n \"metaDescription\": \"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning\",\n \"index\": 2000\n};\n\nvar makeShortcode = function makeShortcode(name) {\n return function MDXDefaultShortcode(props) {\n console.warn(\"Component \" + name + \" was not imported, exported, or provided by MDXProvider as global scope\");\n return mdx(\"div\", props);\n };\n};\n\nvar LinkCards = makeShortcode(\"LinkCards\");\nvar LinkCard = makeShortcode(\"LinkCard\");\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"What are Sparsification Recipes?\"), mdx(\"p\", null, \"Sparsification recipes are YAML or Markdown files that encode the instructions for how to sparsify or sparse transfer learn a model.\\nThese instructions include the sparsification algorithms to apply along with any hyperparameters.\\nRecipes work with the SparseML library to easily apply sparse transfer learning or sparsification algorithms to any neural network and training pipeline.\"), mdx(\"p\", null, \"All SparseML sparsification APIs are designed to work with recipes.\\nThe files encode the instructions needed for modifying the model and training process as a list of modifiers.\\nExample modifiers can be anything from setting the learning rate for the optimizer to gradual magnitude pruning.\\nThe rest of the SparseML system is coded to parse the recipe files into a native format for the desired framework and apply the modifications to the model and training pipeline.\"), mdx(\"p\", null, \"The easiest ways to get or create recipes are by using the pre-configured recipes in SparseZoo or using Sparsify's automatic creation.\\nEspecially for users performing sparse transfer learning from our pre-sparsified models in the SparseZoo, we highly reccomend using the\\npre-made transfer learning recipes found on SparseZoo. However, power users may be inclined to create their recipes to enable more\\nfine-grained control or add custom modifiers when sparsifying a new model from scratch.\"), mdx(\"p\", null, \"Follow the links below for more detail on how to create and use recipes.\"), mdx(\"h2\", null, \"Guides\"), mdx(LinkCards, {\n mdxType: \"LinkCards\"\n }, mdx(LinkCard, {\n href: \"./creating\",\n heading: \"Creating Sparsification Recipes\",\n mdxType: \"LinkCard\"\n }, \"User guide walking through creating different types of sparsification recipes.\"), mdx(LinkCard, {\n href: \"./enabling\",\n heading: \"Enabling Pipelines\",\n mdxType: \"LinkCard\"\n }, \"User guide walking through enabling pipelines to work with SparseML recipes.\")));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#what-are-sparsification-recipes","title":"What are Sparsification Recipes?","items":[{"url":"#guides","title":"Guides"}]}]},"parent":{"relativePath":"user-guide/recipes.mdx"},"frontmatter":{"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning","index":2000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/page-data/user-guide/sparsification/page-data.json b/page-data/user-guide/sparsification/page-data.json index a12bebf5994..efc5fb095ed 100644 --- a/page-data/user-guide/sparsification/page-data.json +++ b/page-data/user-guide/sparsification/page-data.json @@ -1 +1 @@ -{"componentChunkName":"component---src-root-jsx","path":"/user-guide/sparsification","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","title":"Sparsification","slug":"/user-guide/sparsification","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/sparsification.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Sparsification\",\n \"metaTitle\": \"What is Sparsification?\",\n \"metaDescription\": \"Description of model sparsification enabling smaller and more performant neural networks in deep learning\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"What is Sparsification?\"), mdx(\"p\", null, \"The process of sparsification is taking a trained deep learning model and removing redundant information from the over-parameterized network resulting in a faster and smaller model.\\nTechniques for sparsification include everything from inducing sparsity using pruning and quantization to distilling from a larger model to create a smaller version.\\nWhen implemented correctly, these techniques result in significantly more performant and smaller models with limited to no effect on the baseline metrics.\"), mdx(\"p\", null, \"Combining multiple sparsification algorithms will generally result in more compressed and faster models than any individual algorithm.\\nThis combination of algorithms is what is termed as \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Compound Sparsification\"), \".\\nFor example, combining both pruning and quantization is very common to create sparse-quantized models that can be up to 4 times smaller.\\nAdditionally, it is common for NLP models to combine distillation, weight pruning, layer dropping, and quantization to create much smaller models that recover close to the original baseline.\"), mdx(\"p\", null, \"See \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/blog/pruning-overview/\"\n }, \"our blog\"), \" for a detailed conceptual discussion of pruning.\"), mdx(\"p\", null, \"Ultimately the power of sparsification is only realized when the deployment environment supports it.\\nThe DeepSparse Engine is specifically engineered to utilize sparse networks for GPU-class performance on CPUs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#what-is-sparsification","title":"What is Sparsification?"}]},"parent":{"relativePath":"user-guide/sparsification.mdx"},"frontmatter":{"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic DeepSparse Platform"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Deep Sparse Platform: a suite of software components to train and deploy sparsified deep learning models performantly on your data"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse Engine"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for the DeepSparse Engine","metaDescription":"User Guides for the DeepSparse Engine"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine","metaDescription":"Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with the DeepSparse Engine","metaDescription":"Benchmarking ONNX Models with the DeepSparse Engine"}}},{"node":{"fields":{"id":"774dc69f-f7ed-5d89-ad9e-5a197f773ccc","slug":"/user-guide/deepsparse-engine/diagnotistics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for the DeepSparse Engine","metaDescription":"Supported Hardware for the DeepSparse Engine including CPU types and instruction sets"}}},{"node":{"fields":{"id":"b847430f-5d85-592e-a872-38d0d62f1caa","slug":"/use-cases/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with the DeepSparse Scheduler","metaDescription":"Inference Types with the DeepSparse Scheduler"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"66cf7a53-f660-52b7-9047-4534b3c8d69e","slug":"/use-cases/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"d88de409-7bd7-5cc2-9b72-debc0ff5e32f","slug":"/use-cases/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with the DeepSparse Server","metaDescription":"Deploying with the DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"Community Edition"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"Enterprise Edition"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Edition","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with the DeepSparse engine enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with the DeepSparse server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Deep Sparse Platform","metaDescription":"Installation instructions for the Deep Sparse Platform including DeepSparse Engine, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"9f57155d-fe3b-59cc-adbf-d20d7616035a","slug":"/get-started/try-a-model","title":"Try a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Model","metaDescription":"Try a Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e362efe3-e625-5ada-9874-f4ee1bf820a3","slug":"/get-started/try-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Text Classification Model","metaDescription":"Try a NLP Text Classification Model with the DeepSparse Engine for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"aeb35fb6-0eed-59f9-9e41-31fdc48a58e9","slug":"/get-started/try-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Try an Object Detection Model","metaDescription":"Try an Object Detection Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Installation","metaDescription":"Installation instructions for the DeepSparse Engine enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the DeepSparse product from Neural Magic"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"2bbbaa15-b7ea-5157-97c7-69c895d894b8","slug":"/get-started/try-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Try a Custom Use Case","metaDescription":"Try a Custom Use Case and Model with the DeepSparse Engine to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}}]}},"pageContext":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file +{"componentChunkName":"component---src-root-jsx","path":"/user-guide/sparsification","result":{"data":{"site":{"siteMetadata":{"title":null,"docsLocation":"https://docs.neuralmagic.com"}},"mdx":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","title":"Sparsification","slug":"/user-guide/sparsification","githubURL":"https://github.com/neuralmagic/docs/blob/main/src/content/user-guide/sparsification.mdx"},"body":"var _excluded = [\"components\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\n/* @jsxRuntime classic */\n\n/* @jsx mdx */\nvar _frontmatter = {\n \"title\": \"Sparsification\",\n \"metaTitle\": \"What is Sparsification?\",\n \"metaDescription\": \"Description of model sparsification enabling smaller and more performant neural networks in deep learning\",\n \"index\": 1000\n};\nvar layoutProps = {\n _frontmatter: _frontmatter\n};\nvar MDXLayout = \"wrapper\";\nreturn function MDXContent(_ref) {\n var components = _ref.components,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return mdx(MDXLayout, _extends({}, layoutProps, props, {\n components: components,\n mdxType: \"MDXLayout\"\n }), mdx(\"h1\", null, \"What is Sparsification?\"), mdx(\"p\", null, \"The process of sparsification is taking a trained deep learning model and removing redundant information from the over-parameterized network resulting in a faster and smaller model.\\nTechniques for sparsification include everything from inducing sparsity using pruning and quantization to distilling from a larger model to create a smaller version.\\nWhen implemented correctly, these techniques result in significantly more performant and smaller models with limited to no effect on the baseline metrics.\"), mdx(\"p\", null, \"Combining multiple sparsification algorithms will generally result in more compressed and faster models than any individual algorithm.\\nThis combination of algorithms is what is termed as \", mdx(\"strong\", {\n parentName: \"p\"\n }, \"Compound Sparsification\"), \".\\nFor example, combining both pruning and quantization is very common to create sparse-quantized models that can be up to 4 times smaller.\\nAdditionally, it is common for NLP models to combine distillation, weight pruning, layer dropping, and quantization to create much smaller models that recover close to the original baseline.\"), mdx(\"p\", null, \"See \", mdx(\"a\", {\n parentName: \"p\",\n \"href\": \"https://neuralmagic.com/blog/pruning-overview/\"\n }, \"our blog\"), \" for a detailed conceptual discussion of pruning.\"), mdx(\"p\", null, \"Ultimately the power of sparsification is only realized when the deployment environment supports it.\\nDeepSparse is specifically engineered to utilize sparse networks for GPU-class performance on CPUs.\"));\n}\n;\nMDXContent.isMDXComponent = true;","tableOfContents":{"items":[{"url":"#what-is-sparsification","title":"What is Sparsification?"}]},"parent":{"relativePath":"user-guide/sparsification.mdx"},"frontmatter":{"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning","index":1000,"skipToChild":null}},"allMdx":{"edges":[{"node":{"fields":{"id":"bfcfecba-6eb1-59e8-8379-9c6d0c7a6a46","slug":"/get-started","title":"Get Started"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Get Started","metaDescription":"Getting started with the Neural Magic Platform"}}},{"node":{"fields":{"id":"6de4cf37-632d-538c-891b-c1d714aa5ba7","slug":"/user-guide/deepsparse-engine","title":"DeepSparse"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"User Guides for DeepSparse Engine","metaDescription":"User Guides for DeepSparse Engine"}}},{"node":{"fields":{"id":"074b52b4-5a0c-5e81-8998-7935ee5884dd","slug":"/user-guide/deploying-deepsparse","title":"Deploying DeepSparse"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying DeepSparse","metaDescription":"Deploying Deepsparse"}}},{"node":{"fields":{"id":"fdeaab76-0a46-53d8-b550-27618ff594b8","slug":"/user-guide/onnx-export","title":"ONNX Export"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Exporting to the ONNX Format","metaDescription":"Exporting to the ONNX Format"}}},{"node":{"fields":{"id":"2a1b6bd9-94f8-5496-a417-57661adf7072","slug":"/user-guide/recipes","title":"Recipes"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"What are Sparsification Recipes?","metaDescription":"Description of sparsification recipes enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"220abd27-24cf-5408-9402-3e7b0591a7ec","slug":"/details","title":"Details"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":true,"metaTitle":"Details","metaDescription":"Details"}}},{"node":{"fields":{"id":"0a2bc29c-0df2-59e5-a94c-bce091e6dc6d","slug":"/use-cases","title":"Use Cases"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Use Cases","metaDescription":"Use Cases for the Neural Magic Platform"}}},{"node":{"fields":{"id":"2f8c5030-68ad-5e55-9afd-f536f6dba76e","slug":"/user-guide/recipes/creating","title":"Creating"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating Sparsification Recipes","metaDescription":"Creating Sparsification Recipes"}}},{"node":{"fields":{"id":"5ca8c395-cc4e-599a-a34f-3a3324a476bd","slug":"/user-guide/recipes/enabling","title":"Enabling Pipelines"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Enabling Pipelines to work with SparseML Recipes","metaDescription":"Enabling Pipelines to work with SparseML Recipess"}}},{"node":{"fields":{"id":"09748e8f-d660-55d9-b9aa-88936b02bddb","slug":"/user-guide/deploying-deepsparse/aws-lambda","title":"AWS Lambda"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on AWS Lambda","metaDescription":"Deploy DeepSparse in a Serverless framework with AWS Lambda"}}},{"node":{"fields":{"id":"db325d26-0f07-520e-8061-c2e7751c3140","slug":"/user-guide/deploying-deepsparse/aws-sagemaker","title":"AWS SageMaker"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse on AWS SageMaker","metaDescription":"Deploying with DeepSparse on AWS SageMaker for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"c1d1d524-e761-5294-a8e7-e21f3164f48a","slug":"/","title":"Home"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Neural Magic Documentation","metaDescription":"Documentation for the Neural Magic Platform"}}},{"node":{"fields":{"id":"36f2d780-8139-53d0-b65e-32f4f6bc5669","slug":"/user-guide/deepsparse-engine/benchmarking","title":"Benchmarking"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Benchmarking ONNX Models with DeepSparse","metaDescription":"Benchmarking ONNX Models with DeepSparse"}}},{"node":{"fields":{"id":"3bf0f57a-a959-54ad-a97a-8422a60614a5","slug":"/user-guide/deploying-deepsparse/deepsparse-server","title":"DeepSparse Server"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploying with DeepSparse Server","metaDescription":"Deploying with DeepSparse Server for faster and cheaper model deployments behind an HTTP API"}}},{"node":{"fields":{"id":"9a8b7c59-8b98-55a2-bc6e-eb337124b87a","slug":"/user-guide/deepsparse-engine/diagnostics-debugging","title":"Diagnostics/Debugging"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Logging Guidance for Diagnostics and Debugging","metaDescription":"Logging Guidance for Diagnostics and Debugging"}}},{"node":{"fields":{"id":"17dc434c-a12b-5cc2-b05b-535817f6c52e","slug":"/user-guide/deepsparse-engine/hardware-support","title":"Supported Hardware"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Supported Hardware for DeepSparse","metaDescription":"Supported Hardware for DeepSparse including CPU types and instruction sets"}}},{"node":{"fields":{"id":"e50b48c5-9aa5-5bcc-a414-bbd93bcf9529","slug":"/user-guide/deepsparse-engine/logging","title":"Logging"},"frontmatter":{"index":6000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Logging","metaDescription":"System and Data Logging with DeepSparse"}}},{"node":{"fields":{"id":"e7984872-dbcf-56f5-812a-79d6a6704eed","slug":"/user-guide/deploying-deepsparse/google-cloud-run","title":"Google Cloud Run"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Using DeepSparse on Google Cloud Run","metaDescription":"Deploy DeepSparse in a Serverless framework with Google Cloud Run"}}},{"node":{"fields":{"id":"9c0d068e-d7b6-5bb2-bc60-e00c2f1cbb9a","slug":"/user-guide/deepsparse-engine/scheduler","title":"Inference Types"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Inference Types with DeepSparse Scheduler","metaDescription":"Inference Types with DeepSparse Scheduler"}}},{"node":{"fields":{"id":"ee9f8c1f-d776-5134-89e6-b60f31e11b65","slug":"/products","title":"Products"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":true,"metaTitle":"Products","metaDescription":"Products"}}},{"node":{"fields":{"id":"4466cba0-549b-59cc-a7b9-7551a28e443b","slug":"/user-guide/deepsparse-engine/numactl-utility","title":"numactl Utility"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Using the numactl Utility to Control Resource Utilization with DeepSparse","metaDescription":"Using the numactl Utility to Control Resource Utilization with DeepSparse"}}},{"node":{"fields":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","slug":"/user-guide/sparsification","title":"Sparsification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"What is Sparsification?","metaDescription":"Description of model sparsification enabling smaller and more performant neural networks in deep learning"}}},{"node":{"fields":{"id":"baad04ad-efd7-5e85-8645-6455fce34324","slug":"/use-cases/image-classification","title":"Image Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":true,"metaTitle":"Image Classification","metaDescription":"Image Classification with PyTorch Torchvision"}}},{"node":{"fields":{"id":"d1d7a8f3-9061-539a-aff8-d3957da959c6","slug":"/use-cases/object-detection/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Object Detection Deployments with DeepSparse","metaDescription":"Object Detection deployments with Ultralytics YOLOv5 and DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3f751c96-1e87-5f4a-a0cb-d277724c2a0b","slug":"/use-cases/object-detection/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML","metaDescription":"Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"bd363f12-8b17-5aac-af39-0ae0e7b0b829","slug":"/use-cases/natural-language-processing/question-answering","title":"Question Answering"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Question Answering","metaDescription":"Question Answering with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"ae7d3726-718a-5be3-91a4-2559a2445fc4","slug":"/use-cases/natural-language-processing/text-classification","title":"Text Classification"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Text Classification","metaDescription":"Text Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"c3c4bea9-f7cd-5044-9f34-8e33c8d2b36d","slug":"/use-cases/natural-language-processing/token-classification","title":"Token Classification"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Token Classification","metaDescription":"Token Classification with Hugging Face Transformers and SparseML to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"0d031520-ee95-58db-bdb3-86689d6a0941","slug":"/use-cases/image-classification/deploying","title":"Deploying"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Image Classification Deployments with DeepSparse","metaDescription":"Image Classification deployments with DeepSparse to create cheaper and more performant models"}}},{"node":{"fields":{"id":"3b06a681-3381-5cdc-9dad-827cdc6f60ac","slug":"/use-cases/deploying-deepsparse/docker","title":"Docker"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Using/Creating a DeepSparse Docker Image","metaDescription":"Using/Creating a DeepSparse Docker Image for repeatable build processes"}}},{"node":{"fields":{"id":"ecaebb25-0fd8-572a-9d98-52302d0a0e4e","slug":"/use-cases/image-classification/sparsifying","title":"Sparsifying"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying Image Classification Models with SparseML","metaDescription":"Sparsifying Image Classification models with SparseML to create cheaper and more performant models"}}},{"node":{"fields":{"id":"4ba00f44-34e5-5677-a8c6-862b44d48e7f","slug":"/products/deepsparse","title":"DeepSparse"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b7365467-d2b2-5dad-be10-a3aaa773d3a3","slug":"/use-cases/natural-language-processing","title":"Natural Language Processing"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":true,"metaTitle":"Natural Language Processing","metaDescription":"NLP with HuggingFace Transformers"}}},{"node":{"fields":{"id":"76657780-4f8a-5f37-8f3c-1c6c04637503","slug":"/products/sparseml","title":"SparseML"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"1ef7c7c8-073e-5abf-b57a-af03628c0714","slug":"/use-cases/object-detection","title":"Object Detection"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"Object Detection","metaDescription":"Object Detection with Ultralytics YOLOv5"}}},{"node":{"fields":{"id":"08d07abb-4c37-5f58-8bdd-277facdeaf05","slug":"/products/sparsezoo/cli","title":"CLI"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"aafbc5b1-5291-5291-ab86-da09c479a4c1","slug":"/products/sparsezoo/python-api","title":"Python API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseZoo enabling use of SOTA sparsified models and recipes"}}},{"node":{"fields":{"id":"97cb8313-bc03-5a24-bf92-015086fc9071","slug":"/products/sparsezoo/models","title":"Models"},"frontmatter":{"index":1000,"targetURL":"https://sparsezoo.neuralmagic.com/","skipToChild":null,"metaTitle":"Models","metaDescription":"Models"}}},{"node":{"fields":{"id":"233b31f0-deac-5b52-9101-caf3e3474595","slug":"/products/deepsparse/community","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"be1fa4d5-bae3-5c19-9da5-f56a08f2fa40","slug":"/products/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo","metaDescription":"Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes"}}},{"node":{"fields":{"id":"d6bf031b-89e2-5374-9997-1676f340f25a","slug":"/products/deepsparse/enterprise/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"018cd1d6-6542-547d-ac3b-2743f179ac04","slug":"/products/sparseml/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Python API","metaDescription":"Documentation for the Python APIs available with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"5e0531ff-a237-587a-a318-72f000810bb0","slug":"/products/deepsparse/enterprise/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"b6a850d0-afc3-5418-ae82-146d2cb68706","slug":"/products/sparseml/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML CLI","metaDescription":"Documentation for the CLI commands installed with SparseML enabling SOTA model sparsification"}}},{"node":{"fields":{"id":"b386abe1-47d1-5b57-aa77-a3f73f3ebe21","slug":"/products/deepsparse/community/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"d363f68d-8b46-5da1-a1ef-fc14776d0a03","slug":"/use-cases/natural-language-processing/deploying","title":"Deploying"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"NLP Deployments with DeepSparse","metaDescription":"NLP deployments with Hugging Face Transformers and DeepSparse to create cheaper and more performant NLP models"}}},{"node":{"fields":{"id":"4491ba6b-e373-50e3-a8b5-e8e173ecba81","slug":"/index/deploy-workflow","title":"Deploy on CPUs"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy on CPUs","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"27a0b7a5-09e0-56ab-9ee5-68f45d8795fd","slug":"/index/optimize-workflow","title":"Optimize for Inference"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Optimize for Inference","metaDescription":"Overview of deployment capabilities in the Neural Magic Platform"}}},{"node":{"fields":{"id":"665dac23-0ae5-5037-a151-d359bad8f8c2","slug":"/get-started/deploy-a-model","title":"Deploy a Model"},"frontmatter":{"index":5000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Model","metaDescription":"Deploy a model with DeepSparse Server for easy and performant ML deployments"}}},{"node":{"fields":{"id":"d79d91ee-f596-5f3a-aafd-02c85a389909","slug":"/products/deepsparse/enterprise","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise","metaDescription":"Sparsity-aware neural network inference engine for GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"cc2c9b73-3a5b-5764-ad54-38c919cb3e78","slug":"/get-started/install","title":"Installation"},"frontmatter":{"index":0,"targetURL":null,"skipToChild":null,"metaTitle":"Install Neural Magic Platform","metaDescription":"Installation instructions for the Neural Magic Platform including DeepSparse, SparseML, SparseZoo"}}},{"node":{"fields":{"id":"fb19b2bb-688f-5f4e-98e0-d1dbf478a015","slug":"/get-started/transfer-a-sparsified-model","title":"Transfer a Sparsified Model"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model","metaDescription":"Transfer a Sparsified Model to your dataset, enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"6cc87df5-f32b-5eff-9f5e-923f64cc150f","slug":"/user-guide","title":"User Guide"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":true,"metaTitle":"User Guide","metaDescription":"User Guide"}}},{"node":{"fields":{"id":"00c56759-713b-5731-92b9-027dab853257","slug":"/get-started/use-a-model/custom-use-case","title":"Custom Use Case"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Custom Use Case","metaDescription":"Use a Custom Use Case and Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5ba330af-8819-52cd-8818-2374113da636","slug":"/get-started/use-a-model","title":"Use a Model"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Model","metaDescription":"Use a Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"c32bcbda-4c9f-5b2a-b18d-5083b0003aef","slug":"/get-started/transfer-a-sparsified-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Text Classification","metaDescription":"Transfer a Sparsified NLP Model to your sentiment analysis dataset enabling performant deep learning deployments with limited training"}}},{"node":{"fields":{"id":"478d6817-c021-5181-922d-2689a65470c5","slug":"/index/quick-tour","title":"Quick Tour"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Quick Tour","metaDescription":"Quick tour of the available functionality"}}},{"node":{"fields":{"id":"3bd4ca0d-2d04-5d9f-9037-06f9ae7dfb73","slug":"/get-started/transfer-a-sparsified-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Transfer a Sparsified Model for Object Detection","metaDescription":"Transfer a Sparsified Object Detection Model to your dataset enabling performant deep learning deployments in a faster amount of time"}}},{"node":{"fields":{"id":"5cebfec6-69f9-59bb-9a47-58bd80ce5b29","slug":"/get-started/install/deepsparse","title":"DeepSparse Community"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Community Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"8323781e-a7b4-5bb5-a453-86e2c472d6cf","slug":"/get-started/install/deepsparse-ent","title":"DeepSparse Enterprise"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Enterprise Installation","metaDescription":"Installation instructions for DeepSparse enabling performant neural network deployments"}}},{"node":{"fields":{"id":"4ac6dd90-ac18-5c3c-8c85-06021527df5e","slug":"/get-started/use-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Use a Text Classification Model","metaDescription":"Use a NLP Text Classification Model with DeepSparse for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"8efaf662-8889-5bc3-bcae-9868aaa8aa53","slug":"/get-started/sparsify-a-model/supported-integrations","title":"Supported Integrations"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsifying a Model for SparseML Integrations","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"e3c4460c-c09f-5838-8047-fea6cf8f0511","slug":"/products/deepsparse/enterprise/cli","title":"CLI"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse CLI","metaDescription":"Documentation for the CLI commands installed with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"02f4ebab-32cf-58e1-a39b-db269f740d8b","slug":"/get-started/deploy-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy an Object Detection Model","metaDescription":"Deploy an object detection model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"0d2bd4a5-a7f1-508a-8652-91e3eed40ceb","slug":"/products/deepsparse/community/python-api","title":"Python API"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse Python API","metaDescription":"Documentation for the Python APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"f92e631d-dc67-592a-b7c2-dd4bb5e7a3fe","slug":"/products/deepsparse/community/cpp-api","title":"C++ API"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"DeepSparse C++ API","metaDescription":"Documentation for the C++ APIs available with DeepSparse enabling GPU-class performance on CPUs"}}},{"node":{"fields":{"id":"a597113f-8c9b-5620-baaa-95555edb534c","slug":"/details/faqs","title":"FAQs"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"FAQs","metaDescription":"FAQs for the Neural Magic Platform"}}},{"node":{"fields":{"id":"6662f291-f43f-5616-8f60-dea883911f57","slug":"/get-started/sparsify-a-model/custom-integrations","title":"Custom Integrations"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Creating a Custom Integration for Sparsifying Models","metaDescription":"Creating a Custom Integration for Sparsifying Models with SparseML for smaller, faster, and cheaper model inferences in deployment"}}},{"node":{"fields":{"id":"f2d385fc-cb79-5c11-8873-f4e6f6d6da23","slug":"/details/glossary","title":"Glossary"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"Glossary","metaDescription":"Glossary for the Neural Magic product"}}},{"node":{"fields":{"id":"dc9f9ab1-1fb3-57b4-910a-fa3200519b0d","slug":"/get-started/install/sparseml","title":"SparseML"},"frontmatter":{"index":3000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseML Installation","metaDescription":"Installation instructions for SparseML neural network optimization, training, and sparsification"}}},{"node":{"fields":{"id":"ac411c38-91fa-56bf-8dfd-c00cab6602ad","slug":"/get-started/install/sparsezoo","title":"SparseZoo"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"SparseZoo Installation","metaDescription":"Installation instructions for the SparseZoo sparse model repository"}}},{"node":{"fields":{"id":"e5f9763e-9c0a-5d84-9f65-550685441793","slug":"/details/research-papers","title":"Research Papers"},"frontmatter":{"index":1000,"targetURL":"https://neuralmagic.com/resources/technical-papers/","skipToChild":null,"metaTitle":"Research Papers","metaDescription":"Research Papers"}}},{"node":{"fields":{"id":"7d12ac36-8c45-565c-9b28-6472fdeb4a99","slug":"/get-started/deploy-a-model/nlp-text-classification","title":"NLP Text Classification"},"frontmatter":{"index":1000,"targetURL":null,"skipToChild":null,"metaTitle":"Deploy a Text Classification Model","metaDescription":"Deploy a text classification model with DeepSparse Server for easier, faster, and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"5689a5f7-7564-5b91-b21d-0f6aed1218a9","slug":"/get-started/use-a-model/cv-object-detection","title":"CV Object Detection"},"frontmatter":{"index":2000,"targetURL":null,"skipToChild":null,"metaTitle":"Use an Object Detection Model","metaDescription":"Use an Object Detection Model with DeepSparse to deploy for faster and cheaper inference on CPUs"}}},{"node":{"fields":{"id":"43a5dd03-4ffe-5c02-ac47-7ee94de63602","slug":"/get-started/sparsify-a-model","title":"Sparsify a Model"},"frontmatter":{"index":4000,"targetURL":null,"skipToChild":null,"metaTitle":"Sparsify a Model","metaDescription":"Sparsify a model with SparseML and recipes for smaller, faster, and cheaper model inferences in deployment"}}}]}},"pageContext":{"id":"cb110562-39fa-51de-bde9-4c8a848f0223","pageType":"docs"}},"staticQueryHashes":[]} \ No newline at end of file diff --git a/products/deepsparse/community/cli/index.html b/products/deepsparse/community/cli/index.html index cab20c8c75f..f2c5dbf6688 100644 --- a/products/deepsparse/community/cli/index.html +++ b/products/deepsparse/community/cli/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsDeepSparse CLI
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
Community Edition
CLI

CLI

Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse CLIs.

DeepSparse Community Edition
DeepSparse Python API
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
DeepSparse Community
CLI

CLI

Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse CLIs.

DeepSparse Community
DeepSparse Python API
\ No newline at end of file diff --git a/products/deepsparse/community/cpp-api/index.html b/products/deepsparse/community/cpp-api/index.html index 8d81480f638..9b9a4a101ab 100644 --- a/products/deepsparse/community/cpp-api/index.html +++ b/products/deepsparse/community/cpp-api/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsDeepSparse C++ API
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
Community Edition
C++ API

C++ API

Stay tuned for our next release adding documentation detailed exploration of the DeepSparse C++ APIs.

DeepSparse Python API
DeepSparse Enterprise Edition
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
DeepSparse Community
C++ API

C++ API

Stay tuned for our next release adding documentation detailed exploration of the DeepSparse C++ APIs.

DeepSparse Python API
DeepSparse Enterprise
\ No newline at end of file diff --git a/products/deepsparse/community/index.html b/products/deepsparse/community/index.html index 2f8372855f6..11f52b2ae3b 100644 --- a/products/deepsparse/community/index.html +++ b/products/deepsparse/community/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsDeepSparse Community Edition
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
Community Edition
-

+
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
DeepSparse Community
+

tool icon -   DeepSparse Community Edition +   DeepSparse Community

-

Sparsity-aware neural network inference engine for GPU-class performance on CPUs

+

An inference runtime offering GPU-class performance on CPUs and APIs to integrate ML into your application

A CPU runtime that takes advantage of sparsity within neural networks to reduce compute. Read more about sparsification Read more about sparsification here.

Neural Magic's DeepSparse Engine is able to integrate into popular deep learning libraries (e.g., Hugging Face, Ultralytics) allowing you to leverage DeepSparse for loading and deploying sparse models with ONNX. +

DeepSparse is an inference runtime that offers GPU-class performance on CPUs by utilizing sparsity. DeepSparse accepts models in the ONNX format, giving you flexibility to serve your model in a framework-agnostic manner. +DeepSparse Community Edition is open-source and free for evaluation, research, and non-production use with our Engine Community License. (Alternatively, the Enterprise Edition requires a Trial License or can be fully licensed for production, commercial applications.)

Neural Magic's DeepSparse is able to integrate into popular deep learning libraries (e.g., Hugging Face, Ultralytics) allowing you to leverage DeepSparse for loading and deploying sparse models with ONNX. ONNX gives the flexibility to serve your model in a framework-agnostic environment. -Support includes PyTorch, TensorFlow, Keras, and many other frameworks.

The DeepSparse Engine is available in two editions:

  1. The Community Edition is open-source and free for evaluation, research, and non-production use with our Engine Community License.
  2. The Enterprise Edition requires a Trial License or can be fully licensed for production, commercial applications.

Features

🧰 Hardware Support and System Requirements

Review CPU Hardware Support for Various Architectures to understand system requirements. -The DeepSparse Engine works natively on Linux; Mac and Windows require running Linux in a Docker or virtual machine; it will not run natively on those operating systems.

The DeepSparse Engine is tested on Python 3.7-3.10, ONNX 1.5.0-1.12.0, ONNX opset version 11+, and manylinux compliant. -Using a virtual environment is highly recommended.

Installation

Install the DeepSparse Community Edition as follows:

pip install deepsparse

See the DeepSparse Community Installation Page for further installation options.

To trial or inquire about licensing for DeepSparse Enterprise Edition, see the DeepSparse Enterprise documentation.

Features

🔌 DeepSparse Server

The DeepSparse Server allows you to serve models and pipelines from the terminal. The server runs on top of the popular FastAPI web framework and Uvicorn web server. Install the server using the following command:

pip install deepsparse[server]

Single Model

Once installed, the following example CLI command is available for running inference with a single BERT model:

1deepsparse.server \
2 task question_answering \
3 --model_path "zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni"

To look up arguments run: deepsparse.server --help.

Multiple Models

To serve multiple models in your deployment you can easily build a config.yaml. In the example below, we define two BERT models in our configuration for the question answering task:

1num_cores: 1
2num_workers: 1
3endpoints:
4 - task: question_answering
5 route: /predict/question_answering/base
6 model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none
7 batch_size: 1
8 - task: question_answering
9 route: /predict/question_answering/pruned_quant
10 model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni
11 batch_size: 1

Finally, after your config.yaml file is built, run the server with the config file path as an argument:

deepsparse.server config config.yaml

Getting Started with the DeepSparse Server for more info.

📜 DeepSparse Benchmark

The benchmark tool is available on your CLI to run expressive model benchmarks on the DeepSparse Engine with minimal parameters.

Run deepsparse.benchmark -h to look up arguments:

1deepsparse.benchmark [-h] [-b BATCH_SIZE] [-shapes INPUT_SHAPES]
2 [-ncores NUM_CORES] [-s {async,sync}] [-t TIME]
3 [-nstreams NUM_STREAMS] [-pin {none,core,numa}]
4 [-q] [-x EXPORT_PATH]
5 model_path

Getting Started with CLI Benchmarking includes examples of select inference scenarios:

  • Synchronous (Single-stream) Scenario
  • Asynchronous (Multi-stream) Scenario

👩‍💻 NLP Inference Example

1from deepsparse import Pipeline
2 +Support includes PyTorch, TensorFlow, Keras, and many other frameworks.

DeepSparse is available in two editions:

  1. DeepSparse Community is open-source and free for evaluation, research, and non-production use with our Engine Community License.
  2. DeepSparse Enterprise requires a Trial License or can be fully licensed for production, commercial applications.

Features

Hardware Support and System Requirements

Review CPU Hardware Support for Various Architectures to understand system requirements. +DeepSparse works natively on Linux. Mac and Windows require running Linux in a Docker or virtual machine; it will not run natively on those operating systems.

DeepSparse is tested on Python 3.7-3.10, ONNX 1.5.0-1.12.0, ONNX opset version 11+, and manylinux compliant systems. +Using a virtual environment is highly recommended.

Installation

Install DeepSparse Community with pip:

pip install deepsparse

See the DeepSparse Community Installation page for further installation options.

DeepSparse Community Features

DeepSparse Server

The DeepSparse Server allows you to serve models and pipelines from the terminal. The server runs on top of the popular FastAPI web framework and Uvicorn web server.

Install the server with pip:

pip install deepsparse[server]

Single Model

Once installed, the following example CLI command is available for running inference with a single BERT model:

1deepsparse.server \
2 task question_answering \
3 --model_path "zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni"

To look up arguments, run deepsparse.server --help.

Multiple Models

To serve multiple models in your deployment, you can easily build a config.yaml. In the example below, we define two BERT models in our configuration for the question answering task:

1num_cores: 1
2num_workers: 1
3endpoints:
4 - task: question_answering
5 route: /predict/question_answering/base
6 model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none
7 batch_size: 1
8 - task: question_answering
9 route: /predict/question_answering/pruned_quant
10 model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni
11 batch_size: 1

Finally, after your config.yaml file is built, run the server with the configuration file path as an argument:

deepsparse.server config config.yaml

See Getting Started with DeepSparse Server for more info.

DeepSparse Benchmark

The benchmark tool is available on your CLI to run expressive model benchmarks with DeepSparse.

Run deepsparse.benchmark -h to look up arguments:

1deepsparse.benchmark [-h] [-b BATCH_SIZE] [-shapes INPUT_SHAPES]
2 [-ncores NUM_CORES] [-s {async,sync}] [-t TIME]
3 [-nstreams NUM_STREAMS] [-pin {none,core,numa}]
4 [-q] [-x EXPORT_PATH]
5 model_path

Getting Started with CLI Benchmarking includes examples of select inference scenarios:

  • Synchronous (Single-stream) Scenario
  • Asynchronous (Multi-stream) Scenario

NLP and Computer Vision Tasks Supported

An NLP inference example is:

1from deepsparse import Pipeline
2
3# SparseZoo model stub or path to ONNX file
4model_path = "zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni"
5
6qa_pipeline = Pipeline.create(
7 task="question-answering",
8 model_path=model_path,
9)
10 -
11my_name = qa_pipeline(question="What's my name?", context="My name is Snorlax")

NLP Tutorials:

Tasks Supported:

🦉 SparseZoo ONNX vs. Custom ONNX Models

DeepSparse can accept ONNX models from two sources:

  • SparseZoo ONNX: our open-source collection of sparse models available for download. SparseZoo hosts inference-optimized models, trained on repeatable sparsification recipes using state-of-the-art techniques from SparseML.

  • Custom ONNX: your own ONNX model, can be dense or sparse. Plug in your model to compare performance with other solutions.

>wget https://github.com/onnx/models/raw/main/vision/classification/mobilenet/model/mobilenetv2-7.onnx
1Saving to: ‘mobilenetv2-7.onnx’

Custom ONNX Benchmark example:

1from deepsparse import compile_model
2from deepsparse.utils import generate_random_inputs
3onnx_filepath = "mobilenetv2-7.onnx"
4batch_size = 16
5 +
11my_name = qa_pipeline(question="What's my name?", context="My name is Snorlax")

Refer also to Using Pipelines.

Supported NLP tasks include:

SparseZoo ONNX vs. Custom ONNX Models

DeepSparse can accept ONNX models from two sources:

  • SparseZoo ONNX: SparseZoo hosts open-source inference-optimized models, trained on repeatable sparsification recipes using state-of-the-art techniques from SparseML. The ONNX representation of each model is available for download.

  • Custom ONNX: DeepSparse allows you to use your own model in ONNX format. It can be dense or sparse. Plug in your model to compare performance with other solutions.

>wget https://github.com/onnx/models/raw/main/vision/classification/mobilenet/model/mobilenetv2-7.onnx
1Saving to: ‘mobilenetv2-7.onnx’

Here is a custom ONNX benchmark example:

1from deepsparse import compile_model
2from deepsparse.utils import generate_random_inputs
3onnx_filepath = "mobilenetv2-7.onnx"
4batch_size = 16
5
6# Generate random sample input
7inputs = generate_random_inputs(onnx_filepath, batch_size)
8 -
9# Compile and run
10engine = compile_model(onnx_filepath, batch_size)
11outputs = engine.run(inputs)

The GitHub repository includes package APIs along with examples to quickly get started benchmarking and inferencing sparse models.

Scheduling Single-Stream, Multi-Stream, and Elastic Inference

The DeepSparse Engine offers up to three types of inferences based on your use case. Read more details here: Inference Types.

1 ⚡ Single-stream scheduling: the latency/synchronous scenario, requests execute serially. [default]

single stream diagram

Use Case: It's highly optimized for minimum per-request latency, using all of the system's resources provided to it on every request it gets.

2 ⚡ Multi-stream scheduling: the throughput/asynchronous scenario, requests execute in parallel.

multi stream diagram

PRO TIP: The most common use cases for the multi-stream scheduler are where parallelism is low with respect to core count, and where requests need to be made asynchronously without time to batch them.

3 ⚡ Elastic scheduling: requests execute in parallel, but not multiplexed on individual NUMA nodes.

Use Case: A workload that might benefit from the elastic scheduler is one in which multiple requests need to be handled simultaneously, but where performance is hindered when those requests have to share an L3 cache.

Resources

Libraries

Versions

Info

Community

Be Part of the Future... And the Future is Sparse!

Contribute with code, examples, integrations, and documentation as well as bug reports and feature requests! Learn how here.

For user help or questions about DeepSparse, sign up or log in to our Deep Sparse Community Slack. We are growing the community member by member and happy to see you there. Bugs, feature requests, or additional questions can also be posted to our GitHub Issue Queue. You can get the latest news, webinar and event invites, research papers, and other ML Performance tidbits by subscribing to the Neural Magic community.

For more general questions about Neural Magic, complete this form.

License

The Community Edition of the project's binary containing the DeepSparse Engine is licensed under the Neural Magic Engine License. -Example files and scripts included in this repository are licensed under the Apache License Version 2.0 as noted.

The Enterprise Edition requires a Trial License or can be fully licensed for production, commercial applications.

Cite

Find this project useful in your research or other communications? Please consider citing:

1@InProceedings{
2 pmlr-v119-kurtz20a,
3 title = {Inducing and Exploiting Activation Sparsity for Fast Inference on Deep Neural Networks},
4 author = {Kurtz, Mark and Kopinsky, Justin and Gelashvili, Rati and Matveev, Alexander and Carr, John and Goin, Michael and Leiserson, William and Moore, Sage and Nell, Bill and Shavit, Nir and Alistarh, Dan},
5 booktitle = {Proceedings of the 37th International Conference on Machine Learning},
6 pages = {5533--5543},
7 year = {2020},
8 editor = {Hal Daumé III and Aarti Singh},
9 volume = {119},
10 series = {Proceedings of Machine Learning Research},
11 address = {Virtual},
12 month = {13--18 Jul},
13 publisher = {PMLR},
14 pdf = {http://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf},
15 url = {http://proceedings.mlr.press/v119/kurtz20a.html}
16}
17 +
9# Compile and run
10engine = compile_model(onnx_filepath, batch_size)
11outputs = engine.run(inputs)

The GitHub repository includes package APIs along with examples to quickly get started benchmarking and inferencing sparse models.

Scheduling Single-Stream, Multi-Stream, and Elastic Inference

DeepSparse Engine offers three inference modes based on your use case. See Inference Modes.

  1. Single-stream scheduling (the default) is the latency/synchronous scenario. Requests execute serially.

    single stream diagram +Use Case: It's highly optimized for minimum per-request latency, using all of the system's resources provided to it on every request it gets.
  2. Multi-stream scheduling is the throughput/asynchronous scenario. Requests execute in parallel.

    multi stream diagram +Use Case: The most common use cases for the multi-stream scheduler are those in which parallelism is low with respect to core count, and requests need to be made asynchronously without time to batch them.
  3. Elastic scheduling requests execute in parallel, but not multiplexed on individual NUMA nodes. +Use Case: A workload that might benefit from the elastic scheduler is one in which multiple requests need to be handled simultaneously, but where performance is hindered when those requests have to share an L3 cache.

Resources

Libraries

Versions

Info

Community

Be Part of the Future... And the Future is Sparse!

Contribute with code, examples, integrations, and documentation as well as bug reports and feature requests! Learn how here.

For user help or questions about DeepSparse, sign up or log into our Neural Magic Community Slack. We are growing the community member by member and happy to see you there. Bugs, feature requests, or additional questions can also be posted to our GitHub Issue Queue. You can get the latest news, webinar and event invites, research papers, and other ML performance tidbits by subscribing to the Neural Magic community.

For more general questions about Neural Magic, complete this form.

License

DeepSparse Community is licensed under the Neural Magic DeepSparse Community License. +Some source code, example files, and scripts included in the DeepSparse GitHub repository or directory are licensed under the Apache License Version 2.0 as noted.

DeepSparse Enterprise requires a Trial License or can be fully licensed for production, commercial applications.

Cite

Find this project useful in your research or other communications? Please consider citing:

1@InProceedings{
2 pmlr-v119-kurtz20a,
3 title = {Inducing and Exploiting Activation Sparsity for Fast Inference on Deep Neural Networks},
4 author = {Kurtz, Mark and Kopinsky, Justin and Gelashvili, Rati and Matveev, Alexander and Carr, John and Goin, Michael and Leiserson, William and Moore, Sage and Nell, Bill and Shavit, Nir and Alistarh, Dan},
5 booktitle = {Proceedings of the 37th International Conference on Machine Learning},
6 pages = {5533--5543},
7 year = {2020},
8 editor = {Hal Daumé III and Aarti Singh},
9 volume = {119},
10 series = {Proceedings of Machine Learning Research},
11 address = {Virtual},
12 month = {13--18 Jul},
13 publisher = {PMLR},
14 pdf = {http://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf},
15 url = {http://proceedings.mlr.press/v119/kurtz20a.html}
16}
17
18@article{DBLP:journals/corr/abs-2111-13445,
19 author = {Eugenia Iofinova and
20 Alexandra Peste and
21 Mark Kurtz and
22 Dan Alistarh},
23 title = {How Well Do Sparse Imagenet Models Transfer?},
24 journal = {CoRR},
25 volume = {abs/2111.13445},
26 year = {2021},
27 url = {https://arxiv.org/abs/2111.13445},
28 eprinttype = {arXiv},
29 eprint = {2111.13445},
30 timestamp = {Wed, 01 Dec 2021 15:16:43 +0100},
31 biburl = {https://dblp.org/rec/journals/corr/abs-2111-13445.bib},
32 bibsource = {dblp computer science bibliography, https://dblp.org}
33}
DeepSparse
DeepSparse CLI
\ No newline at end of file diff --git a/products/deepsparse/community/python-api/index.html b/products/deepsparse/community/python-api/index.html index 05d185edd22..5fbcf7cfdc2 100644 --- a/products/deepsparse/community/python-api/index.html +++ b/products/deepsparse/community/python-api/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsDeepSparse Python API
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
Community Edition
Python API

Python API

Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse Python APIs.

DeepSparse CLI
DeepSparse C++ API
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
DeepSparse Community
Python API

Python API

Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse Python APIs.

DeepSparse CLI
DeepSparse C++ API
\ No newline at end of file diff --git a/products/deepsparse/enterprise/cli/index.html b/products/deepsparse/enterprise/cli/index.html index 5dee4aa632c..8098a73b5d8 100644 --- a/products/deepsparse/enterprise/cli/index.html +++ b/products/deepsparse/enterprise/cli/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsDeepSparse CLI
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
Enterprise Edition
CLI

CLI

Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse CLIs.

DeepSparse Enterprise Edition
DeepSparse Python API
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
DeepSparse Enterprise
CLI

CLI

Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse CLIs.

DeepSparse Enterprise
DeepSparse Python API
\ No newline at end of file diff --git a/products/deepsparse/enterprise/cpp-api/index.html b/products/deepsparse/enterprise/cpp-api/index.html index e5c351d148a..07c18620445 100644 --- a/products/deepsparse/enterprise/cpp-api/index.html +++ b/products/deepsparse/enterprise/cpp-api/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsDeepSparse C++ API
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
Enterprise Edition
C++ API

C++ API

Stay tuned for our next release adding documentation detailed exploration of the DeepSparse C++ APIs.

DeepSparse Python API
SparseML
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
DeepSparse Enterprise
C++ API

C++ API

Stay tuned for our next release adding documentation detailed exploration of the DeepSparse C++ APIs.

DeepSparse Python API
SparseML
\ No newline at end of file diff --git a/products/deepsparse/enterprise/index.html b/products/deepsparse/enterprise/index.html index f374219fe71..af0f2f6d9b7 100644 --- a/products/deepsparse/enterprise/index.html +++ b/products/deepsparse/enterprise/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsDeepSparse Enterprise Edition
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
Enterprise Edition
-

+
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
DeepSparse Enterprise
+

tool icon -   DeepSparse Enterprise Edition +   DeepSparse Enterprise

-

Sparsity-aware neural network inference engine for GPU-class performance on CPUs

+

An inference runtime offering GPU-class performance on CPUs and APIs to integrate ML into your application

A CPU runtime that takes advantage of sparsity within neural networks to reduce compute. Read more about sparsification.

Neural Magic's DeepSparse Engine is able to integrate into popular deep learning libraries (e.g., Hugging Face, Ultralytics) allowing you to leverage DeepSparse for loading and deploying sparse models with ONNX. +

DeepSparse is an inference runtime that offers GPU-class performance on CPUs by utilizing sparsity. DeepSparse accepts models in the ONNX format, giving you flexibility to serve your model in a framework-agnostic manner. +DeepSparse Enterprise requires a Trial License or can be fully licensed for production, commercial applications. (Alternatively, the The Community Edition is open-source and free for evaluation, research, and non-production.)

Neural Magic's DeepSparse is able to integrate into popular deep learning libraries (e.g., Hugging Face, Ultralytics) allowing you to leverage DeepSparse for loading and deploying sparse models with ONNX. ONNX gives the flexibility to serve your model in a framework-agnostic environment. -Support includes PyTorch, TensorFlow, Keras, and many other frameworks.

The DeepSparse Engine is available in two editions:

  1. The Community Edition is open-source and free for evaluation, research, and non-production use with our Engine Community License.
  2. The Enterprise Edition requires a Trial License or can be fully licensed for production, commercial applications.

Features

🧰 Hardware Support and System Requirements

Review Supported Hardware for the DeepSparse Engine to understand system requirements. -The DeepSparse Engine works natively on Linux; Mac and Windows require running Linux in a Docker or virtual machine; it will not run natively on those operating systems.

The DeepSparse Engine is tested on Python 3.7-3.10, ONNX 1.5.0-1.12.0, ONNX opset version 11+, and manylinux compliant. -Using a virtual environment is highly recommended.

Installation

Install the Enterprise Edition as follows:

pip install deepsparse-ent

See the DeepSparse Enterprise Installation Page for further installation options.

Getting a License

The DeepSparse Enterprise Edition requires a valid license to run the engine and can be licensed for production, commercial applications. -There are two options available:

90-Day Enterprise Trial License

To try out the DeepSparse Enterprise Edition and get a Neural Magic Trial License, complete our registration form. -Upon submission, the license will be emailed to you and your 90-day term starts right then.

Enterprise Edition License

To learn more about DeepSparse Enterprise Edition pricing, contact our Sales team to discuss your use case further for a custom quote.

Installing a License

Once you have obtained a license, you will need to initialize it to be able to run the DeepSparse Enterprise Edition. -You can initialize your license by running the command:

deepsparse.license <license_string> or <path/to/license.txt>

To initialize a license on a machine:

  1. Confirm you have deepsparse-ent installed in a fresh virtual environment.
    • Note: Installing deepsparse and deepsparse-ent on the same virtual environment may result in unsupported behaviors.
  2. Run deepsparse.license with the <license_string> or path/to/license.txt as an argument as follows:
    • deepsparse.license <samplelicensetring>
    • deepsparse.license ./license.txt
  3. If successful, deepsparse.license will write the license file to ~/.config/neuralmagic/license.txt. You may overwrite this path by setting the environment variable NM_CONFIG_DIR (before and after running the script) with the following command:
    • export NM_CONFIG_DIR=path/to/license.txt
  4. Once the license is authenticated, you should see a splash message indicating that you are now running DeepSparse Enterprise Edition.

If you encounter issues initializing your DeepSparse Enterprise Edition License, contact license@neuralmagic.com for help.

Validating a License

Once you have initialized your license, you may want to check if it is still valid before running a workload on DeepSparse Enterprise Edition. To confirm your license is still active with the DeepSparse Enterprise Edition, run the command:

deepsparse.validate_license

deepsparse.validate_license can be run with no arguments, which will reference an existing environment variable (if set), or with one argument that is a reference to the license and can be referenced in the deepsparse.validate_license command as path/to/license.txt.

To validate a license on a machine:

  1. If you have successfully run deepsparse.license, deepsparse.validate_license can be used to validate that the license file is in the correct location:
    • Run the deepsparse.validate_license with no arguments. If the referenced license is valid, you should get the DeepSparse Enterprise Edition splash screen printed out in your terminal window.
    • If the NM_CONFIG_DIR environment variable was set when creating the license, ensure this variable is still set to the same value.
  2. If you want to supply the path/to/license.txt:
    • Run the deepsparse.validate_license with path/to/license.txt as an argument as follows:
    • deepsparse.validate_license --license_path path/to/license.txt
    • If the referenced license is valid, you should get the DeepSparse Enterprise Edition splash screen printed out in your terminal window.

If you encounter issues validating your DeepSparse Enterprise Edition License, contact license@neuralmagic.com for help.

Features

🔌 DeepSparse Server

The DeepSparse Server allows you to serve models and pipelines from the terminal. The server runs on top of the popular FastAPI web framework and Uvicorn web server. Install the server using the following command:

pip install deepsparse-ent[server]

Single Model

Once installed, the following example CLI command is available for running inference with a single BERT model:

1deepsparse.server \
2 task question_answering \
3 --model_path "zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni"

To look up arguments run: deepsparse.server --help.

Multiple Models

To serve multiple models in your deployment you can easily build a config.yaml. In the example below, we define two BERT models in our configuration for the question answering task:

1num_cores: 1
2num_workers: 1
3endpoints:
4 - task: question_answering
5 route: /predict/question_answering/base
6 model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none
7 batch_size: 1
8 - task: question_answering
9 route: /predict/question_answering/pruned_quant
10 model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni
11 batch_size: 1

Finally, after your config.yaml file is built, run the server with the config file path as an argument:

deepsparse.server config config.yaml

Getting Started with the DeepSparse Server for more info.

📜 DeepSparse Benchmark

The benchmark tool is available on your CLI to run expressive model benchmarks on the DeepSparse Engine with minimal parameters.

Run deepsparse.benchmark -h to look up arguments:

1deepsparse.benchmark [-h] [-b BATCH_SIZE] [-shapes INPUT_SHAPES]
2 [-ncores NUM_CORES] [-s {async,sync}] [-t TIME]
3 [-nstreams NUM_STREAMS] [-pin {none,core,numa}]
4 [-q] [-x EXPORT_PATH]
5 model_path

Getting Started with CLI Benchmarking includes examples of select inference scenarios:

  • Synchronous (Single-stream) Scenario
  • Asynchronous (Multi-stream) Scenario

👩‍💻 NLP Inference Example

1from deepsparse import Pipeline
2 +Support includes PyTorch, TensorFlow, Keras, and many other frameworks.

DeepSparse is available in two editions:

  1. DeepSparse Community is open-source and free for evaluation, research, and non-production use with our DeepSparse Community License.
  2. DeepSparse Enterprise requires a Trial License or can be fully licensed for production, commercial applications.

Features

Hardware Support and System Requirements

Review Supported Hardware for DeepSparse to understand system requirements. +DeepSparse works natively on Linux. Mac and Windows require running Linux in a Docker or virtual machine; it will not run natively on those operating systems.

DeepSparse is tested on Python 3.7-3.10, ONNX 1.5.0-1.12.0, ONNX opset version 11+, and manylinux compliant systems. +Using a virtual environment is highly recommended.

Installation

Install DeepSparse Enterprise with pip:

pip install deepsparse-ent

See the DeepSparse Enterprise Installation page for further installation options.

Getting a License

DeepSparse Enterprise requires a valid license to run the engine and can be licensed for production, commercial applications. +There are two options available:

90-Day Enterprise Trial License

To try out DeepSparse Enterprise and get a Neural Magic Trial License, complete our registration form. +Upon submission, the license will be emailed to you and your 90-day term starts right then.

DeepSparse Enterprise License

To learn more about DeepSparse Enterprise pricing, contact our Sales team to discuss your use case further for a custom quote.

Installing a License

Once you have obtained a license, you will need to initialize it to be able to run DeepSparse Enterprise. +You can initialize your license by running:

deepsparse.license <license_string> or <path/to/license.txt>

To initialize a license on a machine:

  1. Confirm you have deepsparse-ent installed in a fresh virtual environment.
    • Installing deepsparse and deepsparse-ent on the same virtual environment may result in unsupported behaviors.
  2. Run deepsparse.license with the <license_string> or path/to/license.txt as an argument:
    • deepsparse.license <samplelicensetring>
    • deepsparse.license ./license.txt
  3. If successful, deepsparse.license will write the license file to ~/.config/neuralmagic/license.txt. You may overwrite this path by setting the environment variable NM_CONFIG_DIR (before and after running the script) with the following command:
    • export NM_CONFIG_DIR=path/to/license.txt
  4. Once the license is authenticated, you should see a splash message indicating that you are now running DeepSparse Enterprise.

If you encounter issues initializing your DeepSparse Enterprise License, contact license@neuralmagic.com for help.

Validating a License

Once you have initialized your license, you may want to check that it is still valid before running a workload on DeepSparse Enterprise. To confirm your license is still active with DeepSparse Enterprise, run the command:

deepsparse.validate_license

deepsparse.validate_license can be run with no arguments, which will reference an existing environment variable (if set), or with one argument that is a reference to the license and can be referenced in the deepsparse.validate_license command as path/to/license.txt.

To validate a license on a machine:

  1. If you have successfully run deepsparse.license, deepsparse.validate_license can be used to validate that the license file is in the correct location:
    • Run the deepsparse.validate_license with no arguments. If the referenced license is valid, the DeepSparse Enterprise splash screen should display in your terminal window.
    • If the NM_CONFIG_DIR environment variable was set when creating the license, ensure this variable is still set to the same value.
  2. If you want to supply the path/to/license.txt:
    • Run deepsparse.validate_license with path/to/license.txt as an argument as: +deepsparse.validate_license --license_path path/to/license.txt
    • If the referenced license is valid, the DeepSparse Enterprise splash screen should display in your terminal window.

DeepSparse Enterprise Features

DeepSparse Server

The DeepSparse Server allows you to serve models and pipelines from the terminal. The server runs on top of the popular FastAPI web framework and Uvicorn web server.

Install the server with pip:

pip install deepsparse-ent[server]

Single Model

Once installed, the following example CLI command is available for running inference with a single BERT model:

1deepsparse.server \
2 task question_answering \
3 --model_path "zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni"

To look up arguments run, deepsparse.server --help.

Multiple Models

To serve multiple models in your deployment you can easily build a config.yaml. In the example below, we define two BERT models in our configuration for the question answering task:

1num_cores: 1
2num_workers: 1
3endpoints:
4 - task: question_answering
5 route: /predict/question_answering/base
6 model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none
7 batch_size: 1
8 - task: question_answering
9 route: /predict/question_answering/pruned_quant
10 model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni
11 batch_size: 1

Finally, after your config.yaml file is built, run the server with the configuration file path as an argument:

deepsparse.server config config.yaml

See Getting Started with DeepSparse Server for more information.

DeepSparse Benchmark

The benchmark tool is available on your CLI to run expressive model benchmarks with DeepSparse.

Run deepsparse.benchmark -h to look up arguments:

1deepsparse.benchmark [-h] [-b BATCH_SIZE] [-shapes INPUT_SHAPES]
2 [-ncores NUM_CORES] [-s {async,sync}] [-t TIME]
3 [-nstreams NUM_STREAMS] [-pin {none,core,numa}]
4 [-q] [-x EXPORT_PATH]
5 model_path

Getting Started with CLI Benchmarking includes examples of select inference scenarios:

  • Synchronous (Single-stream) Scenario
  • Asynchronous (Multi-stream) Scenario

NLP and Computer Vision Tasks Supported

An NLP inference example is:

1from deepsparse import Pipeline
2
3# SparseZoo model stub or path to ONNX file
4model_path = "zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni"
5
6qa_pipeline = Pipeline.create(
7 task="question-answering",
8 model_path=model_path,
9)
10 -
11my_name = qa_pipeline(question="What's my name?", context="My name is Snorlax")

NLP Tutorials:

Tasks Supported:

🦉 SparseZoo ONNX vs. Custom ONNX Models

DeepSparse can accept ONNX models from two sources:

  • SparseZoo ONNX: our open-source collection of sparse models available for download. SparseZoo hosts inference-optimized models, trained on repeatable sparsification recipes using state-of-the-art techniques from SparseML.

  • Custom ONNX: your own ONNX model, can be dense or sparse. Plug in your model to compare performance with other solutions.

>wget https://github.com/onnx/models/raw/main/vision/classification/mobilenet/model/mobilenetv2-7.onnx
1Saving to: ‘mobilenetv2-7.onnx’

Custom ONNX Benchmark example:

1from deepsparse import compile_model
2from deepsparse.utils import generate_random_inputs
3onnx_filepath = "mobilenetv2-7.onnx"
4batch_size = 16
5 +
11my_name = qa_pipeline(question="What's my name?", context="My name is Snorlax")

Refer also to NLP and Computer Vision Tasks Supported.

For NLP tutorials, see Getting Started with Hugging Face Transformers.

Supported NLP tasks include:

SparseZoo ONNX vs. Custom ONNX Models

DeepSparse can accept ONNX models from two sources:

  • SparseZoo ONNX: SparseZoo hosts open-source inference-optimized models, trained on repeatable sparsification recipes using state-of-the-art techniques from SparseML. The ONNX representation of each model is available for download.

  • Custom ONNX: DeepSparse allows you to use your own model in ONNX format. It can be dense or sparse. Plug in your model to compare performance with other solutions.

>wget https://github.com/onnx/models/raw/main/vision/classification/mobilenet/model/mobilenetv2-7.onnx
1Saving to: ‘mobilenetv2-7.onnx’

Here is a custom ONNX Benchmark example:

1from deepsparse import compile_model
2from deepsparse.utils import generate_random_inputs
3onnx_filepath = "mobilenetv2-7.onnx"
4batch_size = 16
5
6# Generate random sample input
7inputs = generate_random_inputs(onnx_filepath, batch_size)
8 -
9# Compile and run
10engine = compile_model(onnx_filepath, batch_size)
11outputs = engine.run(inputs)

The GitHub repository includes package APIs along with examples to quickly get started benchmarking and inferencing sparse models.

Scheduling Single-Stream, Multi-Stream, and Elastic Inference

The DeepSparse Engine offers up to three types of inferences based on your use case. Read more details here: Inference Types.

1 ⚡ Single-stream scheduling: the latency/synchronous scenario, requests execute serially. [default]

single stream diagram

Use Case: It's highly optimized for minimum per-request latency, using all of the system's resources provided to it on every request it gets.

2 ⚡ Multi-stream scheduling: the throughput/asynchronous scenario, requests execute in parallel.

multi stream diagram

PRO TIP: The most common use cases for the multi-stream scheduler are where parallelism is low with respect to core count, and where requests need to be made asynchronously without time to batch them.

3 ⚡ Elastic scheduling: requests execute in parallel, but not multiplexed on individual NUMA nodes.

Use Case: A workload that might benefit from the elastic scheduler is one in which multiple requests need to be handled simultaneously, but where performance is hindered when those requests have to share an L3 cache.

Resources

Libraries

Versions

Info

License

The Community Edition of the project's binary containing the DeepSparse Engine is licensed under the Neural Magic Engine License. -Example files and scripts included in this repository are licensed under the Apache License Version 2.0 as noted.

The Enterprise Edition requires a Trial License or can be fully licensed for production, commercial applications.

DeepSparse C++ API
DeepSparse CLI
\ No newline at end of file +
9# Compile and run
10engine = compile_model(onnx_filepath, batch_size)
11outputs = engine.run(inputs)

The GitHub repository includes package APIs along with examples to quickly get started benchmarking and inferencing sparse models.

Scheduling Single-Stream, Multi-Stream, and Elastic Inference

DeepSparse offers three inference modes based on your use case. Refer also to Inference Modes.

  1. Single-stream scheduling (the default) is the latency/synchronous scenario. Requests execute serially.

    single stream diagram +Use Case: It's highly optimized for minimum per-request latency, using all of the system's resources provided to it on every request it gets.
  2. Multi-stream scheduling is the throughput/asynchronous scenario. Requests execute in parallel.

    multi stream diagram +Use Case: The most common use cases for the multi-stream scheduler are those in which parallelism is low with respect to core count, and requests need to be made asynchronously without time to batch them.
  3. Elastic scheduling requests execute in parallel, but not multiplexed on individual NUMA nodes. +Use Case: A workload that might benefit from the elastic scheduler is one in which multiple requests need to be handled simultaneously, but where performance is hindered when those requests have to share an L3 cache.

Resources

Libraries

Versions

Info

License

DeepSparse Enterprise requires a Trial License or can be fully licensed for production, commercial applications.

DeepSparse C++ API
DeepSparse CLI
\ No newline at end of file diff --git a/products/deepsparse/enterprise/python-api/index.html b/products/deepsparse/enterprise/python-api/index.html index c907c24b42e..eee8c8df550 100644 --- a/products/deepsparse/enterprise/python-api/index.html +++ b/products/deepsparse/enterprise/python-api/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsDeepSparse Python API
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
Enterprise Edition
Python API

Python API

Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse Python APIs.

DeepSparse CLI
DeepSparse C++ API
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
DeepSparse Enterprise
Python API

Python API

Stay tuned for our next release adding documentation enabling detailed exploration of the DeepSparse Python APIs.

DeepSparse CLI
DeepSparse C++ API
\ No newline at end of file diff --git a/products/deepsparse/index.html b/products/deepsparse/index.html index 629d0431bae..4d04fdff64d 100644 --- a/products/deepsparse/index.html +++ b/products/deepsparse/index.html @@ -8,7 +8,7 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse
+
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
DeepSparse

tool icon   DeepSparse @@ -42,6 +42,6 @@

Twitter -

A CPU runtime that takes advantage of sparsity within neural networks to reduce compute. Read more about sparsification.

Neural Magic's DeepSparse Engine is able to integrate into popular deep learning libraries (e.g., Hugging Face, Ultralytics) allowing you to leverage DeepSparse for loading and deploying sparse models with ONNX. +

DeepSparse is a CPU runtime that takes advantage of sparsity within neural networks to reduce compute. Read more about sparsification.

Neural Magic's DeepSparse is able to integrate into popular deep learning libraries (e.g., Hugging Face, Ultralytics) allowing you to leverage DeepSparse for loading and deploying sparse models with ONNX. ONNX gives the flexibility to serve your model in a framework-agnostic environment. -Support includes PyTorch, TensorFlow, Keras, and many other frameworks.

Editions

The DeepSparse Engine is available in two editions:

Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine
DeepSparse Community Edition
\ No newline at end of file +Support includes PyTorch, TensorFlow, Keras, and many other frameworks.

Editions

DeepSparse is available in two editions:

Using DeepSparse on Google Cloud Run
DeepSparse Community

\ No newline at end of file diff --git a/products/index.html b/products/index.html index 616ee28f64d..62790b1494b 100644 --- a/products/index.html +++ b/products/index.html @@ -8,4 +8,4 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products

Products

Neural Magic Documentation
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products

Products

Neural Magic Documentation
\ No newline at end of file diff --git a/products/sparseml/cli/index.html b/products/sparseml/cli/index.html index 7e5d61af731..77d83409687 100644 --- a/products/sparseml/cli/index.html +++ b/products/sparseml/cli/index.html @@ -8,4 +8,4 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
SparseML
CLI

CLI

Stay tuned for our next release adding documentation enabling detailed exploration of the SparseML CLIs.

SparseML
SparseML Python API
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
SparseML
CLI

CLI

Stay tuned for our next release adding documentation enabling detailed exploration of the SparseML CLIs.

SparseML
SparseML Python API
\ No newline at end of file diff --git a/products/sparseml/index.html b/products/sparseml/index.html index 597ff71e051..ab53876710f 100644 --- a/products/sparseml/index.html +++ b/products/sparseml/index.html @@ -8,7 +8,7 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
SparseML

SparseML

Libraries enabling creation of sparse deep-neural networks trained on your data with just a few lines of code

+

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
SparseML

SparseML

Libraries enabling creation of sparse deep-neural networks trained on your data with just a few lines of code

Documentation @@ -39,8 +39,7 @@ -

Overview

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that enable you to create sparse models trained on your data.

SparseML provides two options to accomplish this goal:

  • Sparse Transfer Learning: Fine-tune state-of-the-art pre-sparsified models from the SparseZoo onto your dataset while preserving sparsity.

  • Sparsifying from Scratch: Apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network.

These options are useful for different situations:

  • Sparse Transfer Learning is the easiest path to creating a sparse model trained on your data. Pull down a sparse model from SparseZoo and point our training scripts at your data without any hyperparameter search. This is the recommended pathway for supported use cases like Image Classification, Object Detection, and several NLP tasks.

  • Sparsifying from Scratch gives you the flexibility to prune any neural network for any use case, but requires more training epochs and hand-tuning hyperparameters.

Each of these avenues use YAML-based recipes that simplify integration with popular deep learning libraries and framrworks.

SparseML Flow - +

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that enable you to create sparse models trained on your data.

SparseML provides two options to accomplish this goal. Each option is useful for different situations:

  • Sparse Transfer LearningFine-tune state-of-the-art pre-sparsified models from the SparseZoo onto your dataset while preserving sparsity. This is the easiest path to creating a sparse model trained on your data. Pull down a sparse model from SparseZoo and point our training scripts at your data without any hyperparameter search. This is the recommended pathway for supported use cases like Image Classification, Object Detection, and several NLP tasks.

  • Sparsifying from Scratch@mdash;Apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. This gives you the flexibility to prune any neural network for any use case, but requires more training epochs and hand-tuning hyperparameters.

Each of these avenues uses YAML-based recipes that simplify integration with popular deep learning libraries and framrworks.

SparseML Flow ## Highlights

Integrations

@@ -81,16 +80,16 @@ Transfer Learn - YOLOv5 -

Tutorials

🖼️ Computer Vision

Notebooks

📰 NLP

Installation Requirements

See the SparseML Installation Page for install instructions.

Quick Tour

SparseML enables you to create a sparse model with Sparse Transfer Learning and Sparsification from Scratch.

To enable flexibility, ease of use, and repeatability, each piece of functionality is accomplished via recipes. +

Tutorials

Computer Vision

Notebooks

NLP

Installation Requirements

See the SparseML Installation page for installation instructions.

Quick Tour

SparseML enables you to create a sparse model with Sparse Transfer Learning and Sparsification from Scratch.

To enable flexibility, ease of use, and repeatability, each piece of functionality is accomplished via recipes. The recipes encode the instructions needed for modifying the model and/or training process as a list of modifiers. Example modifiers can be anything from setting the learning rate for the optimizer to gradual magnitude pruning. -The files are written in YAML and stored in YAML or markdown files using YAML front matter. The rest of the SparseML system is coded to parse the recipes into a native format for the desired framework and apply the modifications to the model and training pipeline.

To give a sense of the flavor of what recipes encode, some examples are below:

  • Recipes for Sparse Transfer Learning usually include the !ConstantPruningModifier, which instructs SparseML to maintian the starting level of sparsity while fine-tuning.

  • Recipes for Sparsification from Scratch usually include the !GMPruningModifier, which instructs SparseML to iteratively prune the layers of the model to certain levels (e.g. 80%) over which epochs.

Recipes are then integrated into deep learning training workflows in one of two ways:

For Supported Use Cases: CLI

SparseML provides command line scripts that accept recipes as arguments and perform Sparse Transfer Learning and Sparsification from Scratch. We highly -reccomended using the command line scripts. Appending --help to the commands demonstrates the full list of arguments.

For example, the following command kicks off Sparse Transfer Learning from pre-sparsified YOLOv5 onto the VOC dataset using the pre-made recipes in the SparseZoo:

$sparseml.yolov5.train \
--data VOC.yaml \
--cfg models_v5.0/yolov5l.yaml \
--weights zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95?recipe_type=transfer \
--hyp data/hyps/hyp.finetune.yaml \
--recipe zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95?recipe_type=transfer

For example, the following command kicks off Sparsification of a dense YOLOv5 model from Scratch using the pre-made recipes in the SparseZoo:

$sparseml.yolov5.train \
--cfg models_v5.0/yolov5l.yaml \
--weights yolov5l.pt \
--data coco.yaml \
--hyp data/hyps/hyp.scratch.yaml \
--recipe zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95

See more details on the above as well as examples for more supported use cases.

For Custom Use Cases / Supported Use Cases: Python Integration

The ScheduledModifierManager class is used to modify the standard training workflows for both Sparse Transfer Learning -and Sparsification from Scratch. It can be used in PyTorch and TensorFlow/Keras.

The manager classes works by overriding the model and optimizers to encode sparsity logic. -Managers can apply recipes in one shot or training aware ways. -One shot is invoked by calling .apply(...) on the manager while training aware requires calls into initialize(...) (optional), modify(...), and finalize(...). +The files are written in YAML and stored in YAML or Markdown files using YAML front matter. The rest of the SparseML system is coded to parse the recipes into a native format for the desired framework and apply the modifications to the model and training pipeline.

To give a sense of the flavor of what recipes encode, some examples are:

  • Recipes for Sparse Transfer Learning usually include the !ConstantPruningModifier, which instructs SparseML to maintian the starting level of sparsity while fine-tuning.

  • Recipes for Sparsification from Scratch usually include the !GMPruningModifier, which instructs SparseML to iteratively prune the layers of the model to certain levels (e.g., 80%) over which epochs.

Recipes are then integrated into deep learning training workflows in one of two ways:

  • For supported use cases: CLI
  • For custom use cases / supported use cases: Python integration

Supported Use Cases: CLI

SparseML provides command line scripts that accept recipes as arguments and perform sparse transfer learning and sparsification from scratch. We highly +reccomended using the command line scripts. Appending --help to the commands demonstrates the full list of arguments.

For example, the following command kicks off Sparse Transfer Learning from pre-sparsified YOLOv5 onto the VOC dataset using the pre-made recipes in the SparseZoo:

$sparseml.yolov5.train \
--data VOC.yaml \
--cfg models_v5.0/yolov5l.yaml \
--weights zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95?recipe_type=transfer \
--hyp data/hyps/hyp.finetune.yaml \
--recipe zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95?recipe_type=transfer

In the next example, the command kicks off Sparsification of a dense YOLOv5 model from scratch using the pre-made recipes in the SparseZoo:

$sparseml.yolov5.train \
--cfg models_v5.0/yolov5l.yaml \
--weights yolov5l.pt \
--data coco.yaml \
--hyp data/hyps/hyp.scratch.yaml \
--recipe zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95

See more details on the above as well as examples for more supported use cases.

Custom Use Cases / Supported Use Cases: Python Integration

The ScheduledModifierManager class is used to modify the standard training workflows for both sparse transfer learning +and sparsification from scratch. It can be used in PyTorch and TensorFlow/Keras.

The manager classes work by overriding the model and optimizers to encode sparsity logic. +Managers can apply recipes in one-shot or training-aware ways. +One-shot is invoked by calling .apply(...) on the manager while training-aware requires calls into initialize(...) (optional), modify(...), and finalize(...). This means only a few lines of code need to be added to begin transfer learning or sparsifying from scratch with pruning and quantization.

For example, the following applies a recipe in a training-aware manner:

1model = Model() # model definition
2optimizer = Optimizer() # optimizer definition
3train_data = TrainData() # train data definition
4batch_size = BATCH_SIZE # training batch size
5steps_per_epoch = len(train_data) // batch_size
6
7from sparseml.pytorch.optim import ScheduledModifierManager
8manager = ScheduledModifierManager.from_yaml(PATH_TO_RECIPE)
9optimizer = manager.modify(model, optimizer, steps_per_epoch)
10
11# ... PyTorch training loop as usual ...
12 -
13manager.finalize(model)

Instead of training aware, the following example code shows how to execute a recipe in a one shot manner:

1model = Model() # model definition
2 -
3from sparseml.pytorch.optim import ScheduledModifierManager
4manager = ScheduledModifierManager.from_yaml(PATH_TO_RECIPE)
5manager.apply(model)

More information on the codebase and contained processes can be found in the SparseML docs:

Resources

Learning More

Release History

Official builds are hosted on PyPI

Additionally, more information can be found via GitHub Releases.

License

The project is licensed under the Apache License Version 2.0.

Community

Contribute

We appreciate contributions to the code, examples, integrations, and documentation as well as bug reports and feature requests! Learn how here.

Join

For user help or questions about SparseML, sign up or log in to our Deep Sparse Community Slack. We are growing the community member by member and happy to see you there. Bugs, feature requests, or additional questions can also be posted to our GitHub Issue Queue.

You can get the latest news, webinar and event invites, research papers, and other ML Performance tidbits by subscribing to the Neural Magic community.

For more general questions about Neural Magic, please fill out this form.

Cite

Find this project useful in your research or other communications? Please consider citing:

1@InProceedings{
2 pmlr-v119-kurtz20a,
3 title = {Inducing and Exploiting Activation Sparsity for Fast Inference on Deep Neural Networks},
4 author = {Kurtz, Mark and Kopinsky, Justin and Gelashvili, Rati and Matveev, Alexander and Carr, John and Goin, Michael and Leiserson, William and Moore, Sage and Nell, Bill and Shavit, Nir and Alistarh, Dan},
5 booktitle = {Proceedings of the 37th International Conference on Machine Learning},
6 pages = {5533--5543},
7 year = {2020},
8 editor = {Hal Daumé III and Aarti Singh},
9 volume = {119},
10 series = {Proceedings of Machine Learning Research},
11 address = {Virtual},
12 month = {13--18 Jul},
13 publisher = {PMLR},
14 pdf = {http://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf},
15 url = {http://proceedings.mlr.press/v119/kurtz20a.html},
16 abstract = {Optimizing convolutional neural networks for fast inference has recently become an extremely active area of research. One of the go-to solutions in this context is weight pruning, which aims to reduce computational and memory footprint by removing large subsets of the connections in a neural network. Surprisingly, much less attention has been given to exploiting sparsity in the activation maps, which tend to be naturally sparse in many settings thanks to the structure of rectified linear (ReLU) activation functions. In this paper, we present an in-depth analysis of methods for maximizing the sparsity of the activations in a trained neural network, and show that, when coupled with an efficient sparse-input convolution algorithm, we can leverage this sparsity for significant performance gains. To induce highly sparse activation maps without accuracy loss, we introduce a new regularization technique, coupled with a new threshold-based sparsification method based on a parameterized activation function called Forced-Activation-Threshold Rectified Linear Unit (FATReLU). We examine the impact of our methods on popular image classification models, showing that most architectures can adapt to significantly sparser activation maps without any accuracy loss. Our second contribution is showing that these these compression gains can be translated into inference speedups: we provide a new algorithm to enable fast convolution operations over networks with sparse activations, and show that it can enable significant speedups for end-to-end inference on a range of popular models on the large-scale ImageNet image classification task on modern Intel CPUs, with little or no retraining cost.}
17}
1@misc{
2 singh2020woodfisher,
3 title={WoodFisher: Efficient Second-Order Approximation for Neural Network Compression},
4 author={Sidak Pal Singh and Dan Alistarh},
5 year={2020},
6 eprint={2004.14340},
7 archivePrefix={arXiv},
8 primaryClass={cs.LG}
9}
DeepSparse C++ API
SparseML CLI
\ No newline at end of file +
13manager.finalize(model)

Instead of training-aware, the following example code shows how to execute a recipe in a one-shot manner:

1model = Model() # model definition
2 +
3from sparseml.pytorch.optim import ScheduledModifierManager
4manager = ScheduledModifierManager.from_yaml(PATH_TO_RECIPE)
5manager.apply(model)

More information on the code base and contained processes can be found in the SparseML documentation:

Resources

Learning More

Release History

Official builds are hosted on PyPI

Additionally, more information can be found via GitHub Releases.

License

The project is licensed under the Apache License Version 2.0.

Community

Contribute

We appreciate contributions to the code, examples, integrations, and documentation as well as bug reports and feature requests! Learn how here.

Join

For user help or questions about SparseML, sign up or log into our Neural Magic Community Slack. We are growing the community member by member and happy to see you there. Bugs, feature requests, or additional questions can also be posted to our GitHub Issue Queue.

You can get the latest news, webinar and event invites, research papers, and other ML performance tidbits by subscribing to the Neural Magic community.

For more general questions about Neural Magic, please fill out this form.

Cite

Find this project useful in your research or other communications? Please consider citing:

1@InProceedings{
2 pmlr-v119-kurtz20a,
3 title = {Inducing and Exploiting Activation Sparsity for Fast Inference on Deep Neural Networks},
4 author = {Kurtz, Mark and Kopinsky, Justin and Gelashvili, Rati and Matveev, Alexander and Carr, John and Goin, Michael and Leiserson, William and Moore, Sage and Nell, Bill and Shavit, Nir and Alistarh, Dan},
5 booktitle = {Proceedings of the 37th International Conference on Machine Learning},
6 pages = {5533--5543},
7 year = {2020},
8 editor = {Hal Daumé III and Aarti Singh},
9 volume = {119},
10 series = {Proceedings of Machine Learning Research},
11 address = {Virtual},
12 month = {13--18 Jul},
13 publisher = {PMLR},
14 pdf = {http://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf},
15 url = {http://proceedings.mlr.press/v119/kurtz20a.html},
16 abstract = {Optimizing convolutional neural networks for fast inference has recently become an extremely active area of research. One of the go-to solutions in this context is weight pruning, which aims to reduce computational and memory footprint by removing large subsets of the connections in a neural network. Surprisingly, much less attention has been given to exploiting sparsity in the activation maps, which tend to be naturally sparse in many settings thanks to the structure of rectified linear (ReLU) activation functions. In this paper, we present an in-depth analysis of methods for maximizing the sparsity of the activations in a trained neural network, and show that, when coupled with an efficient sparse-input convolution algorithm, we can leverage this sparsity for significant performance gains. To induce highly sparse activation maps without accuracy loss, we introduce a new regularization technique, coupled with a new threshold-based sparsification method based on a parameterized activation function called Forced-Activation-Threshold Rectified Linear Unit (FATReLU). We examine the impact of our methods on popular image classification models, showing that most architectures can adapt to significantly sparser activation maps without any accuracy loss. Our second contribution is showing that these these compression gains can be translated into inference speedups: we provide a new algorithm to enable fast convolution operations over networks with sparse activations, and show that it can enable significant speedups for end-to-end inference on a range of popular models on the large-scale ImageNet image classification task on modern Intel CPUs, with little or no retraining cost.}
17}
1@misc{
2 singh2020woodfisher,
3 title={WoodFisher: Efficient Second-Order Approximation for Neural Network Compression},
4 author={Sidak Pal Singh and Dan Alistarh},
5 year={2020},
6 eprint={2004.14340},
7 archivePrefix={arXiv},
8 primaryClass={cs.LG}
9}
DeepSparse C++ API
SparseML CLI
\ No newline at end of file diff --git a/products/sparseml/python-api/index.html b/products/sparseml/python-api/index.html index 68f5f98b225..4a6d6664cd4 100644 --- a/products/sparseml/python-api/index.html +++ b/products/sparseml/python-api/index.html @@ -8,4 +8,4 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
SparseML
Python API

Python API

Stay tuned for our next release adding documentation enabling detailed exploration of the SparseML Python APIs.

SparseML CLI
SparseZoo
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
SparseML
Python API

Python API

Stay tuned for our next release adding documentation enabling detailed exploration of the SparseML Python APIs.

SparseML CLI
SparseZoo
\ No newline at end of file diff --git a/products/sparsezoo/cli/index.html b/products/sparsezoo/cli/index.html index 6dae76f8c61..fa15d61c396 100644 --- a/products/sparsezoo/cli/index.html +++ b/products/sparsezoo/cli/index.html @@ -8,4 +8,4 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
SparseZoo
CLI

CLI

Stay tuned for our next release adding documentation enabling detailed exploration of the SparseZoo CLIs.

SparseZoo
SparseML Python API
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
SparseZoo
CLI

CLI

Stay tuned for our next release adding documentation enabling detailed exploration of the SparseZoo CLIs.

SparseZoo
SparseML Python API
\ No newline at end of file diff --git a/products/sparsezoo/index.html b/products/sparsezoo/index.html index d5d4b0622b9..f3e97343123 100644 --- a/products/sparsezoo/index.html +++ b/products/sparsezoo/index.html @@ -8,8 +8,8 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
SparseZoo

SparseZoo

Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes

- +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
SparseZoo

SparseZoo

Neural network model repository for highly sparse and sparse-quantized models with matching sparsification recipes

+ Documentation @@ -39,28 +39,28 @@ -

Overview

SparseZoo is a constantly-growing repository of sparsified (pruned and pruned-quantized) models with matching sparsification recipes for neural networks. -It simplifies and accelerates your time-to-value in building performant deep learning models with a collection of inference-optimized models and recipes to prototype from. -Read more about sparsification.

Available via API and hosted in the cloud, the SparseZoo contains both baseline and models sparsified to different degrees of inference performance vs. baseline loss recovery. -Recipe-driven approaches built around sparsification algorithms allow you to use the models as given, transfer-learn from the models onto private datasets, or transfer the recipes to your architectures.

The GitHub repository contains the Python API code to handle the connection and authentication to the cloud.

SparseZoo Flow

Highlights

Installation

See the SparseZoo Installation Page for installation instructions.

Quick Tour

The SparseZoo Python API enables you to search and download sparsified models. Code examples are given below. -We encourage users to load SparseZoo models by copying a stub directly from a model page.

Introduction to Model Class Object

The Model is a fundamental object that serves as a main interface with the SparseZoo library. +

SparseZoo is a constantly-growing repository of sparsified (pruned and pruned-quantized) models with matching sparsification recipes for neural networks. +SparseZoo simplifies and accelerates your time-to-value in building performant deep learning models with a collection of inference-optimized models and recipes from which to prototype. +Read more about sparsification.

Available via API and hosted in the cloud, the SparseZoo contains both baseline and models sparsified to different degrees of inference performance versus baseline loss recovery. +Recipe-driven approaches built around sparsification algorithms allow you to use the models as given, transfer-learn from the models onto private datasets, or transfer the recipes to your architectures.

The GitHub repository contains the Python API code to handle the connection and authentication to the cloud.

SparseZoo Flow

Highlights

Installation

See the SparseZoo Installation page for installation instructions.

Quick Tour

The SparseZoo Python API enables you to search and download sparsified models. Code examples are given below. +We encourage users to load SparseZoo models by copying a stub directly from a model page.

Introduction to Model Class Object

The Model is a fundamental object that serves as a main interface with the SparseZoo library. It represents a SparseZoo model, together with all its directories and files.

Creating a Model Class Object From SparseZoo Stub

1from sparsezoo import Model
2
3stub = "zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none"
4
5model = Model(stub)
6print(str(model))
>> Model(stub=zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none)

Creating a Model Class Object From Local Model Directory

1from sparsezoo import Model
2
3directory = ".../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0"
4 -
5model = Model(directory)
6print(str(model))
>> Model(directory=.../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0)

Manually Specifying the Model Download Path

Unless specified otherwise, the model created from the SparseZoo stub is saved to the local sparsezoo cache directory. +

5model = Model(directory)
6print(str(model))
>> Model(directory=.../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0)

Manually Specifying the Model Download Path

Unless specified otherwise, the model created from the SparseZoo stub is saved to the local SparseZoo cache directory. This can be overridden by passing the optional download_path argument to the constructor:

1from sparsezoo import Model
2
3stub = "zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none"
4download_directory = "./model_download_directory"
5
6model = Model(stub, download_path = download_directory)

Downloading the Model Files

Once the model is initialized from a stub, it may be downloaded either by calling the download() method or by invoking a path property. Both pathways are universal for all the files in SparseZoo. Invoking the path property will always trigger file download unless the file has already been downloaded.

1# method 1
2model.download()
3 -
4# method 2
5model_path = model.path

Inspecting the Contents of the SparseZoo Model

We call the available_files method to inspect which files are present in the SparseZoo model. Then, we select a file by calling the appropriate attribute:

1model.available_files
>> {'training': Directory(name=training),
>> 'deployment': Directory(name=deployment),
>> 'sample_inputs': Directory(name=sample_inputs.tar.gz),
>> 'sample_outputs': {'framework': Directory(name=sample_outputs.tar.gz)},
>> 'sample_labels': Directory(name=sample_labels.tar.gz),
>> 'model_card': File(name=model.md),
>> 'recipes': Directory(name=recipe),
>> 'onnx_model': File(name=model.onnx)}

Then, we might take a closer look at the contents of the SparseZoo model:

1model_card = model.model_card
2print(model_card)
>> File(name=model.md)
1model_card_path = model.model_card.path
2print(model_card_path)
>> .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/model.md

Model, Directory, and File

In general, every file in the SparseZoo model shares a set of attributes: name, path, URL, and parent:

  • name serves as an identifier of the file/directory
  • path points to the location of the file/directory
  • URL specifies the server address of the file/directory in question
  • parent points to the location of the parent directory of the file/directory in question

A directory is a unique type of file that contains other files. For that reason, it has an additional files attribute.

1print(model.onnx_model)
>> File(name=model.onnx)
1print(f"File name: {model.onnx_model.name}\n"
2 f"File path: {model.onnx_model.path}\n"
3 f"File URL: {model.onnx_model.url}\n"
4 f"Parent directory: {model.onnx_model.parent_directory}")
>> File name: model.onnx
>> File path: .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/model.onnx
>> File URL: https://models.neuralmagic.com/cv-classification/...
>> Parent directory: .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0
1print(model.recipes)
>> Directory(name=recipe)
1print(f"File name: {model.recipes.name}\n"
2 f"Contains: {[file.name for file in model.recipes.files]}\n"
3 f"File path: {model.recipes.path}\n"
4 f"File URL: {model.recipes.url}\n"
5 f"Parent directory: {model.recipes.parent_directory}")
>> File name: recipe
>> Contains: ['recipe_original.md', 'recipe_transfer-classification.md']
>> File path: /home/user/.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/recipe
>> File URL: None
>> Parent directory: /home/user/.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0

Selecting Checkpoint-Specific Data

A SparseZoo model may contain several checkpoints. The model may contain a checkpoint that had been saved before the model was quantized - that checkpoint would be used for transfer learning. Another checkpoint might have been saved after the quantization step - that one is usually directly used for inference.

The recipes may also vary depending on the use case. We may want to access a recipe that was used to sparsify the dense model (recipe_original) or the one that enables us to sparse transfer learn from the already sparsified model (recipe_transfer).

There are two ways to access those specific files.

Accessing Recipes (Through Python API)

1available_recipes = model.recipes.available
2print(available_recipes)
>> ['original', 'transfer-classification']
1transfer_recipe = model.recipes["transfer-classification"]
2print(transfer_recipe)
>> File(name=recipe_transfer-classification.md)
1original_recipe = model.recipes.default # recipe defaults to `original`
2original_recipe_path = original_recipe.path # downloads the recipe and returns its path
3print(original_recipe_path)
>> .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/recipe/recipe_original.md

Accessing Checkpoints (Through Python API)

In general, we are expecting the following checkpoints to be included in the model:

  • checkpoint_prepruning
  • checkpoint_postpruning
  • checkpoint_preqat
  • checkpoint_postqat

The checkpoint that the model defaults to is the preqat state (just before the quantization step).

1from sparsezoo import Model
2 +
4# method 2
5model_path = model.path

Inspecting the Contents of the SparseZoo Model

We call the available_files method to inspect which files are present in the SparseZoo model. Then, we select a file by calling the appropriate attribute:

1model.available_files
>> {'training': Directory(name=training),
>> 'deployment': Directory(name=deployment),
>> 'sample_inputs': Directory(name=sample_inputs.tar.gz),
>> 'sample_outputs': {'framework': Directory(name=sample_outputs.tar.gz)},
>> 'sample_labels': Directory(name=sample_labels.tar.gz),
>> 'model_card': File(name=model.md),
>> 'recipes': Directory(name=recipe),
>> 'onnx_model': File(name=model.onnx)}

We might take a closer look at the contents of the SparseZoo model:

1model_card = model.model_card
2print(model_card)
>> File(name=model.md)
1model_card_path = model.model_card.path
2print(model_card_path)
>> .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/model.md

Model, Directory, and File

In general, every file in the SparseZoo model shares a set of attributes: name, path, URL, and parent:

  • name serves as an identifier of the file/directory.
  • path points to the location of the file/directory.
  • URL specifies the server address of the file/directory in question.
  • parent points to the location of the parent directory of the file/directory in question.

A directory is a unique type of file that contains other files. For that reason, it has an additional files attribute.

1print(model.onnx_model)
>> File(name=model.onnx)
1print(f"File name: {model.onnx_model.name}\n"
2 f"File path: {model.onnx_model.path}\n"
3 f"File URL: {model.onnx_model.url}\n"
4 f"Parent directory: {model.onnx_model.parent_directory}")
>> File name: model.onnx
>> File path: .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/model.onnx
>> File URL: https://models.neuralmagic.com/cv-classification/...
>> Parent directory: .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0
1print(model.recipes)
>> Directory(name=recipe)
1print(f"File name: {model.recipes.name}\n"
2 f"Contains: {[file.name for file in model.recipes.files]}\n"
3 f"File path: {model.recipes.path}\n"
4 f"File URL: {model.recipes.url}\n"
5 f"Parent directory: {model.recipes.parent_directory}")
>> File name: recipe
>> Contains: ['recipe_original.md', 'recipe_transfer-classification.md']
>> File path: /home/user/.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/recipe
>> File URL: None
>> Parent directory: /home/user/.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0

Selecting Checkpoint-Specific Data

A SparseZoo model may contain several checkpoints. The model may contain a checkpoint that had been saved before the model was quantized. That checkpoint would be used for transfer learning. Another checkpoint might have been saved after the quantization step. That one usually is used directly for inference.

The recipes may also vary depending on the use case. We may want to access a recipe that was used to sparsify the dense model (recipe_original) or the one that enables us to sparse transfer learn from the already sparsified model (recipe_transfer).

There are three ways to access those specific files:

  • Accessing recipes (through Python API)
  • Accessing checkpoints (through Python API)
  • Accessing recipies (through stub string arguments)

Accessing Recipes (Through Python API)

1available_recipes = model.recipes.available
2print(available_recipes)
>> ['original', 'transfer-classification']
1transfer_recipe = model.recipes["transfer-classification"]
2print(transfer_recipe)
>> File(name=recipe_transfer-classification.md)
1original_recipe = model.recipes.default # recipe defaults to `original`
2original_recipe_path = original_recipe.path # downloads the recipe and returns its path
3print(original_recipe_path)
>> .../.cache/sparsezoo/eb977dae-2454-471b-9870-4cf38074acf0/recipe/recipe_original.md

Accessing Checkpoints (Through Python API)

In general, we are expecting the following checkpoints to be included in the model:

  • checkpoint_prepruning
  • checkpoint_postpruning
  • checkpoint_preqat
  • checkpoint_postqat

The checkpoint that the model defaults to is the preqat state (just before the quantization step).

1from sparsezoo import Model
2
3stub = "zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_quant_3layers-aggressive_84"
4
5model = Model(stub)
6available_checkpoints = model.training.available
7print(available_checkpoints)
>> ['preqat']
1preqat_checkpoint = model.training.default # recipe defaults to `preqat`
2preqat_checkpoint_path = preqat_checkpoint.path # downloads the checkpoint and returns its path
3print(preqat_checkpoint_path)
>> .../.cache/sparsezoo/0857c6f2-13c1-43c9-8db8-8f89a548dccd/training
1[print(file.name) for file in preqat_checkpoint.files]
>> vocab.txt
>> special_tokens_map.json
>> pytorch_model.bin
>> config.json
>> training_args.bin
>> tokenizer_config.json
>> trainer_state.json
>> tokenizer.json

Accessing Recipes (Through Stub String Arguments)

You can also directly request a specific recipe/checkpoint type by appending the appropriate URL query arguments to the stub:

1from sparsezoo import Model
2
3stub = "zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none?recipe=transfer"
4
5model = Model(stub)
6 -
7# Inspect which files are present.
8# Note that the available recipes are restricted
9# according to the specified URL query arguments
10print(model.recipes.available)
>> ['transfer-classification']
1transfer_recipe = model.recipes.default # Now the recipes default to the one selected by the stub string arguments
2print(transfer_recipe)
>> File(name=recipe_transfer-classification.md)

Accessing Sample Data

The user may easily request a sample batch of data that represents the inputs and outputs of the model.

1sample_data = model.sample_batch(batch_size = 10)
2 -
3print(sample_data['sample_inputs'][0].shape)
>> (10, 3, 224, 224) # (batch_size, num_channels, image_dim, image_dim)
1print(sample_data['sample_outputs'][0].shape)
>> (10, 1000) # (batch_size, num_classes)

The function search_models enables the user to quickly filter the contents of SparseZoo repository to find the stubs of interest:

1from sparsezoo import search_models
2 +
7# Inspect which files are present.
8# Note that the available recipes are restricted
9# according to the specified URL query arguments
10print(model.recipes.available)
>> ['transfer-classification']
1transfer_recipe = model.recipes.default # Now the recipes default to the one selected by the stub string arguments
2print(transfer_recipe)
>> File(name=recipe_transfer-classification.md)

Accessing Sample Data

You may easily request a sample batch of data that represents the inputs and outputs of the model.

1sample_data = model.sample_batch(batch_size = 10)
2 +
3print(sample_data['sample_inputs'][0].shape)
>> (10, 3, 224, 224) # (batch_size, num_channels, image_dim, image_dim)
1print(sample_data['sample_outputs'][0].shape)
>> (10, 1000) # (batch_size, num_classes)

The function search_models enables you to quickly filter the contents of the SparseZoo repository to find the stubs of interest:

1from sparsezoo import search_models
2
3args = {
4 "domain": "cv",
5 "sub_domain": "segmentation",
6 "architecture": "yolact",
7}
8 -
9models = search_models(**args)
10[print(model) for model in models]
>> Model(stub=zoo:cv/segmentation/yolact-darknet53/pytorch/dbolya/coco/pruned82_quant-none)
>> Model(stub=zoo:cv/segmentation/yolact-darknet53/pytorch/dbolya/coco/pruned90-none)
>> Model(stub=zoo:cv/segmentation/yolact-darknet53/pytorch/dbolya/coco/base-none)

Environmental Variables

Users can specify the directory where models (temporarily during download) and its required credentials will be saved in your working machine. +

9models = search_models(**args)
10[print(model) for model in models]
>> Model(stub=zoo:cv/segmentation/yolact-darknet53/pytorch/dbolya/coco/pruned82_quant-none)
>> Model(stub=zoo:cv/segmentation/yolact-darknet53/pytorch/dbolya/coco/pruned90-none)
>> Model(stub=zoo:cv/segmentation/yolact-darknet53/pytorch/dbolya/coco/base-none)

Environmental Variables

You can specify the directory where models and required credentials will be saved (temporarily during download) in your working machine. SPARSEZOO_MODELS_PATH is the path where the downloaded models will be saved temporarily. Default ~/.cache/sparsezoo/ -SPARSEZOO_CREDENTIALS_PATH is the path where credentials.yaml will be saved. Default ~/.cache/sparsezoo/

Console Scripts

In addition to the Python APIs, a console script entry point is installed with the package sparsezoo. -This enables easy interaction straight from your console/terminal.

Downloading

Download command help

sparsezoo.download -h

Download ResNet-50 Model
sparsezoo.download zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/base-none

Download pruned and quantized ResNet-50 Model
sparsezoo.download zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned_quant-moderate

Searching

Search command help

sparsezoo search -h

Searching for all classification MobileNetV1 models in the computer vision domain
sparsezoo search --domain cv --sub-domain classification --architecture mobilenet_v1

Searching for all ResNet-50 models
1sparsezoo search --domain cv --sub-domain classification \
2--architecture resnet_v1 --sub-architecture 50

For a more in-depth read, check out SparseZoo documentation.

Resources

Learning More

Release History

Official builds are hosted on PyPI

Additionally, more information can be found via GitHub Releases.

License

The project is licensed under the Apache License Version 2.0.

Community

Contribute

We appreciate contributions to the code, examples, integrations, and documentation as well as bug reports and feature requests! Learn how here.

Join

For user help or questions about SparseZoo, sign up or log in to our Deep Sparse Community Slack. We are growing the community member by member and happy to see you there. Bugs, feature requests, or additional questions can also be posted to our GitHub Issue Queue.

You can get the latest news, webinar and event invites, research papers, and other ML Performance tidbits by subscribing to the Neural Magic community.

For more general questions about Neural Magic, please fill out this form.

SparseML Python API
SparseML CLI
\ No newline at end of file +SPARSEZOO_CREDENTIALS_PATH is the path where credentials.yaml will be saved. The default is ~/.cache/sparsezoo/.

Console Scripts

In addition to the Python APIs, a console script entry point is installed with the package sparsezoo. +This enables easy interaction straight from your console/terminal.

Downloading

Download command help:

sparsezoo.download -h

Download ResNet-50 model:
sparsezoo.download zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/base-none

Download pruned and quantized ResNet-50 model:
sparsezoo.download zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned_quant-moderate

Searching

Search command help:

sparsezoo search -h

Search for all classification MobileNetV1 models in the computer vision domain:
sparsezoo search --domain cv --sub-domain classification --architecture mobilenet_v1

Search for all ResNet-50 models:
1sparsezoo search --domain cv --sub-domain classification \
2--architecture resnet_v1 --sub-architecture 50

Resources

Learning More

Release History

Official builds are hosted on PyPI

Additionally, more information can be found via GitHub Releases.

License

The project is licensed under the Apache License Version 2.0.

Community

Contribute

We appreciate contributions to the code, examples, integrations, and documentation as well as bug reports and feature requests! Learn how here.

Join

For user help or questions about SparseZoo, sign up or log into our Neural Magic Community Slack. We are growing the community member by member and happy to see you there. Bugs, feature requests, or additional questions can also be posted to our GitHub Issue Queue.

You can get the latest news, webinar and event invites, research papers, and other ML Performance tidbits by subscribing to the Neural Magic community.

For more general questions about Neural Magic, please fill out this form.

SparseML Python API
SparseML CLI
\ No newline at end of file diff --git a/products/sparsezoo/models/index.html b/products/sparsezoo/models/index.html index af8c36f06ae..060fc5953fe 100644 --- a/products/sparsezoo/models/index.html +++ b/products/sparsezoo/models/index.html @@ -8,4 +8,4 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
SparseZoo
Models

Sparse Models

Neural Magic Documentation
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
SparseZoo
Models

Sparse Models

Neural Magic Documentation
\ No newline at end of file diff --git a/products/sparsezoo/python-api/index.html b/products/sparsezoo/python-api/index.html index d11b45b1679..e73ed3dfd92 100644 --- a/products/sparsezoo/python-api/index.html +++ b/products/sparsezoo/python-api/index.html @@ -8,4 +8,4 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
SparseZoo
Python API

Python API

Stay tuned for our next release adding documentation enabling detailed exploration of the SparseML Python APIs.

SparseML CLI
FAQs
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Products
SparseZoo
Python API

Python API

Stay tuned for our next release adding documentation enabling detailed exploration of the SparseML Python APIs.

SparseML CLI
Glossary
\ No newline at end of file diff --git a/sitemap/sitemap-0.xml b/sitemap/sitemap-0.xml index 5b5333699fd..01a51968429 100644 --- a/sitemap/sitemap-0.xml +++ b/sitemap/sitemap-0.xml @@ -1 +1 @@ -https://docs.neuralmagic.com/detailsdaily0.7https://docs.neuralmagic.com/get-starteddaily0.7https://docs.neuralmagic.com/use-casesdaily0.7https://docs.neuralmagic.com/user-guidedaily0.7https://docs.neuralmagic.com/user-guide/onnx-exportdaily0.7https://docs.neuralmagic.com/daily0.7https://docs.neuralmagic.com/user-guide/deepsparse-enginedaily0.7https://docs.neuralmagic.com/productsdaily0.7https://docs.neuralmagic.com/user-guide/recipesdaily0.7https://docs.neuralmagic.com/user-guide/sparsificationdaily0.7https://docs.neuralmagic.com/user-guide/recipes/enablingdaily0.7https://docs.neuralmagic.com/user-guide/recipes/creatingdaily0.7https://docs.neuralmagic.com/user-guide/deepsparse-engine/numactl-utilitydaily0.7https://docs.neuralmagic.com/user-guide/deepsparse-engine/benchmarkingdaily0.7https://docs.neuralmagic.com/user-guide/deepsparse-engine/diagnotistics-debuggingdaily0.7https://docs.neuralmagic.com/user-guide/deepsparse-engine/hardware-supportdaily0.7https://docs.neuralmagic.com/use-cases/deploying-deepsparsedaily0.7https://docs.neuralmagic.com/use-cases/natural-language-processingdaily0.7https://docs.neuralmagic.com/use-cases/image-classificationdaily0.7https://docs.neuralmagic.com/user-guide/deepsparse-engine/schedulerdaily0.7https://docs.neuralmagic.com/use-cases/object-detectiondaily0.7https://docs.neuralmagic.com/use-cases/object-detection/deployingdaily0.7https://docs.neuralmagic.com/use-cases/natural-language-processing/deployingdaily0.7https://docs.neuralmagic.com/use-cases/natural-language-processing/text-classificationdaily0.7https://docs.neuralmagic.com/use-cases/natural-language-processing/token-classificationdaily0.7https://docs.neuralmagic.com/use-cases/natural-language-processing/question-answeringdaily0.7https://docs.neuralmagic.com/use-cases/image-classification/sparsifyingdaily0.7https://docs.neuralmagic.com/use-cases/deploying-deepsparse/aws-sagemakerdaily0.7https://docs.neuralmagic.com/use-cases/deploying-deepsparse/deepsparse-serverdaily0.7https://docs.neuralmagic.com/use-cases/object-detection/sparsifyingdaily0.7https://docs.neuralmagic.com/use-cases/deploying-deepsparse/dockerdaily0.7https://docs.neuralmagic.com/use-cases/image-classification/deployingdaily0.7https://docs.neuralmagic.com/products/sparsemldaily0.7https://docs.neuralmagic.com/products/sparsezoodaily0.7https://docs.neuralmagic.com/products/sparsezoo/python-apidaily0.7https://docs.neuralmagic.com/products/sparsezoo/modelsdaily0.7https://docs.neuralmagic.com/products/sparsezoo/clidaily0.7https://docs.neuralmagic.com/products/sparseml/python-apidaily0.7https://docs.neuralmagic.com/products/deepsparse/communitydaily0.7https://docs.neuralmagic.com/products/sparseml/clidaily0.7https://docs.neuralmagic.com/products/deepsparse/enterprise/clidaily0.7https://docs.neuralmagic.com/products/deepsparse/enterprisedaily0.7https://docs.neuralmagic.com/products/deepsparse/enterprise/cpp-apidaily0.7https://docs.neuralmagic.com/products/deepsparsedaily0.7https://docs.neuralmagic.com/products/deepsparse/enterprise/python-apidaily0.7https://docs.neuralmagic.com/products/deepsparse/community/clidaily0.7https://docs.neuralmagic.com/products/deepsparse/community/cpp-apidaily0.7https://docs.neuralmagic.com/products/deepsparse/community/python-apidaily0.7https://docs.neuralmagic.com/get-started/transfer-a-sparsified-modeldaily0.7https://docs.neuralmagic.com/get-started/deploy-a-modeldaily0.7https://docs.neuralmagic.com/get-started/installdaily0.7https://docs.neuralmagic.com/get-started/sparsify-a-modeldaily0.7https://docs.neuralmagic.com/get-started/try-a-modeldaily0.7https://docs.neuralmagic.com/get-started/try-a-model/nlp-text-classificationdaily0.7https://docs.neuralmagic.com/get-started/try-a-model/cv-object-detectiondaily0.7https://docs.neuralmagic.com/get-started/transfer-a-sparsified-model/nlp-text-classificationdaily0.7https://docs.neuralmagic.com/get-started/transfer-a-sparsified-model/cv-object-detectiondaily0.7https://docs.neuralmagic.com/get-started/sparsify-a-model/custom-integrationsdaily0.7https://docs.neuralmagic.com/get-started/install/deepsparse-entdaily0.7https://docs.neuralmagic.com/get-started/install/deepsparsedaily0.7https://docs.neuralmagic.com/get-started/sparsify-a-model/supported-integrationsdaily0.7https://docs.neuralmagic.com/get-started/deploy-a-model/nlp-text-classificationdaily0.7https://docs.neuralmagic.com/get-started/install/sparsemldaily0.7https://docs.neuralmagic.com/get-started/install/sparsezoodaily0.7https://docs.neuralmagic.com/details/faqsdaily0.7https://docs.neuralmagic.com/get-started/deploy-a-model/cv-object-detectiondaily0.7https://docs.neuralmagic.com/details/research-papersdaily0.7https://docs.neuralmagic.com/get-started/try-a-model/custom-use-casedaily0.7https://docs.neuralmagic.com/details/glossarydaily0.7 \ No newline at end of file +https://docs.neuralmagic.com/get-starteddaily0.7https://docs.neuralmagic.com/user-guide/deepsparse-enginedaily0.7https://docs.neuralmagic.com/user-guide/deploying-deepsparsedaily0.7https://docs.neuralmagic.com/user-guide/onnx-exportdaily0.7https://docs.neuralmagic.com/user-guide/recipesdaily0.7https://docs.neuralmagic.com/detailsdaily0.7https://docs.neuralmagic.com/use-casesdaily0.7https://docs.neuralmagic.com/user-guide/recipes/creatingdaily0.7https://docs.neuralmagic.com/user-guide/recipes/enablingdaily0.7https://docs.neuralmagic.com/user-guide/deploying-deepsparse/aws-lambdadaily0.7https://docs.neuralmagic.com/user-guide/deploying-deepsparse/aws-sagemakerdaily0.7https://docs.neuralmagic.com/daily0.7https://docs.neuralmagic.com/user-guide/deepsparse-engine/benchmarkingdaily0.7https://docs.neuralmagic.com/user-guide/deploying-deepsparse/deepsparse-serverdaily0.7https://docs.neuralmagic.com/user-guide/deepsparse-engine/diagnostics-debuggingdaily0.7https://docs.neuralmagic.com/user-guide/deepsparse-engine/hardware-supportdaily0.7https://docs.neuralmagic.com/user-guide/deepsparse-engine/loggingdaily0.7https://docs.neuralmagic.com/user-guide/deploying-deepsparse/google-cloud-rundaily0.7https://docs.neuralmagic.com/user-guide/deepsparse-engine/schedulerdaily0.7https://docs.neuralmagic.com/productsdaily0.7https://docs.neuralmagic.com/user-guide/deepsparse-engine/numactl-utilitydaily0.7https://docs.neuralmagic.com/user-guide/sparsificationdaily0.7https://docs.neuralmagic.com/use-cases/image-classificationdaily0.7https://docs.neuralmagic.com/use-cases/object-detection/deployingdaily0.7https://docs.neuralmagic.com/use-cases/object-detection/sparsifyingdaily0.7https://docs.neuralmagic.com/use-cases/natural-language-processing/question-answeringdaily0.7https://docs.neuralmagic.com/use-cases/natural-language-processing/text-classificationdaily0.7https://docs.neuralmagic.com/use-cases/natural-language-processing/token-classificationdaily0.7https://docs.neuralmagic.com/use-cases/image-classification/deployingdaily0.7https://docs.neuralmagic.com/use-cases/deploying-deepsparse/dockerdaily0.7https://docs.neuralmagic.com/use-cases/image-classification/sparsifyingdaily0.7https://docs.neuralmagic.com/products/deepsparsedaily0.7https://docs.neuralmagic.com/use-cases/natural-language-processingdaily0.7https://docs.neuralmagic.com/products/sparsemldaily0.7https://docs.neuralmagic.com/use-cases/object-detectiondaily0.7https://docs.neuralmagic.com/products/sparsezoo/clidaily0.7https://docs.neuralmagic.com/products/sparsezoo/python-apidaily0.7https://docs.neuralmagic.com/products/sparsezoo/modelsdaily0.7https://docs.neuralmagic.com/products/deepsparse/communitydaily0.7https://docs.neuralmagic.com/products/sparsezoodaily0.7https://docs.neuralmagic.com/products/deepsparse/enterprise/cpp-apidaily0.7https://docs.neuralmagic.com/products/sparseml/python-apidaily0.7https://docs.neuralmagic.com/products/deepsparse/enterprise/python-apidaily0.7https://docs.neuralmagic.com/products/sparseml/clidaily0.7https://docs.neuralmagic.com/products/deepsparse/community/clidaily0.7https://docs.neuralmagic.com/use-cases/natural-language-processing/deployingdaily0.7https://docs.neuralmagic.com/index/deploy-workflowdaily0.7https://docs.neuralmagic.com/index/optimize-workflowdaily0.7https://docs.neuralmagic.com/get-started/deploy-a-modeldaily0.7https://docs.neuralmagic.com/products/deepsparse/enterprisedaily0.7https://docs.neuralmagic.com/get-started/installdaily0.7https://docs.neuralmagic.com/get-started/transfer-a-sparsified-modeldaily0.7https://docs.neuralmagic.com/user-guidedaily0.7https://docs.neuralmagic.com/get-started/use-a-model/custom-use-casedaily0.7https://docs.neuralmagic.com/get-started/use-a-modeldaily0.7https://docs.neuralmagic.com/get-started/transfer-a-sparsified-model/nlp-text-classificationdaily0.7https://docs.neuralmagic.com/index/quick-tourdaily0.7https://docs.neuralmagic.com/get-started/transfer-a-sparsified-model/cv-object-detectiondaily0.7https://docs.neuralmagic.com/get-started/install/deepsparsedaily0.7https://docs.neuralmagic.com/get-started/install/deepsparse-entdaily0.7https://docs.neuralmagic.com/get-started/use-a-model/nlp-text-classificationdaily0.7https://docs.neuralmagic.com/get-started/sparsify-a-model/supported-integrationsdaily0.7https://docs.neuralmagic.com/products/deepsparse/enterprise/clidaily0.7https://docs.neuralmagic.com/get-started/deploy-a-model/cv-object-detectiondaily0.7https://docs.neuralmagic.com/products/deepsparse/community/python-apidaily0.7https://docs.neuralmagic.com/products/deepsparse/community/cpp-apidaily0.7https://docs.neuralmagic.com/details/faqsdaily0.7https://docs.neuralmagic.com/get-started/sparsify-a-model/custom-integrationsdaily0.7https://docs.neuralmagic.com/details/glossarydaily0.7https://docs.neuralmagic.com/get-started/install/sparsemldaily0.7https://docs.neuralmagic.com/get-started/install/sparsezoodaily0.7https://docs.neuralmagic.com/details/research-papersdaily0.7https://docs.neuralmagic.com/get-started/deploy-a-model/nlp-text-classificationdaily0.7https://docs.neuralmagic.com/get-started/use-a-model/cv-object-detectiondaily0.7https://docs.neuralmagic.com/get-started/sparsify-a-modeldaily0.7 \ No newline at end of file diff --git a/use-cases/deploying-deepsparse/docker/index.html b/use-cases/deploying-deepsparse/docker/index.html index 386044e74d6..e25198dddaf 100644 --- a/use-cases/deploying-deepsparse/docker/index.html +++ b/use-cases/deploying-deepsparse/docker/index.html @@ -8,6 +8,6 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Deploying DeepSparse
Docker

Using/Creating a DeepSparse Docker Image

DeepSparse is setup with a default Dockerfile for a minimal DeepSparse docker image. -This image is based off the latest official Ubuntu image.

Pull

You can access the already built image detailed at https://github.com/orgs/neuralmagic/packages/container/package/deepsparse:

1docker pull ghcr.io/neuralmagic/deepsparse:1.0.2-debian11
2docker tag ghcr.io/neuralmagic/deepsparse:1.0.2-debian11 deepsparse_docker

Extend

If you would like to customize the docker image, you can use the pre-built images as a base in your own Dockerfile:

1from ghcr.io/neuralmagic/deepsparse:1.0.2-debian11
2 -
3...

Build

In order to build and launch this image, run from the docker/ directory under the DeepSparse Repo:

$ docker build -t deepsparse_docker . && docker run -it deepsparse_docker ${python_command}

For example:

docker build -t deepsparse_docker . && docker run -it deepsparse_docker deepsparse.server --task question_answering --model_path "zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni"

If you want to use a specific branch from deepsparse you can use the GIT_CHECKOUT build arg:

docker build --build-arg GIT_CHECKOUT=main -t deepsparse_docker .
Deploying with DeepSparse on AWS SageMaker
What is Sparsification?
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo

Using/Creating a DeepSparse Docker Image

DeepSparse is set up with a default Dockerfile for a minimal DeepSparse Docker image. +This image is based off the latest official Ubuntu image.

Pull

You can access the already-built image detailed at https://github.com/orgs/neuralmagic/packages/container/package/deepsparse:

1docker pull ghcr.io/neuralmagic/deepsparse:1.0.2-debian11
2docker tag ghcr.io/neuralmagic/deepsparse:1.0.2-debian11 deepsparse_docker

Extend

To customize the Docker image, you can use the pre-built images as a base in your own Dockerfile:

1from ghcr.io/neuralmagic/deepsparse:1.0.2-debian11
2 +
3...

Build

To build and launch this image, run the following from the docker/ directory under the DeepSparse Repo:

$ docker build -t deepsparse_docker . && docker run -it deepsparse_docker ${python_command}

For example:

docker build -t deepsparse_docker . && docker run -it deepsparse_docker deepsparse.server --task question_answering --model_path "zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni"

To use a specific branch from DeepSparse, you can use the GIT_CHECKOUT build argument:

docker build --build-arg GIT_CHECKOUT=main -t deepsparse_docker .
Neural Magic Documentation
\ No newline at end of file diff --git a/use-cases/image-classification/deploying/index.html b/use-cases/image-classification/deploying/index.html index 83f2e862596..6db888597dd 100644 --- a/use-cases/image-classification/deploying/index.html +++ b/use-cases/image-classification/deploying/index.html @@ -8,28 +8,26 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Image Classification
Deploying

Deploying Image Classification Models with DeepSparse

This page explains how to deploy an Image Classification model with DeepSparse.

DeepSparse allows accelerated inference, serving, and benchmarking of sparsified image classification models. -These integrations enables you to easily deploy sparsified image classification models onto the DeepSparse Engine for GPU-class performance directly on the CPU.

Installation Requirements

This section requires the DeepSparse Server Install.

Getting Started

Before you start using the DeepSparse Engine, confirm your machine is -compatible with our hardware requirements.

Model Format

To deploy an image classification model using DeepSparse Engine, pass the model in the ONNX format. -This grants the engine the flexibility to serve any model in a framework-agnostic environment.

There are two options to creating the model in ONNX format:

1) Export the ONNX/Config Files From SparseML

This pathway is relevant if you intend to deploy a model created using SparseML library.

After training your model with SparseML, locate the .pth file for the checkpoint you'd like to export and run the SparseML integrated export script below.

1sparseml.image_classification.export_onnx \
2 --arch-key resnet50 \
3 --dataset imagenet \
4 --dataset-path ~/datasets/ILSVRC2012 \
5 --checkpoint-path ~/checkpoints/resnet50_checkpoint.pth

This creates model.onnx file.

The examples below use SparseZoo stubs, but simply pass the path to model.onnx in place of the stubs to use the local model.

2) Pass a SparseZoo Stub To DeepSparse

This pathway is relevant if you plan to use an off-the-shelf model from the SparseZoo.

All of DeepSparse's Pipelines and APIs can use a SparseZoo stub in place of a local folder. -The Pipelines use the stubs to locate and download the ONNX and config files from the SparseZoo repo.

All of DeepSparse's pipelines and APIs can use a SparseZoo stub in place of a local folder. -The examples use SparseZoo stubs to highlight this pathway.

The examples below use option 2. However, you can pass the local path to the ONNX file as needed.

Deployment APIs

DeepSparse provides both a Python Pipeline API and an out-of-the-box model +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Image Classification
Deploying

Deploying Image Classification Models with DeepSparse

This page explains how to deploy an Image Classification model with DeepSparse.

DeepSparse allows accelerated inference, serving, and benchmarking of sparsified image classification models. +This integration enables you to easily deploy sparsified image classification models with DeepSparse for GPU-class performance directly on the CPU.

Installation Requirements

This use case requires the installation of DeepSparse Server.

Getting Started

Before you start using DeepSparse, confirm your machine is +compatible with our hardware requirements.

Model Format

To deploy an image classification model with DeepSparse , pass the model in the ONNX format. +This grants DeepSparse the flexibility to serve any model in a framework-agnostic environment.

There are two options for creating the model in ONNX format:

1) Export the ONNX/Config Files From SparseML

This pathway is relevant if you intend to deploy a model created using SparseML library.

After training your model with SparseML, locate the .pth file for the checkpoint you'd like to export and run the SparseML integrated export script below.

1sparseml.image_classification.export_onnx \
2 --arch-key resnet50 \
3 --dataset imagenet \
4 --dataset-path ~/datasets/ILSVRC2012 \
5 --checkpoint-path ~/checkpoints/resnet50_checkpoint.pth

This creates a model.onnx file.

The examples below use SparseZoo stubs, but simply pass the path to model.onnx in place of the stubs to use the local model.

2) Pass a SparseZoo Stub To DeepSparse

This pathway is relevant if you plan to use an off-the-shelf model from the SparseZoo.

All of DeepSparse's Pipelines and APIs can use a SparseZoo stub in place of a local folder. +The Pipelines use the stubs to locate and download the ONNX and configuration files from the SparseZoo repository.

All of DeepSparse's pipelines and APIs can use a SparseZoo stub in place of a local folder. +The examples use SparseZoo stubs to highlight this pathway.

The examples below use option 2. However, you can pass the local path to the ONNX file, as needed.

Deployment APIs

DeepSparse provides both a Python Pipeline API and an out-of-the-box model server that can be used for end-to-end inference in either Python workflows or as an HTTP endpoint. Both options provide similar specifications -for configurations and support a variety of image classification models.

Python API

Pipelines are the default interface for running inference with the -DeepSparse Engine.

Once a model is obtained, either through SparseML training or directly from SparseZoo, -a Pipeline can be used to easily facilitate end to end inference and deployment +for configurations and support a variety of image classification models.

Python API

Pipelines are the default interface for running inference with DeepSparse.

Once a model is obtained, either through SparseML training or directly from SparseZoo, +a Pipeline can be used to easily facilitate end-to-end inference and deployment of the sparsified image classification model.

If no model is specified to the Pipeline for a given task, the Pipeline will automatically select a pruned and quantized model for the task from the SparseZoo that can be used for accelerated inference. Note that other models in the SparseZoo will have different tradeoffs between speed, size, -and accuracy.

HTTP Server

As an alternative to Python API, the DeepSparse Server allows you to +and accuracy.

HTTP Server

As an alternative to Python API, DeepSparse Server allows you to serve ONNX models and pipelines in HTTP. Configuring the server uses the same parameters and schemas as the Pipelines, enabling simple deployment. Once launched, a /docs endpoint is created with full -endpoint descriptions and support for making sample requests.

An example deployment using a 95% pruned ResNet-50 is given below.

For full documentation on deploying sparse image classification models with the -DeepSparse Server, see the documentation for DeepSparse Server.

Deployment Examples

The following section includes example usage of the Pipeline and server APIs for +endpoint descriptions and support for making sample requests.

An example deployment using a 95% pruned ResNet-50 is given below.

Refer also to the full documentation for DeepSparse Server.

Deployment Examples

The following section includes example usage of the Pipeline and server APIs for various image classification models. Each example uses a SparseZoo stub to pull down the model, but a local path to an ONNX file can also be passed as the model_path.

Python API

Create a Pipeline to run inference with the following code. The Pipeline handles the pre-processing (e.g., subtracting by ImageNet -means, dividing by ImageNet standard deviation) and post-processing so you can pass an raw image and receive an class without any extra code.

1from deepsparse import Pipeline
2cv_pipeline = Pipeline.create(
3 task='image_classification',
4 model_path='zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none', # Path to checkpoint or SparseZoo stub
5 class_names=None # optional dict / json mapping class ids to labels (if not using ImageNet classes)
6)
7input_image = "my_image.png" # path to input image
8inference = cv_pipeline(images=input_image)

HTTP Server

Spinning up:

1deepsparse.server \
2 task image_classification \
3 --model_path "zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none" \
4 --port 5543

Making a request:

1import requests
2 +means, dividing by ImageNet standard deviation) and post-processing so you can pass a raw image and receive a class without any extra code.

1from deepsparse import Pipeline
2cv_pipeline = Pipeline.create(
3 task='image_classification',
4 model_path='zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none', # Path to checkpoint or SparseZoo stub
5 class_names=None # optional dict / json mapping class ids to labels (if not using ImageNet classes)
6)
7input_image = "my_image.png" # path to input image
8inference = cv_pipeline(images=input_image)

HTTP Server

Spinning up:

1deepsparse.server \
2 task image_classification \
3 --model_path "zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none" \
4 --port 5543

Making a request:

1import requests
2
3url = 'http://0.0.0.0:5543/predict/from_files'
4path = ['goldfish.jpeg'] # just put the name of images in here
5files = [('request', open(img, 'rb')) for img in path]
6resp = requests.post(url=url, files=files)

Benchmarking

The mission of Neural Magic is to enable GPU-class inference performance on commodity CPUs. -Want to find out how fast our sparse ONNX models perform inference? You can quickly run benchmarking tests on your own with a single CLI command.

You only need to provide the model path of a SparseZoo ONNX model or your own local ONNX model to get started:

deepsparse.benchmark zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none

Output:

1Original Model Path: zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none
2Batch Size: 1
3Scenario: async
4Throughput (items/sec): 299.2372
5Latency Mean (ms/batch): 16.6677
6Latency Median (ms/batch): 16.6748
7Latency Std (ms/batch): 0.1728
8Iterations: 2995

To learn more about benchmarking, refer to the appropriate documentation. -Also, check out our Benchmarking Tutorial on GitHub !

Sparsifying Image Classification Models with SparseML
Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML
\ No newline at end of file +Want to find out how fast our sparse ONNX models perform inference? You can quickly run benchmarking tests on your own with a single CLI command.

You only need to provide the model path of a SparseZoo ONNX model or your own local ONNX model to get started:

deepsparse.benchmark zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none

The output is:

1Original Model Path: zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none
2Batch Size: 1
3Scenario: async
4Throughput (items/sec): 299.2372
5Latency Mean (ms/batch): 16.6677
6Latency Median (ms/batch): 16.6748
7Latency Std (ms/batch): 0.1728
8Iterations: 2995

To learn more about benchmarking, refer to the appropriate documentation. +Also, check out our Benchmarking Tutorial on GitHub.

Sparsifying Image Classification Models with SparseML
Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML
\ No newline at end of file diff --git a/use-cases/image-classification/index.html b/use-cases/image-classification/index.html index af14a2f23ee..96e993e744a 100644 --- a/use-cases/image-classification/index.html +++ b/use-cases/image-classification/index.html @@ -8,4 +8,4 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Image Classification

Image Classification

Neural Magic Documentation
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Image Classification

Image Classification

Neural Magic Documentation
\ No newline at end of file diff --git a/use-cases/image-classification/sparsifying/index.html b/use-cases/image-classification/sparsifying/index.html index 70e119b40e9..9143356c84f 100644 --- a/use-cases/image-classification/sparsifying/index.html +++ b/use-cases/image-classification/sparsifying/index.html @@ -8,16 +8,15 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Image Classification
Sparsifying

Sparsifying Image Classification Models with SparseML

This page explains how to create a sparse image classification model.

SparseML Image Classification pipeline integrates with torch and torchvision libraries to enable the sparsification of popular image classification model. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Image Classification
Sparsifying

Sparsifying Image Classification Models with SparseML

This page explains how to create a sparse image classification model.

SparseML Image Classification pipeline integrates with torch and torchvision libraries to enable the sparsification of popular image classification model. Sparsification is a powerful technique that results in faster, smaller, and cheaper deployable models. -After training, the model can be deployed with Neural Magic's DeepSparse Engine. The engine enables inference with GPU-class performance directly on your CPU.

This integration enables you to create a sparse model in two ways:

  • Sparsification of Popular Torchvision Models - easily sparsify popular torchvision image classification models.
  • Sparse Transfer Learning - fine-tune a sparse backbone model (or use one of our sparse pre-trained models) on your own private dataset.

Each option is useful in different situations:

  • Sparsification from Scratch enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the Sparsification algorithm.
  • Sparse Transfer Learning is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.

Installation Requirements

This section requires SparseML Torchvision Install.

Tutorials

Getting Started

Sparsifying Image Classification Models

In the example below, a dense ResNet model is sparsified and fine-tuned on the Imagenette dataset.

1sparseml.image_classification.train \
2 --recipe-path "zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenette/pruned-conservative?recipe_type=original" \
3 --dataset-path ./data \
4 --pretrained True \
5 --arch-key resnet50 \
6 --dataset imagenette \
7 --train-batch-size 128 \
8 --test-batch-size 256 \
9 --loader-num-workers 8 \
10 --save-dir sparsification_example \
11 --logs-dir sparsification_example \
12 --model-tag resnet50-imagenette-pruned \
13 --save-best-after 8

The most important arguments are --dataset_path and --recipe_path:

  • --dataset_path argument indicates which model to start the pruning process from. It can be a SparseZoo stub or a path to a local model.
  • --recipe_path argument instructs SparseML to run the sparsification process during the training loop. It can either be the stub of a recipe in the SparseZoo or a path to a local custom recipe. For more on creating a recipe see here.

Sparse Transfer Learning

SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset. -While you are free to use your backbone, we encourage you to leverage one of our sparse pre-trained models to boost your productivity!

The command below fetches a pruned ResNet model, pre-trained on ImageNet dataset from the SparseZoo and then fine-tunes the model on the Imagenette dataset while preserving sparsity.

1sparseml.image_classification.train \
2 --recipe-path zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none?recipe_type=transfer-classification \
3 --checkpoint-path zoo \
4 --arch-key resnet50 \
5 --model-kwargs '{"ignore_error_tensors": ["classifier.fc.weight", "classifier.fc.bias"]}' \
6 --dataset imagenette \
7 --dataset-path /PATH/TO/IMAGENETTE \
8 --train-batch-size 32 \
9 --test-batch-size 64 \
10 --loader-num-workers 0 \
11 --optim Adam \
12 --optim-args '{}' \
13 --model-tag resnet50-imagenette-transfer-learned

SparseML CLI

SparseML installation provides a CLI for sparsifying your models for a specific task; -appending the --help argument displays a full list of options for training in SparseML:

1sparseml.image_classification.train --help
>Usage: sparseml.image_classification.train [OPTIONS]
>
>PyTorch training integration with SparseML for image classification models
>
>Options:
>--train-batch-size, --train_batch_size INTEGER
>Train batch size [required]
>--test-batch-size, --test_batch_size INTEGER
>Test/Validation batch size [required]
>--dataset TEXT The dataset to use for training, ex:
>`imagenet`, `imagenette`, `cifar10`, etc.
>Set to `imagefolder` for a generic dataset
>setup with imagefolder type structure like
>imagenet or loadable by a dataset in
>`sparseml.pytorch.datasets` [required]
>--dataset-path, --dataset_path DIRECTORY
>The root dir path where the dataset is
>stored or should be downloaded to if
>available [required]
>--arch_key, --arch-key TEXT The architecture key for image
>classification model; example: `resnet50`,
>`mobilenet`. Note: Will be read from the
>checkpoint if not specified
>--checkpoint-path, --checkpoint_path TEXT
>A path to a previous checkpoint to load the
>state from and resume the state for. If
>provided, pretrained will be ignored . If
>using a SparseZoo recipe, can also provide
>'zoo' to load the base weights associated
>with that recipe. Additionally, can also
>provide a SparseZoo model stub to load model
>weights from SparseZoo
>...

Exporting to ONNX

The artifacts of the training process are saved to --save-dir under --model-tag. +After training, the sparse model can be deployed with DeepSparse for GPU-class performance directly on your CPU.

This integration enables you to create a sparse model in two ways. Each option is useful in different situations:

  • Sparsification of Popular Torchvision ModelsEasily sparsify popular torchvision image classification models. This enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the Sparsification algorithm.
  • Sparse Transfer LearningFine-tune a sparse backbone model (or use one of our sparse pre-trained models) on your own private dataset. This is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.

Installation Requirements

This use case requires installation of SparseML Torchvision.

Tutorials

Here are additional tutorials for this functionality:

Getting Started

Sparsifying Image Classification Models

In the example below, a dense ResNet model is sparsified and fine-tuned on the Imagenette dataset.

1sparseml.image_classification.train \
2 --recipe-path "zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenette/pruned-conservative?recipe_type=original" \
3 --dataset-path ./data \
4 --pretrained True \
5 --arch-key resnet50 \
6 --dataset imagenette \
7 --train-batch-size 128 \
8 --test-batch-size 256 \
9 --loader-num-workers 8 \
10 --save-dir sparsification_example \
11 --logs-dir sparsification_example \
12 --model-tag resnet50-imagenette-pruned \
13 --save-best-after 8

The most important arguments are --dataset_path and --recipe_path:

  • --dataset_path indicates the model with which to start the pruning process. It can be a SparseZoo stub or a path to a local model.
  • --recipe_path instructs SparseML to run the sparsification process during the training loop. It can be either the stub of a recipe in the SparseZoo or a path to a local custom recipe. See Creating Sparsification Recipes for more information.

Sparse Transfer Learning

SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset. +While you are free to use your backbone, we encourage you to leverage one of our sparse pre-trained models to boost your productivity!

The command below fetches a pruned ResNet model, pre-trained on ImageNet dataset from the SparseZoo and then fine-tunes the model on the Imagenette dataset while preserving sparsity.

1sparseml.image_classification.train \
2 --recipe-path zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95-none?recipe_type=transfer-classification \
3 --checkpoint-path zoo \
4 --arch-key resnet50 \
5 --model-kwargs '{"ignore_error_tensors": ["classifier.fc.weight", "classifier.fc.bias"]}' \
6 --dataset imagenette \
7 --dataset-path /PATH/TO/IMAGENETTE \
8 --train-batch-size 32 \
9 --test-batch-size 64 \
10 --loader-num-workers 0 \
11 --optim Adam \
12 --optim-args '{}' \
13 --model-tag resnet50-imagenette-transfer-learned

SparseML CLI

SparseML installation provides a CLI for sparsifying your models for a specific task. Appending the --help argument displays a full list of options for training in SparseML:

1sparseml.image_classification.train --help
>Usage: sparseml.image_classification.train [OPTIONS]
>
>PyTorch training integration with SparseML for image classification models
>
>Options:
>--train-batch-size, --train_batch_size INTEGER
>Train batch size [required]
>--test-batch-size, --test_batch_size INTEGER
>Test/Validation batch size [required]
>--dataset TEXT The dataset to use for training, ex:
>`imagenet`, `imagenette`, `cifar10`, etc.
>Set to `imagefolder` for a generic dataset
>setup with imagefolder type structure like
>imagenet or loadable by a dataset in
>`sparseml.pytorch.datasets` [required]
>--dataset-path, --dataset_path DIRECTORY
>The root dir path where the dataset is
>stored or should be downloaded to if
>available [required]
>--arch_key, --arch-key TEXT The architecture key for image
>classification model; example: `resnet50`,
>`mobilenet`. Note: Will be read from the
>checkpoint if not specified
>--checkpoint-path, --checkpoint_path TEXT
>A path to a previous checkpoint to load the
>state from and resume the state for. If
>provided, pretrained will be ignored . If
>using a SparseZoo recipe, can also provide
>'zoo' to load the base weights associated
>with that recipe. Additionally, can also
>provide a SparseZoo model stub to load model
>weights from SparseZoo
>...

Exporting to ONNX

The artifacts of the training process are saved to --save-dir under --model-tag. Once the script terminates, you should find everything required to deploy or further modify the model, including the recipe (with the full description of the sparsification attributes), -checkpoint files (saved in the appropriate framework format), etc.

Exporting the Sparse Model to ONNX

The DeepSparse Engine uses the ONNX format to load neural networks and then +checkpoint files (saved in the appropriate framework format), etc.

Exporting the Sparse Model to ONNX

DeepSparse uses the ONNX format to load neural networks and then deliver breakthrough performance for CPUs by leveraging the sparsity and quantization within a network.

The SparseML installation provides a sparseml.image_classification.export_onnx -command that you can use to load the checkpoint and create a new model.onnx file in the same directory the +command that you can use to load the checkpoint and create a new model.onnx file in the same directory where the framework directory is stored. Be sure the --model_path argument points to your trained model.pth or checkpoint-best.pth file. Both are included in <save-dir>/<model-tag>/framework/ from the sparsification run.

1sparseml.image_classification.export_onnx \
2 --arch-key resnet50 \
3 --dataset imagenet \
4 --dataset-path ./data/imagenette-160 \
5 --checkpoint-path sparsification_example/resnet50-imagenette-pruned/training/model.pth
NLP Deployments with DeepSparse
Image Classification Deployments with DeepSparse
\ No newline at end of file diff --git a/use-cases/index.html b/use-cases/index.html index e8f5c3a32d8..1908490dc06 100644 --- a/use-cases/index.html +++ b/use-cases/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsUse Cases
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases

Get Started

Neural Magic Documentation
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases

Use Cases

Neural Magic Documentation
\ No newline at end of file diff --git a/use-cases/natural-language-processing/deploying/index.html b/use-cases/natural-language-processing/deploying/index.html index a823a95d31b..6e5a51e0c92 100644 --- a/use-cases/natural-language-processing/deploying/index.html +++ b/use-cases/natural-language-processing/deploying/index.html @@ -8,27 +8,26 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Natural Language Processing
Deploying

Deploying NLP Models with Hugging Face Transformers and DeepSparse

This page explains how to deploy a sparse Transformer on DeepSparse.

DeepSparse allows accelerated inference, serving, and benchmarking of sparsified Hugging Face Transformer models. -The Hugging Face integration enables you to easily deploy sparsified Transformers onto the DeepSparse Engine for GPU-class performance directly on the CPU.

This integration currently supports several fundamental NLP tasks out of the box:

  • Question Answering - posing questions about a document
  • Sentiment Analysis - assigning a sentiment to a piece of text
  • Text Classification - assigning a label or class to a piece of text (e.g duplicate question pairing)
  • Token Classification - attributing a label to each token in a sentence (e.g. Named Entity Recognition task)

We are actively working on adding more use cases, stay tuned!

Installation Requirements

This section requires the DeepSparse Server Install.

Getting Started

Before you start using the DeepSparse Engine, confirm that your machine is -compatible with our hardware requirements.

Model Format

To deploy a Transformer using DeepSparse Engine, pass the model in the ONNX format along with the Hugging Face supporting files. -This grants the engine the flexibility to serve any model in a framework-agnostic environment.

The DeepSparse Pipelines require the following files within a folder on the local server to properly load a Transformers model:

There are two options to collecting these files:

1) Export the ONNX/Config Files From SparseML

This pathway is relevant if you intend to deploy a model created using SparseML.

After training your model with SparseML, locate the .pt file for the model you'd like to export and run the SparseML integrated Transformers ONNX export script below. -For example, if you wanted to export a model you had trained to do question answering, use the below:

sparseml.transformers.export_onnx --task question-answering --model_path model_path

This creates model.onnx file and exports it to the local filesystem. tokenizer.json and config.json are also stored in this directory. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Natural Language Processing
Deploying

Deploying NLP Models with Hugging Face Transformers and DeepSparse

This page explains how to deploy a sparse Transformer on DeepSparse.

DeepSparse allows accelerated inference, serving, and benchmarking of sparsified Hugging Face Transformer models. +The Hugging Face integration enables you to easily deploy sparsified Transformers with DeepSparse for GPU-class performance directly on the CPU.

This integration currently supports several fundamental NLP tasks out of the box:

  • Question Answeringposing questions about a document
  • Sentiment Analysisassigning a sentiment to a piece of text
  • Text Classificationassigning a label or class to a piece of text (e.g., duplicate question pairing)
  • Token Classificationattributing a label to each token in a sentence (e.g., Named Entity Recognition task)

We are actively working on adding more use cases. Stay tuned!

Installation Requirements

This use case requires the installation of DeepSparse Server.

Getting Started

Before you start using DeepSparse, confirm that your machine is +compatible with our hardware requirements.

Model Format

To deploy a Transformer using DeepSparse, pass the model in the ONNX format along with the Hugging Face supporting files. +This grants the engine the flexibility to serve any model in a framework-agnostic environment.

DeepSparse Pipelines require the following files within a folder on the local server to properly load a Transformers model:

There are two options for collecting these files:

1) Export the ONNX/Config Files From SparseML

This pathway is relevant if you intend to deploy a model created using SparseML.

After training your model with SparseML, locate the .pt file for the model you'd like to export and run the SparseML integrated Transformers ONNX export script below. +For example, to export a model you had trained to do question answering, use the following:

sparseml.transformers.export_onnx --task question-answering --model_path model_path

This creates a model.onnx file and exports it to the local filesystem. tokenizer.json and config.json are also stored in this directory. All of the examples below use SparseZoo stubs, but you can pass the path to the local directory in its place.

2) Pass a SparseZoo Stub To DeepSparse

This pathway is relevant if you plan to use an off-the-shelf model from the SparseZoo.

All of DeepSparse's Pipelines and APIs can use a SparseZoo stub in place of a local folder. -The Pipelines use the stubs to locate and download the ONNX and config files from the SparseZoo repo.

The examples below use option 2. However, you can pass the local path to the directory containing the config files in place +The Pipelines use the stubs to locate and download the ONNX and configuration files from the SparseZoo repository.

The examples below use option 2. However, you can pass the local path to the directory containing the configuration files in place of the SparseZoo stub.

Deployment APIs

DeepSparse provides both a Python Pipeline API and an out-of-the-box model server -that can be used for end-to-end inference in either existing python workflows or as an HTTP endpoint. -Both options provide similar specifications for configurations and support a variety of NLP transformers -tasks including question answering, text classification, sentiment analysis, and token classification.

Python API

Pipelines are the default interface for running inference with the DeepSparse Engine.

Once a model is obtained, either through SparseML training or directly from SparseZoo, -deepsparse.Pipeline can be used to easily facilitate end to end inference and deployment -of the sparsified transformers model.

If no model is specified to the Pipeline for a given task, the Pipeline will automatically +that can be used for end-to-end inference in either existing Python workflows or as an HTTP endpoint. +Both options provide similar specifications for configurations and support a variety of NLP Transformers +tasks including question answering, text classification, sentiment analysis, and token classification.

Python API

Pipelines are the default interface for running inference with DeepSparse.

Once a model is obtained, either through SparseML training or directly from SparseZoo, +deepsparse.Pipeline can be used to easily facilitate end-to-end inference and deployment +of the sparsified Transformers model.

If no model is specified to the Pipeline for a given task, the Pipeline will automatically select a pruned and quantized model for the task from the SparseZoo that can be used for accelerated inference. Note that other models in the SparseZoo will have different tradeoffs between speed, size, -and accuracy.

HTTP Server

As an alternative to Python API, the DeepSparse Server allows you to serve ONNX models and pipelines in HTTP. +and accuracy.

HTTP Server

As an alternative to the Python API, DeepSparse Server allows you to serve ONNX models and pipelines in HTTP. Both configuring and making requests to the server follow the same parameters and schemas as the -Pipelines enabling simple deployment. Once launched, a /docs endpoint is created with full -endpoint descriptions and support for making sample requests.

Example deployments using NLP transformer models are provided below. -For full documentation on deploying sparse transformer models with the DeepSparse Server, see the -documentation.

Deployment Use Cases

The following section includes example usage of the Pipeline and server APIs for various NLP transformers tasks.

Question Answering

The question answering tasks accepts a question and a context. The pipeline will predict an answer +Pipelines, enabling simple deployment. Once launched, a /docs endpoint is created with full +endpoint descriptions and support for making sample requests.

Example deployments using NLP Transformer models are provided below. +Refer to the full documentation on DeepSparse Server.

Deployment Use Cases

The following section includes example usage of the pipeline and server APIs for various NLP Transformers tasks.

Question Answering

The question answering tasks accepts a question and a context. The pipeline will predict an answer for the question as a substring of the context. The following examples use a pruned and quantized question answering BERT model trained on the SQuAD dataset downloaded by default from the SparseZoo.

Python Pipeline

1from deepsparse import Pipeline
2
3qa_pipeline = Pipeline.create(task="question-answering")
4inference = qa_pipeline(question="What's my name?", context="My name is Snorlax")
>{'score': 0.9947717785835266, 'start': 11, 'end': 18, 'answer': 'Snorlax'}

HTTP Server

Spinning up:

1deepsparse.server \
2 task question-answering \
3 --model_path "zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni"

Making a request:

1import requests
2 @@ -41,10 +40,10 @@
5inference = sa_pipeline("Snorlax loves my Tesla!")
>[{'label': 'LABEL_1', 'score': 0.9884248375892639}] # positive sentiment

HTTP Server

Spinning up:

1deepsparse.server \
2 task sentiment-analysis \
3 --model_path "zoo:nlp/sentiment_analysis/bert-base/pytorch/huggingface/sst2/12layer_pruned80_quant-none-vnni"

Making a request:

1import requests
2
3url = "http://localhost:5543/predict" # Server's port default to 5543
4
5obj = {"sequences": "Snorlax loves my Tesla!"}
6 -
7response = requests.post(url, json=obj)
8response.text
>'{"labels":["LABEL_1"],"scores":[0.9884248375892639]}'

Text Classification

The text classification task supports binary, multi class, and regression predictions over +

7response = requests.post(url, json=obj)
8response.text
>'{"labels":["LABEL_1"],"scores":[0.9884248375892639]}'

Text Classification

The text classification task supports binary, multi-class, and regression predictions over sentence inputs. The following example uses a pruned and quantized text classification DistilBERT model trained on the qqp dataset downloaded from a SparseZoo stub. -The qqp dataset takes pairs of questions and predicts if they are a duplicate or not.

Python Pipeline

1from deepsparse import Pipeline
2 +The qqp dataset takes pairs of questions and predicts whether or not they are a duplicate.

Python Pipeline

1from deepsparse import Pipeline
2
3tc_pipeline = Pipeline.create(
4 task="text-classification",
5 model_path="zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/qqp/pruned80_quant-none-vnni",
6)
7
8# inference of duplicate question pair
9inference = tc_pipeline(
10 sequences=[
11 [
12 "Which is the best gaming laptop under 40k?",
13 "Which is the best gaming laptop under 40,000 rs?",
14 ]
15 ]
16)
>TextClassificationOutput(labels=['duplicate'], scores=[0.9947025775909424])

HTTP Server

Spinning up:

1deepsparse.server \
2 task text-classification \
3 --model_path "zoo:nlp/text_classification/distilbert-none/pytorch/huggingface/qqp/pruned80_quant-none-vnni"

Making a request:

1import requests
2
3url = "http://localhost:5543/predict" # Server's port default to 5543
4 @@ -57,4 +56,4 @@
5obj = {"inputs": "Drive from California to Texas!"}
6
7
8response = requests.post(url, json=obj)
9response.text
>'{"predictions":[[{"entity":"LABEL_0","score":0.9998655915260315,"index":1,"word":"drive","start":0,"end":5,"is_grouped":false},{"entity":"LABEL_0","score":0.9998604655265808,"index":2,"word":"from","start":6,"end":10,"is_grouped":false},{"entity":"LABEL_5","score":0.9994636178016663,"index":3,"word":"california","start":11,"end":21,"is_grouped":false},{"entity":"LABEL_0","score":0.999838650226593,"index":4,"word":"to","start":22,"end":24,"is_grouped":false},{"entity":"LABEL_5","score":0.9994573593139648,"index":5,"word":"texas","start":25,"end":30,"is_grouped":false},{"entity":"LABEL_0","score":0.9998716711997986,"index":6,"word":"!","start":30,"end":31,"is_grouped":false}]]}'

Benchmarking

The mission of Neural Magic is to enable GPU-class inference performance on commodity CPUs. Want to find out how fast our sparse Hugging Face ONNX models perform inference? -You can quickly do benchmarking tests on your own with a single CLI command!

You only need to provide the model path of a SparseZoo ONNX model or your own local ONNX model to get started:

1deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni
>Original Model Path: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni
>Batch Size: 1
>Scenario: multistream
>Throughput (items/sec): 76.3484
>Latency Mean (ms/batch): 157.1049
>Latency Median (ms/batch): 157.0088
>Latency Std (ms/batch): 1.4860
>Iterations: 768

To learn more about benchmarking, refer to the appropriate documentation.

Support

For Neural Magic Support, sign up or log in to our Deep Sparse Community Slack. Bugs, feature requests, or additional questions can also be posted to our GitHub Issue Queue.

NLP Token Classification
Sparsifying Image Classification Models with SparseML
\ No newline at end of file +You can quickly do benchmarking tests on your own with a single CLI command!

You only need to provide the model path of a SparseZoo ONNX model or your own local ONNX model to get started:

1deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni
>Original Model Path: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni
>Batch Size: 1
>Scenario: multistream
>Throughput (items/sec): 76.3484
>Latency Mean (ms/batch): 157.1049
>Latency Median (ms/batch): 157.0088
>Latency Std (ms/batch): 1.4860
>Iterations: 768

To learn more about benchmarking, refer to the appropriate documentation.

Support

For Neural Magic Support, sign up or log into our Neural Magic Community Slack. Bugs, feature requests, or additional questions can also be posted to our GitHub Issue Queue.

NLP Token Classification
Sparsifying Image Classification Models with SparseML
\ No newline at end of file diff --git a/use-cases/natural-language-processing/index.html b/use-cases/natural-language-processing/index.html index 25be84698f7..47b5cc25810 100644 --- a/use-cases/natural-language-processing/index.html +++ b/use-cases/natural-language-processing/index.html @@ -8,4 +8,4 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Natural Language Processing

Natural Language Processing

Neural Magic Documentation
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Natural Language Processing

Natural Language Processing

Neural Magic Documentation
\ No newline at end of file diff --git a/use-cases/natural-language-processing/question-answering/index.html b/use-cases/natural-language-processing/question-answering/index.html index 8286186288b..7c259ddb5e9 100644 --- a/use-cases/natural-language-processing/question-answering/index.html +++ b/use-cases/natural-language-processing/question-answering/index.html @@ -8,15 +8,15 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Natural Language Processing
Question Answering

Question Answering with Hugging Face Transformers and SparseML

This page explains how to create and deploy a sparse Transformer for Question Answering.

SparseML Question Answering Pipelines integrate with Hugging Face’s Transformers library to enable the sparsification of a large set of transformers models. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Natural Language Processing
Question Answering

Question Answering with Hugging Face Transformers and SparseML

This page explains how to create and deploy a sparse Transformer for Question Answering.

SparseML Question Answering Pipelines integrate with Hugging Face’s Transformers library to enable the sparsification of a large set of transformers models. Sparsification is a powerful technique that results in faster, smaller, and cheaper deployable models. -A sparse model can be deployed with Neural Magic's DeepSparse Engine with GPU-class performance directly on your CPU.

This integration enables you to create a sparse model in two ways:

  • Sparsification of Popular Transformer Models - sparsify any popular Hugging Face Transformer model from scratch.
  • Sparse Transfer Learning - fine-tune a sparse model (or use one of our sparse pre-trained models) on your own private dataset.

Each option is useful in different situations:

  • Sparsification from Scratch enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the sparsification algorithm.
  • Sparse Transfer Learning is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.

Installation Requirements

This section requires SparseML Torch Install and DeepSparse General Install.

It is recommended to run Python 3.8 as some of the scripts within the transformers repository require it.

Transformers will not immediately install with this command. Instead, a sparsification-compatible version of Transformers will install on the first invocation of the Transformers code in SparseML.

Tutorials

There are some additional tutorials for this functionality on GitHub.

Getting Started

In the example below, a dense BERT model is sparsified and fine-tuned on the SQuAD dataset.

1sparseml.transformers.question_answering \
2 --model_name_or_path bert-base-uncased \
3 --dataset_name squad \
4 --do_train \
5 --do_eval \
6 --output_dir './output' \
7 --cache_dir cache \
8 --distill_teacher disable \
9 --recipe zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned-aggressive_98

The SparseML train script is a wrapper around a Hugging Face script, -and usage for most arguments follows the Hugging Face. The most important arguments for SparseML are:

  • --model_name_or_path indicates which model to start the pruning process from. It can be a SparseZoo stub, HF model identifier, or a path to a local model.
  • --recipe points to recipe file containing the sparsification hyperparamters. It can be a SparseZoo stub or a local file. For more on creating a recipe see here.
  • --dataset_name indicates that we should fine tune on the SQuAD dataset.

To utilize a custom dataset, use the --train_file and --validation_file arguments. To use a dataset from the Hugging Face hub, use --dataset_name. -See the Hugging Face Docs for more details.

Run the following to see the full list of options:

$ sparseml.transformers.question_answering -h

Sparse Transfer Learning

SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset. -While you are free to use your backbone, we encourage you to leverage one of our sparse pre-trained models to boost your productivity!

In the example below, we fetch a pruned, quantized BERT model, pre-trained on Wikipedia and Bookcorpus datasets. We then fine-tune the model to the SQuAD dataset.

1sparseml.transformers.question_answering \
2 --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni \
3 --dataset_name squad \
4 --do_train \
5 --do_eval \
6 --output_dir './output' \
7 --distill_teacher disable \
8 --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-question_answering

This usage of the script is the same as the above.

In this example, however, the starting model is a pruned-quantized version of BERT from the SparseZoo (rather than +A sparse model can be deployed with DeepSparse for GPU-class performance directly on your CPU.

This integration enables you to create a sparse model in two ways. Each option is useful in different situations:

  • Sparsification of Popular Transformer ModelsSparsify any popular Hugging Face Transformer model from scratch. This enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the sparsification algorithm.
  • Sparse Transfer LearningFine-tune a sparse model (or use one of our sparse pre-trained models) on your own private dataset. This is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.

Installation Requirements

This use case requires installation of:

It is recommended to run Python 3.8 as some of the scripts within the Transformers repository require it.

Transformers will not immediately install with this command. Instead, a sparsification-compatible version of Transformers will install on the first invocation of the Transformers code in SparseML.

Tutorials

Here are additional tutorials for this functionality.

Getting Started

In the example below, a dense BERT model is sparsified and fine-tuned on the SQuAD dataset.

1sparseml.transformers.question_answering \
2 --model_name_or_path bert-base-uncased \
3 --dataset_name squad \
4 --do_train \
5 --do_eval \
6 --output_dir './output' \
7 --cache_dir cache \
8 --distill_teacher disable \
9 --recipe zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned-aggressive_98

The SparseML train script is a wrapper around a Hugging Face script, +and usage for most arguments follows the Hugging Face. The most important arguments for SparseML are:

  • --model_name_or_path indicates the model from which to start the pruning process. It can be a SparseZoo stub, HF model identifier, or a path to a local model.
  • --recipe points to a recipe file containing the sparsification hyperparameters. It can be a SparseZoo stub or a local file. See Creating Sparsification Recipes for more information.
  • --dataset_name indicates that we should fine-tune on the SQuAD dataset.

To utilize a custom dataset, use the --train_file and --validation_file arguments. To use a dataset from the Hugging Face hub, use --dataset_name. +See the Hugging Face documentation for more details.

Run the following to see the full list of options:

$ sparseml.transformers.question_answering -h

Sparse Transfer Learning

SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset. +While you are free to use your backbone, we encourage you to leverage one of our sparse pre-trained models to boost your productivity!

In the example below, we fetch a pruned, quantized BERT model, pre-trained on Wikipedia and Bookcorpus datasets. We then fine-tune the model to the SQuAD dataset.

1sparseml.transformers.question_answering \
2 --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni \
3 --dataset_name squad \
4 --do_train \
5 --do_eval \
6 --output_dir './output' \
7 --distill_teacher disable \
8 --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-question_answering

The usage of the script is the same as for Sparsifying Popular Transformer Models, above. However, in this example, the starting model is a pruned-quantized version of BERT from the SparseZoo (rather than a dense BERT model) and the recipe is a transfer learning recipe, which instructs Transformers to maintain sparsity as it fine-tunes (rather than a recipe that sparsifies a model from scratch).

Knowledge Distillation

By modifying the distill_teacher argument, you can enable Knowledge Distillation (KD) functionality. KD provides additional -support to the sparsification or transfer learning process, enabling higher accuracy at higher levels of sparsity.

For example, the --distill_teacher argument can be set to pull a dense SQuAD model from the SparseZoo to support the training process:

--distill_teacher zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none

Alternatively, SparseML enables you to use your a custom dense teacher model. The following command uses the dense BERT base model from the SparseZoo and fine-tunes it on the SQuAD dataset for use as a dense teacher.

1sparseml.transformers.question_answering \
2 --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none \
3 --dataset_name squad \
4 --do_train \
5 --do_eval \
6 --output_dir models/teacher \
7 --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none?recipe_type=transfer-question_answering

Once the dense teacher is trained we may reuse it for KD in Sparsification or Sparse Transfer learning. -Simply pass the path to the directory with the teacher model to the --distill_teacher argument. For example:

--distill_teacher models/teacher

SparseML CLI

The SparseML installation provides a CLI for sparsifying your models for a specific task; appending the --help argument displays a full list of options for training in SparseML:

sparseml.transformers.question_answering --help

output:

1 --model_name_or_path MODEL_NAME_OR_PATH
2 Path to pre-trained model or model identifier from huggingface.co/models
3 --distill_teacher DISTILL_TEACHER
4 Teacher model which needs to be a trained QA model
5 --cache_dir CACHE_DIR
6 Directory path to store the pre-trained models downloaded from huggingface.co
7 --recipe RECIPE
8 Path to a SparseML sparsification recipe, see https://github.com/neuralmagic/sparseml for more information
9 --dataset_name DATASET_NAME
10 The name of the dataset to use (via the datasets library).
11 ...

To learn about the Hugging Face Transformers run-scripts in more detail, refer to Hugging Face Transformers documentation.

Deploying with DeepSparse

The artifacts of the training process are saved to the directory --output_dir. Once the script terminates, the directory will have everything required to deploy or further modify the model such as:

  • The recipe (with the full description of the sparsification attributes).
  • Checkpoint files (saved in the appropriate framework format).
  • Additional configuration files (e.g., tokenizer, dataset info).

Exporting the Sparse Model to ONNX

The DeepSparse Engine uses the ONNX format to load neural networks and then deliver breakthrough performance for CPUs by leveraging the sparsity and quantization within a network.

The SparseML installation provides a sparseml.transformers.export_onnx command that you can use to load the training model folder and create a new model.onnx file within. Be sure the --model_path argument points to your trained model.

1sparseml.transformers.export_onnx \
2 --model_path './output' \
3 --task 'question-answering'

DeepSparse Engine Deployment

Once the model is exported in the ONNX format, it is ready for deployment with the DeepSparse Engine.

The deployment is intuitive due to the DeepSparse Python API.

1from deepsparse import Pipeline
2 +support to the sparsification or transfer learning process, enabling higher accuracy at higher levels of sparsity.

For example, the --distill_teacher argument can be set to pull a dense SQuAD model from the SparseZoo to support the training process:

--distill_teacher zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none

Alternatively, SparseML enables you to use your a custom dense teacher model. The following command uses the dense BERT base model from the SparseZoo and fine-tunes it on the SQuAD dataset for use as a dense teacher.

1sparseml.transformers.question_answering \
2 --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none \
3 --dataset_name squad \
4 --do_train \
5 --do_eval \
6 --output_dir models/teacher \
7 --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none?recipe_type=transfer-question_answering

Once the dense teacher is trained, you may reuse it for KD in sparsification or sparse transfer learning. +Simply pass the path to the directory with the teacher model to the --distill_teacher argument. For example:

--distill_teacher models/teacher

SparseML CLI

The SparseML installation provides a CLI for sparsifying your models for a specific task. Appending the --help argument displays a full list of options for training in SparseML:

sparseml.transformers.question_answering --help

The output is:

1 --model_name_or_path MODEL_NAME_OR_PATH
2 Path to pre-trained model or model identifier from huggingface.co/models
3 --distill_teacher DISTILL_TEACHER
4 Teacher model which needs to be a trained QA model
5 --cache_dir CACHE_DIR
6 Directory path to store the pre-trained models downloaded from huggingface.co
7 --recipe RECIPE
8 Path to a SparseML sparsification recipe, see https://github.com/neuralmagic/sparseml for more information
9 --dataset_name DATASET_NAME
10 The name of the dataset to use (via the datasets library).
11 ...

To learn about the Hugging Face Transformers run-scripts in more detail, refer to Hugging Face Transformers documentation.

Deploying with DeepSparse

The artifacts of the training process are saved to the directory --output_dir. Once the script terminates, the directory will have everything required to deploy or further modify the model such as:

  • The recipe (with the full description of the sparsification attributes)
  • Checkpoint files (saved in the appropriate framework format)
  • Additional configuration files (e.g., tokenizer, dataset info)

Exporting the Sparse Model to ONNX

DeepSparse uses the ONNX format to load neural networks and then deliver breakthrough performance for CPUs by leveraging the sparsity and quantization within a network.

The SparseML installation provides a sparseml.transformers.export_onnx command that you can use to load the training model folder and create a new model.onnx file within. Be sure the --model_path argument points to your trained model.

1sparseml.transformers.export_onnx \
2 --model_path './output' \
3 --task 'question-answering'

DeepSparse Deployment

Once the model is exported in the ONNX format, it is ready for deployment with DeepSparse.

The deployment is intuitive due to the DeepSparse Python API.

1from deepsparse import Pipeline
2
3qa_pipeline = Pipeline.create(
4 task="question-answering",
5 model_path='./output'
6)
7 -
8inference = qa_pipeline(question="What's my name?", context="My name is Snorlax")
>> {'score': 0.9947717785835266, 'start': 11, 'end': 18, 'answer': 'Snorlax'}

To learn more, refer to the appropriate documentation in the DeepSparse repository.

Support

For Neural Magic Support, sign up or log in to our Deep Sparse Community Slack. Bugs, feature requests, or additional questions can also be posted to our GitHub Issue Queue.

Deploy an Object Detection Model
NLP Text Classification
\ No newline at end of file +
8inference = qa_pipeline(question="What's my name?", context="My name is Snorlax")
>> {'score': 0.9947717785835266, 'start': 11, 'end': 18, 'answer': 'Snorlax'}

To learn more, refer to the appropriate documentation in the DeepSparse repository.

Support

For Neural Magic Support, sign up or log into our Neural Magic Community Slack. Bugs, feature requests, or additional questions can also be posted to our GitHub Issue Queue.

Deploy an Object Detection Model
NLP Text Classification
\ No newline at end of file diff --git a/use-cases/natural-language-processing/text-classification/index.html b/use-cases/natural-language-processing/text-classification/index.html index 6d628c67231..36ceb57b8d9 100644 --- a/use-cases/natural-language-processing/text-classification/index.html +++ b/use-cases/natural-language-processing/text-classification/index.html @@ -8,15 +8,15 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Natural Language Processing
Text Classification

Text Classification with Hugging Face Transformers and SparseML

This page explains how to create and deploy a sparse Transformer for Text Classification.

SparseML Text Classification Pipelines integrate with Hugging Face’s Transformers library to enable the sparsification of a large set of transformers models. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Natural Language Processing
Text Classification

Text Classification with Hugging Face Transformers and SparseML

This page explains how to create and deploy a sparse Transformer for Text Classification.

SparseML Text Classification Pipelines integrate with Hugging Face’s Transformers library to enable the sparsification of a large set of transformers models. Sparsification is a powerful technique that results in faster, smaller, and cheaper deployable models. -A sparse model can be deployed with Neural Magic's DeepSparse Engine with GPU-class performance directly on your CPU.

This integration enables you to create a sparse model in two ways:

  • Sparsification of Popular Transformer Models - sparsify any popular Hugging Face Transformer model from scratch.
  • Sparse Transfer Learning - fine-tune a sparse model (or use one of our sparse pre-trained models) on your own private dataset.

Each option is useful in different situations:

  • Sparsification from Scratch enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the sparsification algorithm.
  • Sparse Transfer Learning is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.

Installation Requirements

This section requires SparseML Torch Install and DeepSparse General Install.

It is recommended to run Python 3.8 as some of the scripts within the transformers repository require it.

Transformers will not immediately install with this command. Instead, a sparsification-compatible version of Transformers will install on the first invocation of the Transformers code in SparseML.

Tutorials

There are some additional tutorials for this functionality on GitHub.

Getting Started

In the example below, a dense BERT model is sparsified and fine-tuned it on the MNLI dataset.

1sparseml.transformers.text_classification \
2 --model_name_or_path bert-base-uncased \
3 --task_name mnli \
4 --do_train \
5 --do_eval \
6 --output_dir './output' \
7 --cache_dir cache \
8 --distill_teacher disable \
9 --recipe zoo:nlp/text_classification/bert-base/pytorch/huggingface/mnli/12layer_pruned90-none

The SparseML train script is a wrapper around a Hugging Face script, and -usage for most arguments follows the Hugging Face. The most important arguments for SparseML are:

  • model_name_or_path: specifies starting model. It can be a SparseZoo stub, Hugging Face model identifier, or a local directory -with model.pt, tokenizer.json and config.json
  • recipe: recipe containing the training hyperparamters (SparseZoo stub or a local file)
  • task_name: specifies the sentiment analysis task for the MNLI dataset

To utilize a custom dataset, use the --train_file and --validation_file arguments. To use a dataset from the Hugging Face hub, use --dataset_name. -See the Hugging Face Docs for more details.

Run the following to see the full list of options:

$ sparseml.transformers.text_classification -h

Sparse Transfer Learning

SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset. -While you are free to use your backbone, we encourage you to leverage one of our sparse pre-trained models to boost your productivity!

In the example below, we fetch a pruned, quantized BERT model, pre-trained on Wikipedia and Bookcorpus datasets. We then fine-tune the model to the SST2 dataset.

1sparseml.transformers.text_classification \
2 --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni \
3 --task_name sst2 \
4 --do_train \
5 --do_eval \
6 --output_dir './output' \
7 --distill_teacher disable \
8 --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-text_classification

This usage of the script is the same as the above.

In this example, however, the starting model is a pruned-quantized version of BERT from SparseZoo (rather than a dense BERT) +A sparse model can be deployed with DeepSparse for GPU-class performance directly on your CPU.

This integration enables you to create a sparse model in two ways. Each option is useful in different situations:

  • Sparsification of Popular Transformer ModelsSparsify any popular Hugging Face Transformer model from scratch. This enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the sparsification algorithm.
  • Sparse Transfer LearningFine-tune a sparse model (or use one of our sparse pre-trained models) on your own private dataset. This is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.

Installation Requirements

This use case requires installation of:

It is recommended to run Python 3.8 as some of the scripts within the Transformers repository require it.

Transformers will not immediately install with this command. Instead, a sparsification-compatible version of Transformers will install on the first invocation of the Transformers code in SparseML.

Tutorials

Here are additional tutorials for this functionality.

Getting Started

In the example below, a dense BERT model is sparsified and fine-tuned it on the MNLI dataset.

1sparseml.transformers.text_classification \
2 --model_name_or_path bert-base-uncased \
3 --task_name mnli \
4 --do_train \
5 --do_eval \
6 --output_dir './output' \
7 --cache_dir cache \
8 --distill_teacher disable \
9 --recipe zoo:nlp/text_classification/bert-base/pytorch/huggingface/mnli/12layer_pruned90-none

The SparseML train script is a wrapper around a Hugging Face script, and +usage for most arguments follows the Hugging Face. The most important arguments for SparseML are:

  • model_name_or_path specifies the starting model. It can be a SparseZoo stub, Hugging Face model identifier, or a local directory +with model.pt, tokenizer.json and config.json.
  • recipe points to a recipe file containing the training hyperparamters (SparseZoo stub or a local file).
  • task_name specifies the sentiment analysis task for the MNLI dataset.

To utilize a custom dataset, use the --train_file and --validation_file arguments. To use a dataset from the Hugging Face hub, use --dataset_name. +See the Hugging Face documentation for more details.

Run the following to see the full list of options:

$ sparseml.transformers.text_classification -h

Sparse Transfer Learning

SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset. +While you are free to use your backbone, we encourage you to leverage one of our sparse pre-trained models to boost your productivity!

In the example below, we fetch a pruned, quantized BERT model, pre-trained on Wikipedia and Bookcorpus datasets. We then fine-tune the model to the SST2 dataset.

1sparseml.transformers.text_classification \
2 --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni \
3 --task_name sst2 \
4 --do_train \
5 --do_eval \
6 --output_dir './output' \
7 --distill_teacher disable \
8 --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-text_classification

The usage of the script is the same as for Sparsifying Popular Transformer Models, above. However, in this example, the starting model is a pruned-quantized version of BERT from SparseZoo (rather than a dense BERT) and the recipe is a transfer learning recipe, which instructs Transformers to maintain sparsity (rather than a sparsification recipe that sparsifies the model from scratch).

Additionally, this example uses the SST2 task (which uses the SST2 dataset).

Knowledge Distillation

By modifying the distill_teacher argument, you can enable Knowledge Distillation (KD) functionality. -KD provides additional support to the sparsification process, enabling higher accuracy at higher levels of sparsity.

For example, the --distill_teacher argument can be set to pull a dense SST2 model from the SparseZoo to support the training process:

--distill_teacher zoo:nlp/text_classification/bert-base/pytorch/huggingface/sst2/base-none

Alternatively, the user may decide to train their own dense teacher model. The following command uses the dense BERT base model from the SparseZoo and fine-tunes it on the SST2 dataset for use as a dense teacher.

1sparseml.transformers.text_classification \
2 --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none \
3 --task_name sst2 \
4 --do_train \
5 --do_eval \
6 --output_dir models/teacher \
7 --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none?recipe_type=transfer-text_classification

Once the dense teacher is trained we may reuse it for KD in Sparsification or Sparse Transfer learning. -Simply pass the path to the directory with the teacher model to the --distill_teacher argument. For example:

--distill_teacher models/teacher

SparseML CLI

The SparseML installation provides a CLI for sparsifying your models for a specific task; appending the --help argument displays a full list of options for training in SparseML:

sparseml.transformers.text_classification --help

output:

1 --model_name_or_path MODEL_NAME_OR_PATH
2 Path to pretrained model, sparsezoo stub. or model identifier from huggingface.co/models (default: None)
3 --distill_teacher DISTILL_TEACHER
4 Teacher model which must be a trained text classification model (default: None)
5 --cache_dir CACHE_DIR
6 Where to store the pretrained data from huggingface.co (default: None)
7 --recipe RECIPE
8 Path to a SparseML sparsification recipe, see https://github.com/neuralmagic/sparseml for more information (default: None)
9 --task_name TASK_NAME
10 The name of the task to train on: cola, mnli, mrpc, qnli, qqp, rte, sst2, stsb, wnli (default: None)
11...

To learn about the Hugging Face Transformers run-scripts in more detail, refer to Hugging Face Transformers documentation.

Deploying with DeepSparse

The artifacts of the training process are saved to the directory --output_dir. Once the script terminates, the directory will have everything required to deploy or further modify the model such as:

  • The recipe (with the full description of the sparsification attributes).
  • Checkpoint files (saved in the appropriate framework format).
  • Additional configuration files (e.g., tokenizer, dataset info).

Exporting the Sparse Model to ONNX

The DeepSparse Engine uses the ONNX format to load neural networks and then deliver breakthrough performance for CPUs by leveraging the sparsity and quantization within a network.

The SparseML installation provides a sparseml.transformers.export_onnx command that you can use to load the training model folder and create a new model.onnx file within. Be sure the --model_path argument points to your trained model.

1sparseml.transformers.export_onnx \
2 --model_path './output' \
3 --task 'text-classification'

DeepSparse Engine Deployment

Once the model is exported in the ONNX format, it is ready for deployment with the DeepSparse Engine.

The deployment is intuitive due to the DeepSparse Python API.

1from deepsparse import Pipeline
2tc_pipeline = Pipeline.create(
3 task="text-classification",
4 model_path='./output'
5)
6 -
7inference = tc_pipeline("Snorlax loves my Tesla!")
>> [{'label': 'LABEL_1', 'score': 0.9884248375892639}]
1inference = tc_pipeline("Snorlax hates pineapple pizza!")
>> [{'label': 'LABEL_0', 'score': 0.9981569051742554}]

To learn more, refer to the appropriate documentation in the DeepSparse repository.

Support

For Neural Magic Support, sign up or log in to our Deep Sparse Community Slack. Bugs, feature requests, or additional questions can also be posted to our GitHub Issue Queue.

NLP Question Answering
NLP Token Classification
\ No newline at end of file +KD provides additional support to the sparsification process, enabling higher accuracy at higher levels of sparsity.

For example, the --distill_teacher argument can be set to pull a dense SST2 model from the SparseZoo to support the training process:

--distill_teacher zoo:nlp/text_classification/bert-base/pytorch/huggingface/sst2/base-none

Alternatively, you may decide to train your own dense teacher model. The following command uses the dense BERT base model from the SparseZoo and fine-tunes it on the SST2 dataset for use as a dense teacher.

1sparseml.transformers.text_classification \
2 --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none \
3 --task_name sst2 \
4 --do_train \
5 --do_eval \
6 --output_dir models/teacher \
7 --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none?recipe_type=transfer-text_classification

Once the dense teacher is trained, you may reuse it for KD in sparsification or sparse transfer learning. +Simply pass the path to the directory with the teacher model to the --distill_teacher argument. For example:

--distill_teacher models/teacher

SparseML CLI

The SparseML installation provides a CLI for sparsifying your models for a specific task. Appending the --help argument displays a full list of options for training in SparseML:

sparseml.transformers.text_classification --help

The output is:

1 --model_name_or_path MODEL_NAME_OR_PATH
2 Path to pretrained model, sparsezoo stub. or model identifier from huggingface.co/models (default: None)
3 --distill_teacher DISTILL_TEACHER
4 Teacher model which must be a trained text classification model (default: None)
5 --cache_dir CACHE_DIR
6 Where to store the pretrained data from huggingface.co (default: None)
7 --recipe RECIPE
8 Path to a SparseML sparsification recipe, see https://github.com/neuralmagic/sparseml for more information (default: None)
9 --task_name TASK_NAME
10 The name of the task to train on: cola, mnli, mrpc, qnli, qqp, rte, sst2, stsb, wnli (default: None)
11...

To learn about the Hugging Face Transformers run-scripts in more detail, refer to Hugging Face Transformers documentation.

Deploying with DeepSparse

The artifacts of the training process are saved to the directory --output_dir. Once the script terminates, the directory will have everything required to deploy or further modify the model such as:

  • The recipe (with the full description of the sparsification attributes)
  • Checkpoint files (saved in the appropriate framework format)
  • Additional configuration files (e.g., tokenizer, dataset info)

Exporting the Sparse Model to ONNX

DeepSparse uses the ONNX format to load neural networks and then deliver breakthrough performance for CPUs by leveraging the sparsity and quantization within a network.

The SparseML installation provides a sparseml.transformers.export_onnx command that you can use to load the training model folder and create a new model.onnx file within. Be sure the --model_path argument points to your trained model.

1sparseml.transformers.export_onnx \
2 --model_path './output' \
3 --task 'text-classification'

DeepSparse Deployment

Once the model is exported in the ONNX format, it is ready for deployment with DeepSparse.

The deployment is intuitive due to the DeepSparse Python API.

1from deepsparse import Pipeline
2tc_pipeline = Pipeline.create(
3 task="text-classification",
4 model_path='./output'
5)
6 +
7inference = tc_pipeline("Snorlax loves my Tesla!")
>> [{'label': 'LABEL_1', 'score': 0.9884248375892639}]
1inference = tc_pipeline("Snorlax hates pineapple pizza!")
>> [{'label': 'LABEL_0', 'score': 0.9981569051742554}]

To learn more, refer to the appropriate documentation in the DeepSparse repository.

Support

For Neural Magic Support, sign up or log into our Deep Sparse Community Slack. Bugs, feature requests, or additional questions can also be posted to our GitHub Issue Queue.

NLP Question Answering
NLP Token Classification
\ No newline at end of file diff --git a/use-cases/natural-language-processing/token-classification/index.html b/use-cases/natural-language-processing/token-classification/index.html index 4b35b631902..215b79a0bc9 100644 --- a/use-cases/natural-language-processing/token-classification/index.html +++ b/use-cases/natural-language-processing/token-classification/index.html @@ -8,14 +8,14 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Natural Language Processing
Token Classification

Token Classification with Hugging Face Transformers and SparseML

This page explains how to create and deploy a sparse Transformer for Token Classification.

SparseML Token Classification Pipelines integrate with Hugging Face’s Transformers library to enable the sparsification of a large set of transformers models. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Natural Language Processing
Token Classification

Token Classification with Hugging Face Transformers and SparseML

This page explains how to create and deploy a sparse Transformer for Token Classification.

SparseML Token Classification Pipelines integrate with Hugging Face’s Transformers library to enable the sparsification of a large set of transformers models. Sparsification is a powerful technique that results in faster, smaller, and cheaper deployable models. -A sparse model can be deployed with Neural Magic's DeepSparse Engine with GPU-class performance directly on your CPU.

This integration enables you to create a sparse model in two ways:

  • Sparsification of Popular Transformer Models - sparsify any popular Hugging Face Transformer model from scratch.
  • Sparse Transfer Learning - fine-tune a sparse model (or use one of our sparse pre-trained models) on your own private dataset.

Each option is useful in different situations:

  • Sparsification from Scratch enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the Sparsification algorithm.
  • Sparse Transfer Learning is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.

Installation

This section requires SparseML Torch Install and DeepSparse General Install.

It is recommended to run Python 3.8 as some of the scripts within the transformers repository require it.

Transformers will not immediately install with this command. Instead, a sparsification-compatible version of Transformers will install on the first invocation of the Transformers code in SparseML.

Tutorials

There are some additional tutorials for this functionality on GitHub.

Getting Started

In the example below, a dense BERT model is sparsified and fine-tuned on the CoNLL-2003 dataset.

1sparseml.transformers.token_classification \
2 --model_name_or_path bert-base-uncased \
3 --dataset_name conll2003 \
4 --do_train \
5 --do_eval \
6 --output_dir './output' \
7 --cache_dir cache \
8 --distill_teacher disable \
9 --recipe zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/12layer_pruned80_quant-none-vnni

The SparseML train script is a wrapper around a Hugging Face script, -and usage for most arguments follows the Hugging Face. The most important arguments for SparseML are:

  • --model_name_or_path indicates which model to start the pruning process from. It can be a SparseZoo stub, Hugging Face model identifier, or a path to a local model.
  • --recipe points to recipe file containing the sparsification hyperparamters. It can be a SparseZoo stub or a local file. For more on creating a recipe see here.
  • --dataset_name indicates that we should fine tune on the CoNLL-2003 dataset.

To utilize a custom dataset, use the --train_file and --validation_file arguments. To use a dataset from the Hugging Face hub, use --dataset_name. -See the Hugging Face Docs for more details.

Run the following to see the full list of options:

$ sparseml.transformers.token_classification -h

Sparse Transfer Learning

SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset. -While you are free to use your backbone, we encourage you to leverage one of our sparse pre-trained models to boost your productivity!

In the example below, we fetch a pruned, quantized BERT model, pre-trained on Wikipedia and Bookcorpus datasets. We then fine-tune the model to the CoNLL-2003 dataset.

1sparseml.transformers.token_classification \
2 --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni \
3 --dataset_name conll2003 \
4 --do_train \
5 --do_eval \
6 --output_dir './output' \
7 --distill_teacher disable \
8 --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-token_classification

This usage of the script is the same as the above.

In this example, however, the starting model is a pruned-quantized version of BERT from SparseZoo (rather than a dense BERT) +A sparse model can be deployed with DeepSparse for GPU-class performance directly on your CPU.

This integration enables you to create a sparse model in two ways. Each option is useful in different situations:

  • Sparsification of Popular Transformer ModelsSparsify any popular Hugging Face Transformer model from scratch. This enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the Sparsification algorithm.
  • Sparse Transfer LearningFine-tune a sparse model (or use one of our sparse pre-trained models) on your own private dataset. This is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.

Installation

This use case requires installation of:

It is recommended to run Python 3.8 as some of the scripts within the Transformers repository require it.

Transformers will not immediately install with this command. Instead, a sparsification-compatible version of Transformers will install on the first invocation of the Transformers code in SparseML.

Tutorials

Here is an additional tutorial for this functionality.

Getting Started

In the example below, a dense BERT model is sparsified and fine-tuned on the CoNLL-2003 dataset.

1sparseml.transformers.token_classification \
2 --model_name_or_path bert-base-uncased \
3 --dataset_name conll2003 \
4 --do_train \
5 --do_eval \
6 --output_dir './output' \
7 --cache_dir cache \
8 --distill_teacher disable \
9 --recipe zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/12layer_pruned80_quant-none-vnni

The SparseML train script is a wrapper around a Hugging Face script, +and usage for most arguments follows the Hugging Face. The most important arguments for SparseML are:

  • --model_name_or_path indicates the model with which to start the pruning process. It can be a SparseZoo stub, Hugging Face model identifier, or a path to a local model.
  • --recipe points to a recipe file containing the sparsification hyperparameters. It can be a SparseZoo stub or a local file. See Creating Sparsification Recipes for more information.
  • --dataset_name indicates that we should fine-tune on the CoNLL-2003 dataset.

To utilize a custom dataset, use the --train_file and --validation_file arguments. To use a dataset from the Hugging Face hub, use --dataset_name. +See the Hugging Face documentation for more details.

Run the following to see the full list of options:

$ sparseml.transformers.token_classification -h

Sparse Transfer Learning

SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset. +While you are free to use your backbone, we encourage you to leverage one of our sparse pre-trained models to boost your productivity!

In the example below, we fetch a pruned, quantized BERT model, pre-trained on Wikipedia and Bookcorpus datasets. We then fine-tune the model to the CoNLL-2003 dataset.

1sparseml.transformers.token_classification \
2 --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni \
3 --dataset_name conll2003 \
4 --do_train \
5 --do_eval \
6 --output_dir './output' \
7 --distill_teacher disable \
8 --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-token_classification

This usage of the script is the same as for Sparsifying Popular Transformer Models, above. However, in this example, the starting model is a pruned-quantized version of BERT from SparseZoo (rather than a dense BERT) and the recipe is a transfer learning recipe, which instructs Transformers to maintain sparsity of the base model (rather than a recipe that sparsifies a model from scratch).

Knowledge Distillation

By modifying the distill_teacher argument, you can enable Knowledge Distillation (KD) functionality. KD provides additional -support to the sparsification process, enabling higher accuracy at higher levels of sparsity.

For example, the --distill_teacher argument can be set to pull a dense model from the SparseZoo to support the training process:

--distill_teacher zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/base-none

Alternatively, the user may decide to train their own dense teacher model. The following command uses the dense BERT base model from the SparseZoo and fine-tunes it on the CoNLL-2003 dataset for use as a dense teacher.

1sparseml.transformers.token_classification \
2 --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none \
3 --dataset_name conll2003 \
4 --do_train \
5 --do_eval \
6 --output_dir models/teacher \
7 --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-token_classification \
8 --distill_teacher zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/base-none

Once the dense teacher is trained we may reuse it for KD in Sparsification or Sparse Transfer learning. -Simply pass the path to the directory with the teacher model to the --distill_teacher argument. For example:

--distill_teacher models/teacher

SparseML CLI

The SparseML installation provides a CLI for sparsifying your models for a specific task; appending the --help argument displays a full list of options for training in SparseML:

sparseml.transformers.token_classification --help

output:

1 --model_name_or_path MODEL_NAME_OR_PATH
2 Path to pretrained model, sparsezoo stub. or model identifier from huggingface.co/models (default: None)
3 --distill_teacher DISTILL_TEACHER
4 Teacher model which needs to be a trained NER model (default: None)
5 --cache_dir CACHE_DIR
6 Where to store the pretrained data from huggingface.co (default: None)
7 --recipe RECIPE
8 Path to a SparseML sparsification recipe, see https://github.com/neuralmagic/sparseml for more information (default: None)
9 --dataset_name DATASET_NAME
10 The name of the dataset to use (via the datasets library) (default: None)
11 ...

To learn about the Hugging Face Transformers run-scripts in more detail, refer to Hugging Face Transformers documentation.

Deploying with DeepSparse

The artifacts of the training process are saved to the directory --output_dir. Once the script terminates, the directory will have everything required to deploy or further modify the model such as:

  • The recipe (with the full description of the sparsification attributes).
  • Checkpoint files (saved in the appropriate framework format).
  • Additional configuration files (e.g., tokenizer, dataset info).

Exporting the Sparse Model to ONNX

The DeepSparse Engine uses the ONNX format to load neural networks and then deliver breakthrough performance for CPUs by leveraging the sparsity and quantization within a network.

The SparseML installation provides a sparseml.transformers.export_onnx command that you can use to load the training model folder and create a new model.onnx file within. Be sure the --model_path argument points to your trained model.

1sparseml.transformers.export_onnx \
2 --model_path './output' \
3 --task 'token-classification'

DeepSparse Engine Deployment

Once the model is exported in the ONNX format, it is ready for deployment with the DeepSparse Engine.

The deployment is intuitive due to the DeepSparse Python API.

1from deepsparse import Pipeline
2 -
3tc_pipeline = Pipeline.create(
4 task="token-classification",
5 model_path='./output'
6)
7inference = tc_pipeline("We are flying from Texas to California")
>> [{'entity': 'LABEL_0', 'word': 'we', ...},
1 {'entity': 'LABEL_0', 'word': 'are', ...},
2 {'entity': 'LABEL_0', 'word': 'flying', ...},
3 {'entity': 'LABEL_0', 'word': 'from', ...},
4 {'entity': 'LABEL_5', 'word': 'texas', ...},
5 {'entity': 'LABEL_0', 'word': 'to', ...},
6 {'entity': 'LABEL_5', 'word': 'california', ...}]

To learn more, refer to the appropriate documentation in the DeepSparse repository.

Support

For Neural Magic Support, sign up or log in to our Deep Sparse Community Slack. Bugs, feature requests, or additional questions can also be posted to our GitHub Issue Queue.

NLP Text Classification
NLP Deployments with DeepSparse
\ No newline at end of file +support to the sparsification process, enabling higher accuracy at higher levels of sparsity.

For example, the --distill_teacher argument can be set to pull a dense model from the SparseZoo to support the training process:

--distill_teacher zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/base-none

Alternatively, you may decide to train your own dense teacher model. The following command uses the dense BERT base model from the SparseZoo and fine-tunes it on the CoNLL-2003 dataset for use as a dense teacher.

1sparseml.transformers.token_classification \
2 --model_name_or_path zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/base-none \
3 --dataset_name conll2003 \
4 --do_train \
5 --do_eval \
6 --output_dir models/teacher \
7 --recipe zoo:nlp/masked_language_modeling/bert-base/pytorch/huggingface/wikipedia_bookcorpus/12layer_pruned80_quant-none-vnni?recipe_type=transfer-token_classification \
8 --distill_teacher zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/base-none

Once the dense teacher is trained, you may reuse it for KD in sparsification or sparse transfer learning. +Simply pass the path to the directory with the teacher model to the --distill_teacher argument. For example:

--distill_teacher models/teacher

SparseML CLI

The SparseML installation provides a CLI for sparsifying your models for a specific task. Appending the --help argument displays a full list of options for training in SparseML:

sparseml.transformers.token_classification --help

The output is:

1 --model_name_or_path MODEL_NAME_OR_PATH
2 Path to pretrained model, sparsezoo stub. or model identifier from huggingface.co/models (default: None)
3 --distill_teacher DISTILL_TEACHER
4 Teacher model which needs to be a trained NER model (default: None)
5 --cache_dir CACHE_DIR
6 Where to store the pretrained data from huggingface.co (default: None)
7 --recipe RECIPE
8 Path to a SparseML sparsification recipe, see https://github.com/neuralmagic/sparseml for more information (default: None)
9 --dataset_name DATASET_NAME
10 The name of the dataset to use (via the datasets library) (default: None)
11 ...

To learn about the Hugging Face Transformers run-scripts in more detail, refer to Hugging Face Transformers documentation.

Deploying with DeepSparse

The artifacts of the training process are saved to the directory --output_dir. Once the script terminates, the directory will have everything required to deploy or further modify the model such as:

  • The recipe (with the full description of the sparsification attributes)
  • Checkpoint files (saved in the appropriate framework format)
  • Additional configuration files (e.g., tokenizer, dataset info)

Exporting the Sparse Model to ONNX

DeepSparse uses the ONNX format to load neural networks and then deliver breakthrough performance for CPUs by leveraging the sparsity and quantization within a network.

The SparseML installation provides a sparseml.transformers.export_onnx command that you can use to load the training model folder and create a new model.onnx file within. Be sure the --model_path argument points to your trained model.

1sparseml.transformers.export_onnx \
2 --model_path './output' \
3 --task 'token-classification'

DeepSparse Deployment

Once the model is exported in the ONNX format, it is ready for deployment with DeepSparse.

The deployment is intuitive due to the DeepSparse Python API.

1from deepsparse import Pipeline
2 +
3tc_pipeline = Pipeline.create(
4 task="token-classification",
5 model_path='./output'
6)
7inference = tc_pipeline("We are flying from Texas to California")
>> [{'entity': 'LABEL_0', 'word': 'we', ...},
1 {'entity': 'LABEL_0', 'word': 'are', ...},
2 {'entity': 'LABEL_0', 'word': 'flying', ...},
3 {'entity': 'LABEL_0', 'word': 'from', ...},
4 {'entity': 'LABEL_5', 'word': 'texas', ...},
5 {'entity': 'LABEL_0', 'word': 'to', ...},
6 {'entity': 'LABEL_5', 'word': 'california', ...}]

To learn more, refer to the appropriate documentation in the DeepSparse repository.

Support

For Neural Magic Support, sign up or log into our Neural Magic Community Slack. Bugs, feature requests, or additional questions can also be posted to our GitHub Issue Queue.

NLP Text Classification
NLP Deployments with DeepSparse
\ No newline at end of file diff --git a/use-cases/object-detection/deploying/index.html b/use-cases/object-detection/deploying/index.html index 241c1686f63..cf4dabb3e8f 100644 --- a/use-cases/object-detection/deploying/index.html +++ b/use-cases/object-detection/deploying/index.html @@ -8,22 +8,22 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Object Detection
Deploying

Deploying and Object Detection Model with Ultralytics YOLOv5 and the DeepSparse Engine

This page explains how to deploy an Object Detection model with DeepSparse.

DeepSparse allows accelerated inference, serving, and benchmarking of sparsified Ultralytics YOLOv5 models. -The Ultralytics integration enables you to easily deploy sparsified YOLOv5 onto the DeepSparse Engine for GPU-class performance directly on the CPU.

This integration currently supports the original YOLOv5 and updated V6.1 architectures.

Installation Requirements

This section requires the DeepSparse Server+YOLO Install.

Getting Started

Before you start using the DeepSparse Engine, confirm your machine is -compatible with our hardware requirements.

Model Format

To deploy an image classification model using DeepSparse Engine, pass the model in the ONNX format. -This grants the engine the flexibility to serve any model in a framework-agnostic environment.

Below we describe two possibilities to obtain the required ONNX model.

Exporting the ONNX File From SparseML

This pathway is relevant if you intend to deploy a model created using the SparseML library.

After training your model with SparseML, locate the .pt file for the model you'd like to export and run the ONNX export script below.

1sparseml.yolov5.export_onnx \
2 --weights path/to/your/model \
3 --dynamic #Allows for dynamic input shape

This creates model.onnx file, in the local filesystem in the directory of your weights.

The examples below use SparseZoo stubs, but simply pass the path to model.onnx in place of the stubs to use the local model.

Using the ONNX File in the SparseZoo

This pathway is relevant if you plan to use an off-the-shelf model from the SparseZoo.

When a SparseZoo stub is passed to the model, DeepSparse downloads the appropriate ONNX and other configuration files -from the SparseZoo repo. For example, the SparseZoo stub for the pruned (not quantized) YOLOv5 is:

zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned-aggressive_98

The Deployment APIs examples use SparseZoo stubs to highlight this pathway.

Deployment APIs

DeepSparse provides both a Python Pipeline API and an out-of-the-box model server +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Object Detection
Deploying

Deploying an Object Detection Model with Ultralytics YOLOv5 and DeepSparse

This page explains how to deploy an Object Detection model with DeepSparse.

DeepSparse allows accelerated inference, serving, and benchmarking of sparsified Ultralytics YOLOv5 models. +The Ultralytics integration enables you to easily deploy sparsified YOLOv5 with DeepSparse for GPU-class performance directly on the CPU.

This integration currently supports the original YOLOv5 and updated V6.1 architectures.

Installation Requirements

This use case requires the installation of DeepSparse Server+YOLO.

Getting Started

Before you start using DeepSparse, confirm your machine is +compatible with our hardware requirements.

Model Format

To deploy an image classification model using DeepSparse, pass the model in the ONNX format. +This grants the DeepSparse the flexibility to serve any model in a framework-agnostic environment.

Below we describe two possibilities to obtain the required ONNX model.

Exporting the ONNX File From SparseML

This pathway is relevant if you intend to deploy a model created using the SparseML library.

After training your model with SparseML, locate the .pt file for the model you'd like to export and run the ONNX export script below.

1sparseml.yolov5.export_onnx \
2 --weights path/to/your/model \
3 --dynamic #Allows for dynamic input shape

This creates a model.onnx file in the local filesystem in the directory of your weights.

The examples below use SparseZoo stubs, but simply pass the path to model.onnx in place of the stubs to use the local model.

Using the ONNX File in the SparseZoo

This pathway is relevant if you plan to use an off-the-shelf model from the SparseZoo.

When a SparseZoo stub is passed to the model, DeepSparse downloads the appropriate ONNX and other configuration files +from the SparseZoo repository. For example, the SparseZoo stub for the pruned (not quantized) YOLOv5 is:

zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned-aggressive_98

The deployment API examples use SparseZoo stubs to highlight this pathway.

Deployment APIs

DeepSparse provides both a Python Pipeline API and an out-of-the-box model server that can be used for end-to-end inference in either Python workflows or as an HTTP endpoint. Both options provide similar specifications for configurations and support annotation serving for all -YOLOv5 models.

Python API

Pipelines are the default interface for running inference with the DeepSparse Engine.

Once a model is obtained, either through SparseML training or directly from SparseZoo, Pipeline can be used to easily facilitate end-to-end inference and deployment of the sparsified neural networks.

If no model is specified to the Pipeline for a given task, the Pipeline will automatically select a pruned and quantized model for the task from the SparseZoo that can be used for accelerated inference. Note that other models in the SparseZoo will have different tradeoffs between speed, size, and accuracy.

HTTP Server

As an alternative to Python API, the DeepSparse Server allows you to serve ONNX models and pipelines in HTTP. +YOLOv5 models.

Python API

Pipelines is the default interface for running inference with DeepSparse.

Once a model is obtained, either through SparseML training or directly from SparseZoo, Pipeline can be used to easily facilitate end-to-end inference and deployment of the sparsified neural networks.

If no model is specified to the Pipeline for a given task, the Pipeline will automatically select a pruned and quantized model for the task from the SparseZoo that can be used for accelerated inference. Note that other models in the SparseZoo will have different tradeoffs between speed, size, and accuracy.

HTTP Server

As an alternative to the Python API, DeepSparse Server allows you to serve ONNX models and pipelines in HTTP. Configuring the server uses the same parameters and schemas as the -Pipelines enabling simple deployment. Once launched, a /docs endpoint is created with full +Pipelines, enabling simple deployment. Once launched, a /docs endpoint is created with full endpoint descriptions and support for making sample requests.

An example of starting and requesting a DeepSparse Server for YOLOv5 is given below.

Deployment Examples

The following section includes example usage of the Pipeline and server APIs for various image classification models. Each example uses a SparseZoo stub to pull down the model, but a local path to an ONNX file can also be passed as the model_path.

Python API

If you don't have an image ready, pull a sample image down with:

wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg

Create a Pipeline and run inference with the following.

1from deepsparse import Pipeline
2
3model_stub = "zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned-aggressive_98"
4images = ["basilica.jpg"]
5
6yolo_pipeline = Pipeline.create(
7 task="yolo",
8 model_path=model_stub,
9)
10 -
11pipeline_outputs = yolo_pipeline(images=images, iou_thres=0.6, conf_thres=0.001)

Annotate CLI

You can also use the annotate command to have the engine save an annotated photo on disk.

deepsparse.object_detection.annotate --source basilica.jpg #Try --source 0 to annotate your live webcam feed

Running the above command will create an annotation-results folder and save the annotated image inside.

If a --model_filepath arg isn't provided, then zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned-aggressive_96 will be used by default.

HTTP Server

Spinning up:

1deepsparse.server \
2 task yolo \
3 --model_path "zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94"

Making a request:

1import requests
2import json
3 +
11pipeline_outputs = yolo_pipeline(images=images, iou_thres=0.6, conf_thres=0.001)

Annotate CLI

You can also use the annotate command to have the Engine save an annotated photo on disk.

deepsparse.object_detection.annotate --source basilica.jpg #Try --source 0 to annotate your live webcam feed

Running the above command will create an annotation-results folder and save the annotated image inside.

If a --model_filepath argument is not provided, zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned-aggressive_96 will be used by default.

HTTP Server

Spinning up:

1deepsparse.server \
2 task yolo \
3 --model_path "zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94"

Making a request:

1import requests
2import json
3
4url = 'http://0.0.0.0:5543/predict/from_files'
5path = ['basilica.jpg'] # list of images for inference
6files = [('request', open(img, 'rb')) for img in path]
7resp = requests.post(url=url, files=files)
8annotations = json.loads(resp.text) # dictionary of annotation results
9bounding_boxes = annotations["boxes"]
10labels = annotations["labels"]

Benchmarking

The mission of Neural Magic is to enable GPU-class inference performance on commodity CPUs. Want to find out how fast our sparse YOLOv5 ONNX models perform inference? You can quickly do benchmarking tests on your own with a single CLI command!

You only need to provide the model path of a SparseZoo ONNX model or your own local ONNX model to get started:

1deepsparse.benchmark \
2 zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94 \
3 --scenario sync
>Original Model Path: zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94
>Batch Size: 1
>Scenario: sync
>Throughput (items/sec): 74.0355
>Latency Mean (ms/batch): 13.4924
>Latency Median (ms/batch): 13.4177
>Latency Std (ms/batch): 0.2166
>Iterations: 741

To learn more about benchmarking, refer to the appropriate documentation. -Also, check out our Benchmarking Tutorial on GitHub!

Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML
Deploying with the DeepSparse Server
\ No newline at end of file +Also, check out our Benchmarking Tutorial on GitHub.

Sparsifying Object Detection with Ultralytics YOLOv5 and SparseML
What is Sparsification?
\ No newline at end of file diff --git a/use-cases/object-detection/index.html b/use-cases/object-detection/index.html index 6454d372d4c..04ffdcd75de 100644 --- a/use-cases/object-detection/index.html +++ b/use-cases/object-detection/index.html @@ -8,4 +8,4 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Object Detection

Object Detection with Ultralytics YOLOv5

Neural Magic Documentation
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Object Detection

Object Detection with Ultralytics YOLOv5

Neural Magic Documentation
\ No newline at end of file diff --git a/use-cases/object-detection/sparsifying/index.html b/use-cases/object-detection/sparsifying/index.html index 41a5621c760..62f68967034 100644 --- a/use-cases/object-detection/sparsifying/index.html +++ b/use-cases/object-detection/sparsifying/index.html @@ -8,7 +8,7 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Object Detection
Sparsifying

Sparsifying Object Detection Models with Ultralytics YOLOv5 and SparseML

This page explains how to create a sparse object detection model.

SparseML is integrated with the ultralytics/yolov5 repository to enable simple creation of sparse YOLOv5 and YOLOv5-P6 models. -After training, the model can be deployed with Neural Magic's DeepSparse Engine. The engine enables inference with GPU-class performance directly on your CPU.

This integration enables you to create a sparse model in two ways:

  • Sparsification of YOLOv5 Models - easily sparsify any of the YOLOV5 and YOLOV5-P6 models, from YOLOv5n to YOLOv5x models.
  • Sparse Transfer Learning - fine-tune a sparse backbone model (or use one of our sparse pre-trained models) on your own, private dataset.

Each option is useful in different situations:

  • Sparsification from Scratch enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the Sparsification algorithm.
  • Sparse Transfer Learning is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.

Installation Requirements

This section requires SparseML Torchvision Install.

Note: YOLOv5 will not immediately install with this command. Instead, a sparsification-compatible version of YOLOv5 will install on the first invocation of the YOLOv5 code in SparseML.

Tutorials

Getting Started

Sparsifying YOLOv5

In the example below, a dense YOLOv5s model pre-trained on COCO is sparsified and fine-tuned further COCO.

1sparseml.yolov5.train \
2 --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/base-none \
3 --data coco.yaml \
4 --hyp data/hyps/hyp.scratch.yaml \
5 --recipe zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94
  • --weights argument indicates which model to start the pruning process from. It can be a SparseZoo stub or a local path to a model.
  • --data specifies the dataset to be used. You may sparsify your model while training on your own, private (downstream) dataset or while continuing training with the original (upstream) dataset. The configuration file for COCO is included in the yolov5 integration and can be used as an example for a custom dataset.
  • --recipe encodes the hyperparameters of the pruning process. It can be a SparseZoo stub or a local YAML file. See here for a detailed discussion of recipes.

Sparse Transfer Learning

SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset. -While you are free to use your backbone, we encourage you to leverage one of our sparse pre-trained models to boost your productivity!

The command below fetches a pre-sparsified YOLOv5s model, trained on the COCO dataset. It then fine-tunes the model to the VOC dataset while maintaining sparsity.

1sparseml.yolov5.train \
2 --data VOC.yaml \
3 --cfg models_v5.0/yolov5s.yaml \
4 --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94?recipe_type=transfer \
5 --hyp data/hyps/hyp.finetune.yaml \
6 --recipe zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned-aggressive_96

SparseML CLI

The SparseML installation provides a CLI for running YOLOv5 scripts with SparseML capability. The full set of commands is included below:

1sparseml.yolov5.train
2sparseml.yolov5.validation
3sparseml.yolov5.export_onnx
4sparseml.yolov5.val_onnx

Appending the --help argument displays a full list of options for the command:

sparseml.yolov5.train --help

output:

1usage: sparseml.yolov5.train [-h] [--weights WEIGHTS] [--cfg CFG] [--data DATA] [--hyp HYP] [--epochs EPOCHS] [--batch-size BATCH_SIZE] [--imgsz IMGSZ] [--rect]
2 [--resume [RESUME]] [--nosave] [--noval] [--noautoanchor] [--evolve [EVOLVE]] [--bucket BUCKET] [--cache [CACHE]] [--image-weights]
3 [--device DEVICE] [--multi-scale] [--single-cls] [--optimizer {SGD,Adam,AdamW}] [--sync-bn] [--workers WORKERS] [--project PROJECT]
4 [--name NAME] [--exist-ok] [--quad] [--cos-lr] [--label-smoothing LABEL_SMOOTHING] [--patience PATIENCE] [--freeze FREEZE [FREEZE ...]]
5 [--save-period SAVE_PERIOD] [--local_rank LOCAL_RANK] [--entity ENTITY] [--upload_dataset [UPLOAD_DATASET]]
6 [--bbox_interval BBOX_INTERVAL] [--artifact_alias ARTIFACT_ALIAS] [--recipe RECIPE] [--disable-ema] [--max-train-steps MAX_TRAIN_STEPS]
7 [--max-eval-steps MAX_EVAL_STEPS] [--one-shot] [--num-export-samples NUM_EXPORT_SAMPLES]
8 -
9optional arguments:
10 -h, --help show this help message and exit
11 --weights WEIGHTS initial weights path
12 --cfg CFG model.yaml path
13 --data DATA dataset.yaml path
14 --hyp HYP hyperparameters path
15 --epochs EPOCHS
16 --batch-size BATCH_SIZE
17 total batch size for all GPUs, -1 for autobatch
18...

Exporing to ONNX

Exporting the Sparse Model to ONNX

The DeepSparse Engine accepts ONNX formats and is engineered to significantly speed up inference on CPUs for the sparsified models from this integration.

The SparseML installation provides a sparseml.yolov5.export_onnx command that you can use to load the training model folder and create a new model.onnx file within. The export process is modified such that the quantized and pruned models are corrected and folded properly. Be sure the --weights argument points to your trained model.

1sparseml.yolov5.export_onnx \
2 --weights path/to/weights.pt \
3 --dynamic
Image Classification Deployments with DeepSparse
Object Detection Deployments with DeepSparse
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Object Detection
Sparsifying

Sparsifying Object Detection Models with Ultralytics YOLOv5 and SparseML

This page explains how to create a sparse object detection model.

SparseML is integrated with the ultralytics/yolov5 repository to enable simple creation of sparse YOLOv5 and YOLOv5-P6 models. +After training, the model can be deployed with Neural Magic's DeepSparse. The engine enables inference with GPU-class performance directly on your CPU.

This integration enables you to create a sparse model in two ways. Each option is useful in different situations:

  • Sparsification of YOLOv5 ModelsEasily sparsify any of the YOLOV5 and YOLOV5-P6 models, from YOLOv5n to YOLOv5x models. This enables you to create a sparse version of any model (even those not in the SparseZoo), but requires hand-tuning the hyperparameters of the Sparsification algorithm.
  • Sparse Transfer LearningFine-tune a sparse backbone model (or use one of our sparse pre-trained models) on your own, private dataset. This is the easiest path to creating a sparse model trained on your data. Simply pull a pre-sparsified model and transfer learning recipe from the SparseZoo and fine-tune on your data with a single command.

Installation Requirements

This use case requires installation of SparseML Torchvision.

Note: YOLOv5 will not immediately install with this command. Instead, a sparsification-compatible version of YOLOv5 will install on the first invocation of the YOLOv5 code in SparseML.

Tutorials

Here are additional tutorials for this functionality:

Getting Started

Sparsifying YOLOv5

In the example below, a dense YOLOv5s model pre-trained on COCO is sparsified and fine-tuned further with COCO.

1sparseml.yolov5.train \
2 --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/base-none \
3 --data coco.yaml \
4 --hyp data/hyps/hyp.scratch.yaml \
5 --recipe zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94
  • --weights indicates the checkpoint from which the pruning process should start. It can be a SparseZoo stub or a local path to a model.
  • --data specifies the dataset to be used. You may sparsify your model while training on your own, private (downstream) dataset or while continuing training with the original (upstream) dataset. The configuration file for COCO is included in the YOLOv5 integration and can be used as an example for a custom dataset.
  • --recipe encodes the hyperparameters of the pruning process. It can be a SparseZoo stub or a local YAML file. See Creating Sparsification Recipes for more information.

Sparse Transfer Learning

SparseML also enables you to fine-tune a pre-sparsified model onto your own dataset. +While you are free to use your backbone, we encourage you to leverage one of our sparse pre-trained models to boost your productivity!

The command below fetches a pre-sparsified YOLOv5s model, trained on the COCO dataset. It then fine-tunes the model to the VOC dataset while maintaining sparsity.

1sparseml.yolov5.train \
2 --data VOC.yaml \
3 --cfg models_v5.0/yolov5s.yaml \
4 --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94?recipe_type=transfer \
5 --hyp data/hyps/hyp.finetune.yaml \
6 --recipe zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned-aggressive_96

SparseML CLI

The SparseML installation provides a CLI for running YOLOv5 scripts with SparseML capability. The full set of commands is included below:

1sparseml.yolov5.train
2sparseml.yolov5.validation
3sparseml.yolov5.export_onnx
4sparseml.yolov5.val_onnx

Appending the --help argument displays a full list of options for the command:

sparseml.yolov5.train --help

The output is:

1usage: sparseml.yolov5.train [-h] [--weights WEIGHTS] [--cfg CFG] [--data DATA] [--hyp HYP] [--epochs EPOCHS] [--batch-size BATCH_SIZE] [--imgsz IMGSZ] [--rect]
2 [--resume [RESUME]] [--nosave] [--noval] [--noautoanchor] [--evolve [EVOLVE]] [--bucket BUCKET] [--cache [CACHE]] [--image-weights]
3 [--device DEVICE] [--multi-scale] [--single-cls] [--optimizer {SGD,Adam,AdamW}] [--sync-bn] [--workers WORKERS] [--project PROJECT]
4 [--name NAME] [--exist-ok] [--quad] [--cos-lr] [--label-smoothing LABEL_SMOOTHING] [--patience PATIENCE] [--freeze FREEZE [FREEZE ...]]
5 [--save-period SAVE_PERIOD] [--local_rank LOCAL_RANK] [--entity ENTITY] [--upload_dataset [UPLOAD_DATASET]]
6 [--bbox_interval BBOX_INTERVAL] [--artifact_alias ARTIFACT_ALIAS] [--recipe RECIPE] [--disable-ema] [--max-train-steps MAX_TRAIN_STEPS]
7 [--max-eval-steps MAX_EVAL_STEPS] [--one-shot] [--num-export-samples NUM_EXPORT_SAMPLES]
8 +
9optional arguments:
10 -h, --help show this help message and exit
11 --weights WEIGHTS initial weights path
12 --cfg CFG model.yaml path
13 --data DATA dataset.yaml path
14 --hyp HYP hyperparameters path
15 --epochs EPOCHS
16 --batch-size BATCH_SIZE
17 total batch size for all GPUs, -1 for autobatch
18...

Exporing to ONNX

Exporting the Sparse Model to ONNX

DeepSparse accepts ONNX formats and is engineered to significantly speed up inference on CPUs for the sparsified models from this integration.

The SparseML installation provides a sparseml.yolov5.export_onnx command that you can use to load the training model folder and create a new model.onnx file within. The export process is modified such that the quantized and pruned models are corrected and folded properly. Be sure the --weights argument points to your trained model.

1sparseml.yolov5.export_onnx \
2 --weights path/to/weights.pt \
3 --dynamic
Image Classification Deployments with DeepSparse
Object Detection Deployments with DeepSparse
\ No newline at end of file diff --git a/user-guide/deepsparse-engine/benchmarking/index.html b/user-guide/deepsparse-engine/benchmarking/index.html index 7821dca35b8..e7993d8cd50 100644 --- a/user-guide/deepsparse-engine/benchmarking/index.html +++ b/user-guide/deepsparse-engine/benchmarking/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsBenchmarking ONNX Models with the DeepSparse Engine
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
DeepSparse Engine
Benchmarking

Benchmarking ONNX Models with the DeepSparse Engine

This page explains how to use the DeepSparse Benchmarking utilities.

deepsparse.benchmark is a command-line (CLI) tool for benchmarking the DeepSparse Engine with ONNX models. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
DeepSparse
Benchmarking

Benchmarking ONNX Models with DeepSparse

This page explains how to use DeepSparse Benchmarking utilities.

deepsparse.benchmark is a command-line (CLI) tool for benchmarking DeepSparse with ONNX models. The tool will parse the arguments, download/compile the network into the engine, generate input tensors, and -execute the model depending on the chosen scenario. By default, it will choose a multi-stream or asynchronous mode to optimize for throughput.

Installation Requirements

This page requires the DeepSparse General Install.

Quickstart

To benchmark a dense BERT ONNX model fine-tuned on the SST2 dataset (which is identified by its SparseZoo stub), run the following:

deepsparse.benchmark zoo:nlp/text_classification/bert-base/pytorch/huggingface/sst2/base-none

Usage

In most cases, good performance will be found in the default options so it can be as simple as running the command with a SparseZoo model stub or your local ONNX model. -However, if you prefer to customize benchmarking for your personal use case, you can run deepsparse.benchmark -h or with --help to view your usage options:

CLI Arguments:

$deepsparse.benchmark --help
>positional arguments:
>
>model_path Path to an ONNX model file or SparseZoo model stub.
>
>optional arguments:
>
>-h, --help show this help message and exit.
>
>-b BATCH_SIZE, --batch_size BATCH_SIZE
>The batch size to run the analysis for. Must be
>greater than 0.
>
>-shapes INPUT_SHAPES, --input_shapes INPUT_SHAPES
>Override the shapes of the inputs, i.e. -shapes
>"[1,2,3],[4,5,6],[7,8,9]" results in input0=[1,2,3]
>input1=[4,5,6] input2=[7,8,9].
>
>-ncores NUM_CORES, --num_cores NUM_CORES
>The number of physical cores to run the analysis on,
>defaults to all physical cores available on the system.
>
>-s {async,sync,elastic}, --scenario {async,sync,elastic}
>Choose between using the async, sync and elastic
>scenarios. Sync and async are similar to the single-
>stream/multi-stream scenarios. Elastic is a newer
>scenario that behaves similarly to the async scenario
>but uses a different scheduling backend. Default value
>is async.
>
>-t TIME, --time TIME
>The number of seconds the benchmark will run. Default
>is 10 seconds.
>
>-w WARMUP_TIME, --warmup_time WARMUP_TIME
>The number of seconds the benchmark will warmup before
>running.Default is 2 seconds.
>
>-nstreams NUM_STREAMS, --num_streams NUM_STREAMS
>The number of streams that will submit inferences in
>parallel using async scenario. Default is
>automatically determined for given hardware and may be
>sub-optimal.
>
>-pin {none,core,numa}, --thread_pinning {none,core,numa}
>Enable binding threads to cores ('core' the default),
>threads to cores on sockets ('numa'), or disable
>('none').
>
>-e {deepsparse,onnxruntime}, --engine {deepsparse,onnxruntime}
>Inference engine backend to run eval on. Choices are
>'deepsparse', 'onnxruntime'. Default is 'deepsparse'.
>
>-q, --quiet Lower logging verbosity.
>
>-x EXPORT_PATH, --export_path EXPORT_PATH
>Store results into a JSON file.

💡PRO TIP💡: save your benchmark results in a convenient JSON file!

Example CLI command for benchmarking an ONNX model from the SparseZoo and saving the results to a benchmark.json file:

deepsparse.benchmark zoo:nlp/text_classification/bert-base/pytorch/huggingface/sst2/base-none -x benchmark.json

Sample CLI Argument Configurations

To run a sparse FP32 MobileNetV1 at batch size 16 for 10 seconds for throughput using 8 streams of requests:

deepsparse.benchmark zoo:cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/pruned-moderate --batch_size 16 --time 10 --scenario async --num_streams 8

To run a sparse quantized INT8 6-layer BERT at batch size 1 for latency:

deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_quant_6layers-aggressive_96 --batch_size 1 --scenario sync

⚡ Inference Scenarios

Synchronous (Single-stream) Scenario

Set by the --scenario sync argument, the goal metric is latency per batch (ms/batch). This scenario submits a single inference request at a time to the engine, recording the time taken for a request to return an output. This mimics an edge deployment scenario.

The latency value reported is the mean of all latencies recorded during the execution period for the given batch size.

Asynchronous (Multi-stream) Scenario

Set by the --scenario async argument, the goal metric is throughput in items per second (i/s). This scenario submits --num_streams concurrent inference requests to the engine, recording the time taken for each request to return an output. This mimics a model server or bulk batch deployment scenario.

The throughput value reported comes from measuring the number of finished inferences within the execution time and the batch size.

Example Benchmarking Output of Synchronous vs. Asynchronous

BERT 3-layer FP32 Sparse Throughput

No need to add scenario argument since async is the default option:

$deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83
>[INFO benchmark_model.py:202 ] Thread pinning to cores enabled
>DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 0.10.0 (9bba6971) (optimized) (system=avx512, binary=avx512)
>[INFO benchmark_model.py:247 ] deepsparse.engine.Engine:
>onnx_file_path: /home/mgoin/.cache/sparsezoo/c89f3128-4b87-41ae-91a3-eae8aa8c5a7c/model.onnx
>batch_size: 1
>num_cores: 18
>scheduler: Scheduler.multi_stream
>cpu_avx_type: avx512
>cpu_vnni: False
>[INFO onnx.py:176 ] Generating input 'input_ids', type = int64, shape = [1, 384]
>[INFO onnx.py:176 ] Generating input 'attention_mask', type = int64, shape = [1, 384]
>[INFO onnx.py:176 ] Generating input 'token_type_ids', type = int64, shape = [1, 384]
>[INFO benchmark_model.py:264 ] num_streams default value chosen of 9. This requires tuning and may be sub-optimal
>[INFO benchmark_model.py:270 ] Starting 'async' performance measurements for 10 seconds
>Original Model Path: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83
>Batch Size: 1
>Scenario: multistream
>Throughput (items/sec): 83.5037
>Latency Mean (ms/batch): 107.3422
>Latency Median (ms/batch): 107.0099
>Latency Std (ms/batch): 12.4016
>Iterations: 840

BERT 3-layer FP32 Sparse Latency

To select a synchronous inference scenario, add -s sync:

$deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83 -s sync
>[INFO benchmark_model.py:202 ] Thread pinning to cores enabled
>DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 0.10.0 (9bba6971) (optimized) (system=avx512, binary=avx512)
>[INFO benchmark_model.py:247 ] deepsparse.engine.Engine:
>onnx_file_path: /home/mgoin/.cache/sparsezoo/c89f3128-4b87-41ae-91a3-eae8aa8c5a7c/model.onnx
>batch_size: 1
>num_cores: 18
>scheduler: Scheduler.single_stream
>cpu_avx_type: avx512
>cpu_vnni: False
>[INFO onnx.py:176 ] Generating input 'input_ids', type = int64, shape = [1, 384]
>[INFO onnx.py:176 ] Generating input 'attention_mask', type = int64, shape = [1, 384]
>[INFO onnx.py:176 ] Generating input 'token_type_ids', type = int64, shape = [1, 384]
>[INFO benchmark_model.py:270 ] Starting 'sync' performance measurements for 10 seconds
>Original Model Path: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83
>Batch Size: 1
>Scenario: singlestream
>Throughput (items/sec): 62.1568
>Latency Mean (ms/batch): 16.0732
>Latency Median (ms/batch): 15.7850
>Latency Std (ms/batch): 1.0427
>Iterations: 622
Inference Types with the DeepSparse Scheduler
Logging Guidance for Diagnostics and Debugging
\ No newline at end of file +execute the model depending on the chosen scenario. By default, it will choose a multi-stream or asynchronous mode to optimize for throughput.

Installation Requirements

Use of the DeepSparse Benchmarking utilities requires installation of the DeepSparse Community.

Quickstart

To benchmark a dense BERT ONNX model fine-tuned on the SST2 dataset (which is identified by its SparseZoo stub), run:

deepsparse.benchmark zoo:nlp/text_classification/bert-base/pytorch/huggingface/sst2/base-none

Usage

In most cases, good performance will be found in the default options so usage can be as simple as running the command with a SparseZoo model stub or your local ONNX model. +However, if you prefer to customize benchmarking for your personal use case, you can run deepsparse.benchmark -h or with --help to view your usage options:

CLI Arguments:

$deepsparse.benchmark --help
>positional arguments:
>
>model_path Path to an ONNX model file or SparseZoo model stub.
>
>optional arguments:
>
>-h, --help show this help message and exit.
>
>-b BATCH_SIZE, --batch_size BATCH_SIZE
>The batch size to run the analysis for. Must be
>greater than 0.
>
>-shapes INPUT_SHAPES, --input_shapes INPUT_SHAPES
>Override the shapes of the inputs, i.e. -shapes
>"[1,2,3],[4,5,6],[7,8,9]" results in input0=[1,2,3]
>input1=[4,5,6] input2=[7,8,9].
>
>-ncores NUM_CORES, --num_cores NUM_CORES
>The number of physical cores to run the analysis on,
>defaults to all physical cores available on the system.
>
>-s {async,sync,elastic}, --scenario {async,sync,elastic}
>Choose between using the async, sync and elastic
>scenarios. Sync and async are similar to the single-
>stream/multi-stream scenarios. Elastic is a newer
>scenario that behaves similarly to the async scenario
>but uses a different scheduling backend. Default value
>is async.
>
>-t TIME, --time TIME
>The number of seconds the benchmark will run. Default
>is 10 seconds.
>
>-w WARMUP_TIME, --warmup_time WARMUP_TIME
>The number of seconds the benchmark will warmup before
>running.Default is 2 seconds.
>
>-nstreams NUM_STREAMS, --num_streams NUM_STREAMS
>The number of streams that will submit inferences in
>parallel using async scenario. Default is
>automatically determined for given hardware and may be
>sub-optimal.
>
>-pin {none,core,numa}, --thread_pinning {none,core,numa}
>Enable binding threads to cores ('core' the default),
>threads to cores on sockets ('numa'), or disable
>('none').
>
>-e {deepsparse,onnxruntime}, --engine {deepsparse,onnxruntime}
>Inference engine backend to run eval on. Choices are
>'deepsparse', 'onnxruntime'. Default is 'deepsparse'.
>
>-q, --quiet Lower logging verbosity.
>
>-x EXPORT_PATH, --export_path EXPORT_PATH
>Store results into a JSON file.

PRO TIP: Save your benchmark results in a convenient JSON file.

The following is an example CLI command for benchmarking an ONNX model from the SparseZoo and saving the results to a benchmark.json file:

deepsparse.benchmark zoo:nlp/text_classification/bert-base/pytorch/huggingface/sst2/base-none -x benchmark.json

Sample CLI Argument Configurations

To run a sparse FP32 MobileNetV1 at batch size 16 for 10 seconds for throughput using 8 streams of requests, use:

deepsparse.benchmark zoo:cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/pruned-moderate --batch_size 16 --time 10 --scenario async --num_streams 8

To run a sparse quantized INT8 6-layer BERT at batch size 1 for latency, use:

deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_quant_6layers-aggressive_96 --batch_size 1 --scenario sync

Inference Scenarios

Synchronous (Single-stream) Scenario

Set by the --scenario sync argument, the goal metric is latency per batch (ms/batch). This scenario submits a single inference request at a time to the engine, recording the time taken for a request to return an output. This mimics an edge deployment scenario.

The latency value reported is the mean of all latencies recorded during the execution period for the given batch size.

Asynchronous (Multi-stream) Scenario

Set by the --scenario async argument, the goal metric is throughput in items per second (i/s). This scenario submits --num_streams concurrent inference requests to the engine, recording the time taken for each request to return an output. This mimics a model server or bulk batch deployment scenario.

The throughput value reported comes from measuring the number of finished inferences within the execution time and the batch size.

Example Benchmarking Output of Synchronous vs. Asynchronous

BERT 3-layer FP32 Sparse Throughput

There is no need to add a scenario argument since async is the default option:

$deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83
>[INFO benchmark_model.py:202 ] Thread pinning to cores enabled
>DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 0.10.0 (9bba6971) (optimized) (system=avx512, binary=avx512)
>[INFO benchmark_model.py:247 ] deepsparse.engine.Engine:
>onnx_file_path: /home/mgoin/.cache/sparsezoo/c89f3128-4b87-41ae-91a3-eae8aa8c5a7c/model.onnx
>batch_size: 1
>num_cores: 18
>scheduler: Scheduler.multi_stream
>cpu_avx_type: avx512
>cpu_vnni: False
>[INFO onnx.py:176 ] Generating input 'input_ids', type = int64, shape = [1, 384]
>[INFO onnx.py:176 ] Generating input 'attention_mask', type = int64, shape = [1, 384]
>[INFO onnx.py:176 ] Generating input 'token_type_ids', type = int64, shape = [1, 384]
>[INFO benchmark_model.py:264 ] num_streams default value chosen of 9. This requires tuning and may be sub-optimal
>[INFO benchmark_model.py:270 ] Starting 'async' performance measurements for 10 seconds
>Original Model Path: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83
>Batch Size: 1
>Scenario: multistream
>Throughput (items/sec): 83.5037
>Latency Mean (ms/batch): 107.3422
>Latency Median (ms/batch): 107.0099
>Latency Std (ms/batch): 12.4016
>Iterations: 840

BERT 3-layer FP32 Sparse Latency

To select a synchronous inference scenario, add -s sync:

$deepsparse.benchmark zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83 -s sync
>[INFO benchmark_model.py:202 ] Thread pinning to cores enabled
>DeepSparse Engine, Copyright 2021-present / Neuralmagic, Inc. version: 0.10.0 (9bba6971) (optimized) (system=avx512, binary=avx512)
>[INFO benchmark_model.py:247 ] deepsparse.engine.Engine:
>onnx_file_path: /home/mgoin/.cache/sparsezoo/c89f3128-4b87-41ae-91a3-eae8aa8c5a7c/model.onnx
>batch_size: 1
>num_cores: 18
>scheduler: Scheduler.single_stream
>cpu_avx_type: avx512
>cpu_vnni: False
>[INFO onnx.py:176 ] Generating input 'input_ids', type = int64, shape = [1, 384]
>[INFO onnx.py:176 ] Generating input 'attention_mask', type = int64, shape = [1, 384]
>[INFO onnx.py:176 ] Generating input 'token_type_ids', type = int64, shape = [1, 384]
>[INFO benchmark_model.py:270 ] Starting 'sync' performance measurements for 10 seconds
>Original Model Path: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned_3layers-aggressive_83
>Batch Size: 1
>Scenario: singlestream
>Throughput (items/sec): 62.1568
>Latency Mean (ms/batch): 16.0732
>Latency Median (ms/batch): 15.7850
>Latency Std (ms/batch): 1.0427
>Iterations: 622
Inference Types with DeepSparse Scheduler
Logging Guidance for Diagnostics and Debugging
\ No newline at end of file diff --git a/user-guide/deepsparse-engine/diagnostics-debugging/index.html b/user-guide/deepsparse-engine/diagnostics-debugging/index.html new file mode 100644 index 00000000000..c15a7651fa9 --- /dev/null +++ b/user-guide/deepsparse-engine/diagnostics-debugging/index.html @@ -0,0 +1,11 @@ +Neural Magic DocsNeural Magic DocsLogging Guidance for Diagnostics and Debugging
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
DeepSparse
Diagnostics/Debugging

Logging Guidance for Diagnostics and Debugging

This page explains the diagnostics and debugging features available in DeepSparse.

Unlike traditional software, debugging utilities available to the machine learning community are scarce. Complicated with deployment pipeline design issues, model weights, model architecture, and unoptimized models, debugging performance issues can be very dynamic in your data science ecosystem. Reviewing a log file can be your first line of defense in pinpointing performance issues with optimizing your inference.

DeepSparse ships with diagnostic logging so you can capture real-time monitoring information at model runtime and self-diagnose issues. If you are seeking technical support, we recommend capturing log information first, as described below. You can decide what to share, whether certain parts of the log or the entire content.

Note: Our logs may reveal your inference network’s macro-architecture, including a general list of operators (such as convolution and pooling) and connections between them. Weights, trained parameters, or dataset parameters will not be captured. Consult Neural Magic’s various legal policies at https://neuralmagic.com/legal/ which include our privacy statement and software agreements. Your use of the software serves as your consent to these practices.

Performance Tuning

An initial decision point to make in troubleshooting performance issues before enabling logs is whether to prevent threads from migrating from their cores. The default behavior is to disable thread binding (or pinning), allowing your OS to manage the allocation of threads to cores. There is a performance hit associated with this if DeepSparse is the main process running on your machine. If you want to enable thread binding for the possible performance benefit, set:

NM_BIND_THREADS_TO_CORES=1

Note 1: If DeepSparse is not the only major process running on your machine, binding threads may hurt performance of the other major process(es) by monopolizing system resources.

Note 2: If you use OpenMP or TBB (Thread Building Blocks) in your application, then enabling thread binding may result in severe performance degradation due to conflicts between Neural Magic thread pool and OpenMP/TBB thread pools.

Enabling Logs and Controlling the Amount of Logs Produced by DeepSparse

Logs are controlled by setting the NM_LOGGING_LEVEL environment variable.

Specify within your shell one of the following verbosity levels (in increasing order of verbosity:

fatal, error, warn, and diagnose with diagnose as a common default for all logs that will output to stderr:

1 NM_LOGGING_LEVEL=diagnose
2 export NM_LOGGING_LEVEL

Alternatively, you can output the logging level by

NM_LOGGING_LEVEL=diagnose <some command>

To enable diagnostic logs on a per-run basis, specify it manually before each script execution. For example, if you normally run:

python run_model.py

Then, to enable diagnostic logs, run:

NM_LOGGING_LEVEL=diagnose python run_model.py

To enable logging for your entire shell instance, execute within your shell:

export NM_LOGGING_LEVEL=diagnose

By default, logs will print out to the stderr of your process. If you would like to output to a file, add 2> <name_of_log>.txt to the end of your command.

Parsing an Example Log

If you want to see an example log with NM_LOGGING_LEVEL=diagnose, a truncated sample output is provided at the end of this guide. It will show a super_resolution network, where Neural Magic only supports running 70% of it.

Different portions of the log are explained below.

Viewing the Whole Graph

Once a model is in our system, it is parsed to determine what operations it contains. Each operation is made a node and assigned a unique number Its operation type is displayed:

1 Printing GraphViewer torch-jit-export:
2 Node 0: Conv
3 Node 1: Relu
4 Node 2: Conv
5 Node 3: Relu
6 Node 4: Conv
7 Node 5: Relu
8 Node 6: Conv
9 Node 7: Reshape
10 Node 8: Transpose
11 Node 9: Reshape

Finding Supported Nodes for Our Optimized Engine

After the whole graph is loaded in, nodes are analyzed to determine whether they are supported by our optimized runtime engine. Notable "unsupported" operators are indicated by looking for Unsupported [type of node] in the log. For example, this is an unsupported Reshape node that produces a 6D tensor:

[nm_ort 7f4fbbd3f740 >DIAGNOSE< unsupported /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/ops.cc:60] Unsupported Reshape , const shape greater than 5D

Compiling Each Subgraph

Once all the nodes are located that are supported within the optimized engine, the graphs are split into maximal subgraphs and each one is compiled. ​To find the start of each subgraph compilation, look for == Beginning new subgraph ==. First, the nodes are displayed in the subgraph: ​

1 Printing subgraph:
2 Node 0: Conv
3 Node 1: Relu
4 Node 2: Conv
5 Node 3: Relu
6 Node 4: Conv
7 Node 5: Relu
8 Node 6: Conv

Simplifications are then performed on the graph to get it in an ideal state for complex optimizations, which are logged:

1[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:706] == Translating subgraph NM_Subgraph_1 to NM intake graph.
2[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:715] ( L1 graph
3 ( values:
4 (10 float [ 1, 64, 224, 224 ])
5 (11 float [ 1, 64, 224, 224 ])
6 (12 float [ 1, 64, 224, 224 ])
7 (13 float [ 1, 32, 224, 224 ])
8 (14 float [ 1, 32, 224, 224 ])
9 (15 float [ 1, 9, 224, 224 ])
10 (9 float [ 1, 64, 224, 224 ])
11 (conv1.bias float [ 64 ])
12 (conv1.weight float [ 64, 1, 5, 5 ])
13 (conv2.bias float [ 64 ])
14 (conv2.weight float [ 64, 64, 3, 3 ])
15 (conv3.bias float [ 32 ])
16 (conv3.weight float [ 32, 64, 3, 3 ])
17 (conv4.bias float [ 9 ])
18 (conv4.weight float [ 9, 32, 3, 3 ])
19 (input float [ 1, 1, 224, 224 ])
20 )
21 ( operations:
22 (Constant conv1.bias (constant float [ 64 ]))
23 (Constant conv1.weight (constant float [ 64, 1, 5, 5 ]))
24 (Constant conv2.bias (constant float [ 64 ]))
25 (Constant conv2.weight (constant float [ 64, 64, 3, 3 ]))
26 (Constant conv3.bias (constant float [ 32 ]))
27 (Constant conv3.weight (constant float [ 32, 64, 3, 3 ]))
28 (Constant conv4.bias (constant float [ 9 ]))
29 (Constant conv4.weight (constant float [ 9, 32, 3, 3 ]))
30 (Input input (io 0))
31 (Conv input -> 9 (conv kernel = [ 64, 1, 5, 5 ] bias = [ 64 ] padding = {{2, 2}, {2, 2}} strides = {1, 1}))
32 (Elementwise 9 -> 10 (calc Relu))
33 (Conv 10 -> 11 (conv kernel = [ 64, 64, 3, 3 ] bias = [ 64 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))
34 (Elementwise 11 -> 12 (calc Relu))
35 (Conv 12 -> 13 (conv kernel = [ 32, 64, 3, 3 ] bias = [ 32 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))
36 (Elementwise 13 -> 14 (calc Relu))
37 (Conv 14 -> 15 (conv kernel = [ 9, 32, 3, 3 ] bias = [ 9 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))
38 (Output 15 (io 0))
39 )
40)

Determining the Number of Cores and Batch Size

This log detail describes the batch size and number of cores that Neural Magic is optimizing against. Look for == Compiling NM_Subgraph as in this example:

[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:723] == Compiling NM_Subgraph_1 with batch size 1 using 18 cores.

Obtaining Subgraph Statistics

Locating == NM Execution Provider supports shows how many subgraphs we compiled and what percentage of the network we managed to support running:

1[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:122] Created 1 compiled subgraphs.
2[nm_ort 7f4fbbd3f740 >DIAGNOSE< validate_minimum_supported_fraction /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/utility/graph_util.cc:321] == NM Execution Provider supports 70% of the network

Viewing Runtime Execution Times

​For each subgraph Neural Magic optimizes, the execution time is reported by ORT NM EP compute_func: for each run as follows:

[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:265] ORT NM EP compute_func: 6.478 ms

Full Example Log, Verbose Level = diagnose

The following is an example log with NM_LOGGING_LEVEL=diagnose running a super_resolution network, where we only support running 70% of it. Different portions of the log are explained in Parsing an Example Log.

1onnx_filename : test-models/cv-resolution/super_resolution/none-bsd300-onnx-repo/model.onnx
2[ INFO neuralmagic.py: 112 - neuralmagic_create() ] Construct network from ONNX = test-models/cv-resolution/super_resolution/none-bsd300-onnx-repo/model.onnx
3NeuralMagic WAND version: 1.0.0.96ce2f6cb23b8ab377012ed9ef38d3da3b9f5313 (optimized) (system=avx512, binary=avx512)
4[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:104] == NMExecutionProvider::GetCapability ==
5Printing GraphViewer torch-jit-export:
6Node 0: Conv
7Node 1: Relu
8Node 2: Conv
9Node 3: Relu
10Node 4: Conv
11Node 5: Relu
12Node 6: Conv
13Node 7: Reshape
14Node 8: Transpose
15Node 9: Reshape
16
17[nm_ort 7f4fbbd3f740 >DIAGNOSE< unsupported /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/ops.cc:60] Unsupported Reshape , const shape greater than 5D
18[nm_ort 7f4fbbd3f740 >DIAGNOSE< construct_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:595] == Constructing subgraphs from graph info
19[nm_ort 7f4fbbd3f740 >WARN< construct_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:604] Cannot support patterns, defaulting to non-pattern-matched subgraphs
20[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:644] == Beginning new subgraph ==
21[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:667] Runtime inputs for subgraph:
22[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:679] input (required)
23[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:684] Printing subgraph:
24Node 0: Conv
25Node 1: Relu
26Node 2: Conv
27Node 3: Relu
28Node 4: Conv
29Node 5: Relu
30Node 6: Conv
31
32[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:706] == Translating subgraph NM_Subgraph_1 to NM intake graph.
33[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:715] ( L1 graph
34 ( values:
35 (10 float [ 1, 64, 224, 224 ])
36 (11 float [ 1, 64, 224, 224 ])
37 (12 float [ 1, 64, 224, 224 ])
38 (13 float [ 1, 32, 224, 224 ])
39 (14 float [ 1, 32, 224, 224 ])
40 (15 float [ 1, 9, 224, 224 ])
41 (9 float [ 1, 64, 224, 224 ])
42 (conv1.bias float [ 64 ])
43 (conv1.weight float [ 64, 1, 5, 5 ])
44 (conv2.bias float [ 64 ])
45 (conv2.weight float [ 64, 64, 3, 3 ])
46 (conv3.bias float [ 32 ])
47 (conv3.weight float [ 32, 64, 3, 3 ])
48 (conv4.bias float [ 9 ])
49 (conv4.weight float [ 9, 32, 3, 3 ])
50 (input float [ 1, 1, 224, 224 ])
51 )
52 ( operations:
53 (Constant conv1.bias (constant float [ 64 ]))
54 (Constant conv1.weight (constant float [ 64, 1, 5, 5 ]))
55 (Constant conv2.bias (constant float [ 64 ]))
56 (Constant conv2.weight (constant float [ 64, 64, 3, 3 ]))
57 (Constant conv3.bias (constant float [ 32 ]))
58 (Constant conv3.weight (constant float [ 32, 64, 3, 3 ]))
59 (Constant conv4.bias (constant float [ 9 ]))
60 (Constant conv4.weight (constant float [ 9, 32, 3, 3 ]))
61 (Input input (io 0))
62 (Conv input -> 9 (conv kernel = [ 64, 1, 5, 5 ] bias = [ 64 ] padding = {{2, 2}, {2, 2}} strides = {1, 1}))
63 (Elementwise 9 -> 10 (calc Relu))
64 (Conv 10 -> 11 (conv kernel = [ 64, 64, 3, 3 ] bias = [ 64 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))
65 (Elementwise 11 -> 12 (calc Relu))
66 (Conv 12 -> 13 (conv kernel = [ 32, 64, 3, 3 ] bias = [ 32 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))
67 (Elementwise 13 -> 14 (calc Relu))
68 (Conv 14 -> 15 (conv kernel = [ 9, 32, 3, 3 ] bias = [ 9 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))
69 (Output 15 (io 0))
70 )
71)
72
73[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:723] == Compiling NM_Subgraph_1 with batch size 1 using 18 cores.
74[7f4fbbd3f740 >DIAGNOSE< allocate_buffers_pass ./src/include/wand/engine/units/planner.hpp:49] compiler: total buffer size = 25690112/33918976, ratio = 0.757396
75[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:644] == Beginning new subgraph ==
76[nm_ort 7f4fbbd3f740 >WARN< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:652] Filtered subgraph was empty, ignoring subgraph.
77[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:122] Created 1 compiled subgraphs.
78[nm_ort 7f4fbbd3f740 >DIAGNOSE< validate_minimum_supported_fraction /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/utility/graph_util.cc:321] == NM Execution Provider supports 70% of the network
79[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:129] == End NMExecutionProvider::GetCapability ==
80[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:140] == NMExecutionProvider::Compile ==
81[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:157] Graph #0: 1 inputs and 1 outputs
82[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:276] == End NMExecutionProvider::Compile ==
83Generating 1 random inputs
84 -- 1 random input of shape = [1, 1, 224, 224]
85[ INFO execute.py: 242 - nm_exec_test_iters() ] Starting tests
86[ INFO neuralmagic.py: 121 - neuralmagic_execute() ] Executing TEST_1
87[ INFO neuralmagic.py: 124 - neuralmagic_execute() ] [1] input_data.shape = (1, 1, 224, 224)
88[ INFO neuralmagic.py: 126 - neuralmagic_execute() ] -- START
89[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:265] ORT NM EP compute_func: 6.478 ms
90[ INFO neuralmagic.py: 130 - neuralmagic_execute() ] -- FINISH
91[ INFO neuralmagic.py: 132 - neuralmagic_execute() ] [output] output_data.shape = (1, 1, 672, 672)
Benchmarking ONNX Models with DeepSparse
Using the numactl Utility to Control Resource Utilization with DeepSparse
\ No newline at end of file diff --git a/user-guide/deepsparse-engine/diagnotistics-debugging/index.html b/user-guide/deepsparse-engine/diagnotistics-debugging/index.html deleted file mode 100644 index e29a78491e0..00000000000 --- a/user-guide/deepsparse-engine/diagnotistics-debugging/index.html +++ /dev/null @@ -1,11 +0,0 @@ -Neural Magic DocsNeural Magic DocsLogging Guidance for Diagnostics and Debugging
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
DeepSparse Engine
Diagnostics/Debugging

Logging Guidance for Diagnostics and Debugging

This page explains the diagnostics and debugging features available in DeepSparse Engine.

Unlike traditional software, debugging utilities available to the machine learning community are scarce. Complicated with deployment pipeline design issues, model weights, model architecture, and unoptimized models, debugging performance issues can be very dynamic in your data science ecosystem. Reviewing a log file can be your first line of defense in pinpointing performance issues with optimizing your inference.

The DeepSparse Engine ships with diagnostic logging so you can capture real-time monitoring information at model runtime and self-diagnose issues. If you are seeking technical support, we recommend capturing log information first, as described below. You can decide what to share, whether certain parts of the log or the entire content.

Note: Our logs may reveal your inference network’s macro-architecture, including a general list of operators (such as convolution and pooling) and connections between them. Weights, trained parameters, or dataset parameters will not be captured. Consult Neural Magic’s various legal policies at https://neuralmagic.com/legal/ which include our privacy statement and software agreements. Your use of the software serves as your consent to these practices.

Performance Tuning

An initial decision point to make in troubleshooting performance issues before enabling logs is whether to prevent threads from migrating from their cores. The default behavior is to disable thread binding (or pinning), allowing your OS to manage the allocation of threads to cores. There is a performance hit associated with this if the DeepSparseEngine is the main process running on your machine. If you want to enable thread binding for the possible performance benefit, set:

NM_BIND_THREADS_TO_CORES=1

Note 1: If the DeepSparse Engine is not the only major process running on your machine, binding threads may hurt performance of the other major process(es) by monopolizing system resources.

Note 2: If you use OpenMP or TBB (Thread Building Blocks) in your application, then enabling thread binding may result in severe performance degradation due to conflicts between Neural Magic thread pool and OpenMP/TBB thread pools.

Enabling Logs and Controlling the Amount of Logs Produced by the DeepSparse Engine

Logs are controlled by setting the NM_LOGGING_LEVEL environment variable.

Specify within your shell one of the following verbosity levels (in increasing order of verbosity:

fatal, error, warn, and diagnose with diagnose as a common default for all logs that will output to stderr:

1 NM_LOGGING_LEVEL=diagnose
2 export NM_LOGGING_LEVEL

Alternatively, you can output the logging level by

NM_LOGGING_LEVEL=diagnose <some command>

To enable diagnostic logs on a per-run basis, specify it manually before each script execution. For example, if you normally run:

python run_model.py

Then, to enable diagnostic logs, run:

NM_LOGGING_LEVEL=diagnose python run_model.py

To enable logging for your entire shell instance, execute within your shell:

export NM_LOGGING_LEVEL=diagnose

By default, logs will print out to the stderr of your process. If you would like to output to a file, add 2> <name_of_log>.txt to the end of your command.

Parsing an Example Log

If you want to see an example log with NM_LOGGING_LEVEL=diagnose, a truncated sample output is provided at the end of this guide. It will show a super_resolution network, where Neural Magic only supports running 70% of it.

Different portions of the log are explained below.

Viewing the Whole Graph

Once a model is in our system, it is parsed to determine what operations it contains. Each operation is made a node and assigned a unique number Its operation type is displayed:

1 Printing GraphViewer torch-jit-export:
2 Node 0: Conv
3 Node 1: Relu
4 Node 2: Conv
5 Node 3: Relu
6 Node 4: Conv
7 Node 5: Relu
8 Node 6: Conv
9 Node 7: Reshape
10 Node 8: Transpose
11 Node 9: Reshape

Finding Supported Nodes for Our Optimized Engine

After the whole graph is loaded in, nodes are analyzed to determine whether they are supported by our optimized runtime engine. Notable "unsupported" operators are indicated by looking for Unsupported [type of node] in the log. For example, this is an unsupported Reshape node that produces a 6D tensor:

[nm_ort 7f4fbbd3f740 >DIAGNOSE< unsupported /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/ops.cc:60] Unsupported Reshape , const shape greater than 5D

Compiling Each Subgraph

Once all the nodes are located that are supported within the optimized engine, the graphs are split into maximal subgraphs and each one is compiled. ​To find the start of each subgraph compilation, look for == Beginning new subgraph ==. First, the nodes are displayed in the subgraph: ​

1 Printing subgraph:
2 Node 0: Conv
3 Node 1: Relu
4 Node 2: Conv
5 Node 3: Relu
6 Node 4: Conv
7 Node 5: Relu
8 Node 6: Conv

Simplifications are then performed on the graph to get it in an ideal state for complex optimizations, which are logged:

1[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:706] == Translating subgraph NM_Subgraph_1 to NM intake graph.
2[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:715] ( L1 graph
3 ( values:
4 (10 float [ 1, 64, 224, 224 ])
5 (11 float [ 1, 64, 224, 224 ])
6 (12 float [ 1, 64, 224, 224 ])
7 (13 float [ 1, 32, 224, 224 ])
8 (14 float [ 1, 32, 224, 224 ])
9 (15 float [ 1, 9, 224, 224 ])
10 (9 float [ 1, 64, 224, 224 ])
11 (conv1.bias float [ 64 ])
12 (conv1.weight float [ 64, 1, 5, 5 ])
13 (conv2.bias float [ 64 ])
14 (conv2.weight float [ 64, 64, 3, 3 ])
15 (conv3.bias float [ 32 ])
16 (conv3.weight float [ 32, 64, 3, 3 ])
17 (conv4.bias float [ 9 ])
18 (conv4.weight float [ 9, 32, 3, 3 ])
19 (input float [ 1, 1, 224, 224 ])
20 )
21 ( operations:
22 (Constant conv1.bias (constant float [ 64 ]))
23 (Constant conv1.weight (constant float [ 64, 1, 5, 5 ]))
24 (Constant conv2.bias (constant float [ 64 ]))
25 (Constant conv2.weight (constant float [ 64, 64, 3, 3 ]))
26 (Constant conv3.bias (constant float [ 32 ]))
27 (Constant conv3.weight (constant float [ 32, 64, 3, 3 ]))
28 (Constant conv4.bias (constant float [ 9 ]))
29 (Constant conv4.weight (constant float [ 9, 32, 3, 3 ]))
30 (Input input (io 0))
31 (Conv input -> 9 (conv kernel = [ 64, 1, 5, 5 ] bias = [ 64 ] padding = {{2, 2}, {2, 2}} strides = {1, 1}))
32 (Elementwise 9 -> 10 (calc Relu))
33 (Conv 10 -> 11 (conv kernel = [ 64, 64, 3, 3 ] bias = [ 64 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))
34 (Elementwise 11 -> 12 (calc Relu))
35 (Conv 12 -> 13 (conv kernel = [ 32, 64, 3, 3 ] bias = [ 32 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))
36 (Elementwise 13 -> 14 (calc Relu))
37 (Conv 14 -> 15 (conv kernel = [ 9, 32, 3, 3 ] bias = [ 9 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))
38 (Output 15 (io 0))
39 )
40)

Determining the Number of Cores and Batch Size

This log detail describes the batch size and number of cores that Neural Magic is optimizing against. Look for == Compiling NM_Subgraph as in this example:

[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:723] == Compiling NM_Subgraph_1 with batch size 1 using 18 cores.

Obtaining Subgraph Statistics

Locating == NM Execution Provider supports shows how many subgraphs we compiled and what percentage of the network we managed to support running:

1[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:122] Created 1 compiled subgraphs.
2[nm_ort 7f4fbbd3f740 >DIAGNOSE< validate_minimum_supported_fraction /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/utility/graph_util.cc:321] == NM Execution Provider supports 70% of the network

Viewing Runtime Execution Times

​For each subgraph Neural Magic optimizes, the execution time is reported by ORT NM EP compute_func: for each run as follows:

[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:265] ORT NM EP compute_func: 6.478 ms

Full Example Log, Verbose Level = diagnose

The following is an example log with NM_LOGGING_LEVEL=diagnose running a super_resolution network, where we only support running 70% of it. Different portions of the log are explained in Parsing an Example Log.

1onnx_filename : test-models/cv-resolution/super_resolution/none-bsd300-onnx-repo/model.onnx
2[ INFO neuralmagic.py: 112 - neuralmagic_create() ] Construct network from ONNX = test-models/cv-resolution/super_resolution/none-bsd300-onnx-repo/model.onnx
3NeuralMagic WAND version: 1.0.0.96ce2f6cb23b8ab377012ed9ef38d3da3b9f5313 (optimized) (system=avx512, binary=avx512)
4[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:104] == NMExecutionProvider::GetCapability ==
5Printing GraphViewer torch-jit-export:
6Node 0: Conv
7Node 1: Relu
8Node 2: Conv
9Node 3: Relu
10Node 4: Conv
11Node 5: Relu
12Node 6: Conv
13Node 7: Reshape
14Node 8: Transpose
15Node 9: Reshape
16
17[nm_ort 7f4fbbd3f740 >DIAGNOSE< unsupported /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/ops.cc:60] Unsupported Reshape , const shape greater than 5D
18[nm_ort 7f4fbbd3f740 >DIAGNOSE< construct_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:595] == Constructing subgraphs from graph info
19[nm_ort 7f4fbbd3f740 >WARN< construct_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:604] Cannot support patterns, defaulting to non-pattern-matched subgraphs
20[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:644] == Beginning new subgraph ==
21[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:667] Runtime inputs for subgraph:
22[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:679] input (required)
23[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:684] Printing subgraph:
24Node 0: Conv
25Node 1: Relu
26Node 2: Conv
27Node 3: Relu
28Node 4: Conv
29Node 5: Relu
30Node 6: Conv
31
32[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:706] == Translating subgraph NM_Subgraph_1 to NM intake graph.
33[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:715] ( L1 graph
34 ( values:
35 (10 float [ 1, 64, 224, 224 ])
36 (11 float [ 1, 64, 224, 224 ])
37 (12 float [ 1, 64, 224, 224 ])
38 (13 float [ 1, 32, 224, 224 ])
39 (14 float [ 1, 32, 224, 224 ])
40 (15 float [ 1, 9, 224, 224 ])
41 (9 float [ 1, 64, 224, 224 ])
42 (conv1.bias float [ 64 ])
43 (conv1.weight float [ 64, 1, 5, 5 ])
44 (conv2.bias float [ 64 ])
45 (conv2.weight float [ 64, 64, 3, 3 ])
46 (conv3.bias float [ 32 ])
47 (conv3.weight float [ 32, 64, 3, 3 ])
48 (conv4.bias float [ 9 ])
49 (conv4.weight float [ 9, 32, 3, 3 ])
50 (input float [ 1, 1, 224, 224 ])
51 )
52 ( operations:
53 (Constant conv1.bias (constant float [ 64 ]))
54 (Constant conv1.weight (constant float [ 64, 1, 5, 5 ]))
55 (Constant conv2.bias (constant float [ 64 ]))
56 (Constant conv2.weight (constant float [ 64, 64, 3, 3 ]))
57 (Constant conv3.bias (constant float [ 32 ]))
58 (Constant conv3.weight (constant float [ 32, 64, 3, 3 ]))
59 (Constant conv4.bias (constant float [ 9 ]))
60 (Constant conv4.weight (constant float [ 9, 32, 3, 3 ]))
61 (Input input (io 0))
62 (Conv input -> 9 (conv kernel = [ 64, 1, 5, 5 ] bias = [ 64 ] padding = {{2, 2}, {2, 2}} strides = {1, 1}))
63 (Elementwise 9 -> 10 (calc Relu))
64 (Conv 10 -> 11 (conv kernel = [ 64, 64, 3, 3 ] bias = [ 64 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))
65 (Elementwise 11 -> 12 (calc Relu))
66 (Conv 12 -> 13 (conv kernel = [ 32, 64, 3, 3 ] bias = [ 32 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))
67 (Elementwise 13 -> 14 (calc Relu))
68 (Conv 14 -> 15 (conv kernel = [ 9, 32, 3, 3 ] bias = [ 9 ] padding = {{1, 1}, {1, 1}} strides = {1, 1}))
69 (Output 15 (io 0))
70 )
71)
72
73[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:723] == Compiling NM_Subgraph_1 with batch size 1 using 18 cores.
74[7f4fbbd3f740 >DIAGNOSE< allocate_buffers_pass ./src/include/wand/engine/units/planner.hpp:49] compiler: total buffer size = 25690112/33918976, ratio = 0.757396
75[nm_ort 7f4fbbd3f740 >DIAGNOSE< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:644] == Beginning new subgraph ==
76[nm_ort 7f4fbbd3f740 >WARN< supported_subgraphs /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/supported/subgraphs.cc:652] Filtered subgraph was empty, ignoring subgraph.
77[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:122] Created 1 compiled subgraphs.
78[nm_ort 7f4fbbd3f740 >DIAGNOSE< validate_minimum_supported_fraction /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/utility/graph_util.cc:321] == NM Execution Provider supports 70% of the network
79[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:129] == End NMExecutionProvider::GetCapability ==
80[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:140] == NMExecutionProvider::Compile ==
81[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:157] Graph #0: 1 inputs and 1 outputs
82[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:276] == End NMExecutionProvider::Compile ==
83Generating 1 random inputs
84 -- 1 random input of shape = [1, 1, 224, 224]
85[ INFO execute.py: 242 - nm_exec_test_iters() ] Starting tests
86[ INFO neuralmagic.py: 121 - neuralmagic_execute() ] Executing TEST_1
87[ INFO neuralmagic.py: 124 - neuralmagic_execute() ] [1] input_data.shape = (1, 1, 224, 224)
88[ INFO neuralmagic.py: 126 - neuralmagic_execute() ] -- START
89[nm_ort 7f4fbbd3f740 >DIAGNOSE< operator() /home/jdoe/code/nyann/src/onnxruntime_neuralmagic/nm_execution_provider.cc:265] ORT NM EP compute_func: 6.478 ms
90[ INFO neuralmagic.py: 130 - neuralmagic_execute() ] -- FINISH
91[ INFO neuralmagic.py: 132 - neuralmagic_execute() ] [output] output_data.shape = (1, 1, 672, 672)
Benchmarking ONNX Models with the DeepSparse Engine
Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine
\ No newline at end of file diff --git a/user-guide/deepsparse-engine/hardware-support/index.html b/user-guide/deepsparse-engine/hardware-support/index.html index 48d24f00c09..5f6dbb1d6c8 100644 --- a/user-guide/deepsparse-engine/hardware-support/index.html +++ b/user-guide/deepsparse-engine/hardware-support/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsSupported Hardware for the DeepSparse Engine
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
DeepSparse Engine
Supported Hardware

Supported Hardware for the DeepSparse Engine

With support for AVX2, AVX-512, and VNNI instruction sets, the DeepSparse Engine is validated to work on x86 Intel (Haswell generation and later) and AMD CPUs running Linux. -Mac and Windows require running Linux in a Docker or virtual machine.

Here is a table detailing specific support for some algorithms over different microarchitectures:

x86 ExtensionMicroarchitecturesActivation SparsityKernel SparsitySparse Quantization
AMD AVX2Zen 2, Zen 3not supportedoptimizednot supported
Intel AVX2Haswell, Broadwell, and newernot supportedoptimizednot supported
Intel AVX-512Skylake Cannon Lake, and neweroptimizedoptimizedemulated
Intel AVX-512 VNNI (DL Boost)Cascade Lake. Ice Lake, Cooper Lake, Tiger Lakeoptimizedoptimizedoptimized
User Guides for the DeepSparse Engine
Inference Types with the DeepSparse Scheduler
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
DeepSparse
Supported Hardware

Supported Hardware for DeepSparse

With support for AVX2, AVX-512, and VNNI instruction sets, DeepSparse is validated to work on x86 Intel (Haswell generation and later) and AMD CPUs running Linux. +Mac and Windows require running Linux in a Docker or virtual machine.

Here is a table detailing specific support for some algorithms over different microarchitectures:

x86 ExtensionMicroarchitecturesActivation SparsityKernel SparsitySparse Quantization
AMD AVX2Zen 2, Zen 3not supportedoptimizednot supported
AMD AVX512 VNNIZen 4optimizedoptimizedoptimized
Intel AVX2Haswell, Broadwell, and newernot supportedoptimizednot supported
Intel AVX-512Skylake Cannon Lake, and neweroptimizedoptimizedemulated
Intel AVX-512 VNNI (DL Boost)Cascade Lake. Ice Lake, Cooper Lake, Tiger Lakeoptimizedoptimizedoptimized
User Guides for DeepSparse Engine
Inference Types with DeepSparse Scheduler
\ No newline at end of file diff --git a/user-guide/deepsparse-engine/index.html b/user-guide/deepsparse-engine/index.html index 919276e7d6e..46d4ae66ff3 100644 --- a/user-guide/deepsparse-engine/index.html +++ b/user-guide/deepsparse-engine/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsUser Guides for the DeepSparse Engine
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
DeepSparse Engine

User Guides for the DeepSparse Engine

This user guide offers more information for exploring additional and advanced functionality for the DeepSparse Engine.

Guides

Exporting to the ONNX Format
Supported Hardware for the DeepSparse Engine
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
DeepSparse

User Guides for DeepSparse

This user guide offers more information for exploring additional and advanced functionality for DeepSparse.

Guides

Exporting to the ONNX Format
Supported Hardware for DeepSparse
\ No newline at end of file diff --git a/user-guide/deepsparse-engine/logging/index.html b/user-guide/deepsparse-engine/logging/index.html new file mode 100644 index 00000000000..85d34accf56 --- /dev/null +++ b/user-guide/deepsparse-engine/logging/index.html @@ -0,0 +1,37 @@ +Neural Magic DocsNeural Magic DocsDeepSparse Logging
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
DeepSparse
Logging

DeepSparse Logging

This page explains how to use DeepSparse Logging to monitor your deployment.

There are many types of monitoring tasks that you may want to perform to confirm your production system is working correctly. +The difficulty of the tasks varies from relatively easy (simple system performance analysis) to challenging +(assessing the accuracy of the system in the wild by manually labeling the input data distribution post-factum). Examples include:

  • System performance: what is the latency/throughput of a query?
  • Data quality: is there an issue getting data to my model?
  • Data distribution shift: does the input data distribution deviates over time to the point where the model stops to deliver reliable predictions?
  • Model accuracy: what is the percentage of correct predictions that a model achieves?

DeepSparse Logging is designed to provide maximum flexibility for you to extract whatever data is needed from a +production inference pipeline into the logging system of your choice.

Installation

This page requires the DeepSparse Server Install.

Metrics

DeepSparse Logging provides access to two types of metrics.

System Logging Metrics

System Logging gives you access to granular performance metrics for quick and efficient diagnosis of system health.

There is one group of System Logging Metrics currently available: Inference Latency. For each inference request, DeepSparse Server logs the following:

  1. Pre-processing Time - seconds in the pre-processing step
  2. Engine Time - seconds in the engine forward pass step
  3. Post-processing Time - seconds in the post-processing step
  4. Total Time - second for the end-to-end response time (sum of the prior three)

Data Logging Metrics

Data Logging gives you access to data at each stage of an inference pipeline. +This facilitates inspection of the data, understanding of its properties, detecting edge cases, and possible data drift.

There are four stages in the inference pipeline where Data Logging can occur:

  • pipeline_inputs: raw input passed to the inference pipeline by the user
  • engine_inputs: pre-processed tensors passed to the engine for the forward pass
  • engine_outputs: result of the engine forward pass (e.g., the raw logits)
  • pipeline_outputs: final output returned to the pipeline caller

At each stage, you can specify functions to be applied to the data before logging. Example functions include the identity function +(for logging the raw input/output) or the mean function (e.g., for monitoring the mean pixel value of an image).

There are three types of functions that can be applied to target data at each stage:

  • Built-in functions: pre-written functions provided by DeepSparse (see list on GitHub)
  • Framework functions: functions from torch or numpy
  • Custom functions: custom user-provided functions

Configuration

The YAML-based Server Config file is used to configure both System and Data Logging.

  • System Logging is enabled by default. If no logger is specified, Python Logger is used.
  • Data Logging is disabled by default. The config allows you to specify what data to log.

See the Server documentation for more details on the Server config file.

Logging YAML Syntax

There are two key elements that should be added to the Server Config to setup logging.

First is loggers. This element configures the loggers that are used by the Server. Each element is a dictionary of the form {logger_name: {arg_1: arg_value}}.

Second is data_logging. This element identifies which/how data should be logged for an endpoint. It is a dictionary of the form {identifier: [log_config]}.

  • identifier specifies the stages where logging should occur. It can either be a pipeline stage (see stages above) or stage.property if the data type +at a particular stage has a property. If the data type at a stage is a dictionary or list, you can access via slicing, indexing, or dict access, +for example stage[0][:,:,0]['key3'].

  • log_config specifies which function to apply, which logger(s) to use, and how often to log. It is a dictionary of the form +{func: name, frequency: freq, target_loggers: [logger_names]}.

Tangible Example

Here's an example for an image classification server:

1# example-config.yaml
2loggers:
3 python: # logs to stdout
4 prometheus: # logs to prometheus on port 6100
5 port: 6100
6 +
7endpoints:
8 - task: image_classification
9 route: /image_classification/predict
10 model: zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none
11 data_logging:
12 pipeline_inputs.images: # applies to the images (of the form stage.property)
13 - func: np.shape # framework function
14 frequency: 1
15 target_loggers:
16 - python
17 +
18 pipeline_inputs.images[0]: # applies to the first image (of the form stage.property[idx])
19 - func: mean_pixels_per_channel # built-in function
20 frequency: 2
21 target_loggers:
22 - python
23 - func: fraction_zeros # built-in function
24 frequency: 2
25 target_loggers:
26 - prometheus
27
28 engine_inputs: # applies to the engine_inputs data (of the form stage)
29 - func: np.shape # framework function
30 frequency: 1
31 target_loggers:
32 - python

This configuration does the following data logging at each respective stage of the pipeline:

  • System logging is enabled by default and logs to Prometheus and StdOut
  • Logs the shape of the input batch provided by the user to stdout
  • Logs the mean pixels and % of 0 pixels of the first image in the batch to Prometheus
  • Logs the raw data and shape of the input passed to the engine to Python
  • No logging occurs at any other pipeline stages

Loggers

DeepSparse Logging includes options to log to Standard Output and to Prometheus out of the box as well as +the ability to create a Custom Logger.

Python Logger

Python Logger logs data to Standard Output. It is useful for debugging and inspecting an inference pipeline. It +accepts no arguments and is configured with the following:

1loggers:
2 python:

Prometheus Logger

DeepSparse is integrated with Prometheus, enabling you to easily instrument your model service. +The Prometheus Logger accepts some optional arguments and is configured as follows:

1loggers:
2 prometheus:
3 port: 6100
4 text_log_save_frequency: 10 # optional
5 text_log_save_dir: text/log/save/dir # optional
6 text_log_file_name: text_log_file_name # optional

There are four types of metrics in Prometheus (Counter, Gauge, Summary, and Histogram). DeepSparse uses +Summary under the hood, so make sure the data you +are logging to Prometheus is an Int or a Float.

Custom Logger

If you need a custom logger, you can create a class that inherits from the BaseLogger +and implements the log method. The log method is called at each pipeline stage and should handle exposing the metric to the Logger.

1from deepsparse.loggers import BaseLogger
2from typing import Any, Optional
3 +
4class CustomLogger(BaseLogger):
5 def log(self, identifier: str, value: Any, category: Optional[str]=None):
6 """
7 :param identifier: The name of the item that is being logged.
8 By default, in the simplest case, that would be a string in the form
9 of "<pipeline_name>/<logging_target>"
10 e.g. "image_classification/pipeline_inputs"
11 :param value: The item that is logged along with the identifier
12 :param category: The metric category that the log belongs to.
13 By default, we recommend sticking to our internal convention
14 established in the MetricsCategories enum.
15 """
16 print("Logging from a custom logger")
17 print(identifier)
18 print(value)

Once a custom logger is implemented, it can be referenced from a config file:

1# server-config-with-custom-logger.yaml
2loggers:
3 custom_logger:
4 path: example_custom_logger.py:CustomLogger
5 # arg_1: your_arg_1
6 +
7endpoints:
8 - task: sentiment_analysis
9 route: /sentiment_analysis/predict
10 model: zoo:nlp/sentiment_analysis/bert-base/pytorch/huggingface/sst2/12layer_pruned80_quant-none-vnni
11 name: sentiment_analysis_pipeline
12 data_logging:
13 pipeline_inputs:
14 - func: identity
15 frequency: 1
16 target_loggers:
17 - custom_logger

Download the following for an example of a custom logger:

1wget https://raw.githubusercontent.com/neuralmagic/docs/rs/logging-feature/src/files-for-examples/logging/example_custom_logger.py
2wget https://raw.githubusercontent.com/neuralmagic/docs/rs/logging-feature/src/files-for-examples/logging/server-config-with-custom-logger.yaml

Launch the server:

deepsparse.server --config-file server-config-with-custom-logger.yaml

Submit a request:

1import requests
2url = "http://0.0.0.0:5543/sentiment_analysis/predict"
3obj = {"sequences": "Snorlax loves my Tesla!"}
4resp = requests.post(url=url, json=obj)
5print(resp.text)

You should see data printed to the Server's standard output.

See our Prometheus logger implementation +for inspiration on implementing a logger.

Usage

DeepSparse Logging is currently supported for usage with DeepSparse Server.

Server Usage

The Server startup CLI command accepts a YAML configuration file (which contains both logging-specific and general +configuration details) via the --config-file argument.

Data Logging is configured at the endpoint level. The configuration file below creates a Server with two endpoints +(one for image classification and one for sentiment analysis):

1# server-config.yaml
2loggers:
3 python:
4 prometheus:
5 port: 6100
6
7endpoints:
8 - task: image_classification
9 route: /image_classification/predict
10 model: zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned95_quant-none
11 name: image_classification_pipeline
12 data_logging:
13 pipeline_inputs.images:
14 - func: np.shape
15 frequency: 1
16 target_loggers:
17 - python
18 +
19 pipeline_inputs.images[0]:
20 - func: max_pixels_per_channel
21 frequency: 1
22 target_loggers:
23 - python
24 - func: mean_pixels_per_channel
25 frequency: 1
26 target_loggers:
27 - python
28 - func: fraction_zeros
29 frequency: 1
30 target_loggers:
31 - prometheus
32
33 pipeline_outputs.scores[0]:
34 - func: identity
35 frequency: 1
36 target_loggers:
37 - prometheus
38 +
39 - task: sentiment_analysis
40 route: /sentiment_analysis/predict
41 model: zoo:nlp/sentiment_analysis/bert-base/pytorch/huggingface/sst2/12layer_pruned80_quant-none-vnni
42 name: sentiment_analysis_pipeline
43 data_logging:
44 engine_inputs:
45 - func: example_custom_fn.py:sequence_length
46 frequency: 1
47 target_loggers:
48 - python
49 - prometheus
50
51 pipeline_outputs.scores[0]:
52 - func: identity
53 frequency: 1
54 target_loggers:
55 - python
56 - prometheus

Custom Data Logging Function

The example above included a custom function for computing sequence lengths. Custom +Functions should be defined in a local Python file. They should accept one argument +and return a single output.

The example_custom_fn.py file could look like the following:

1import numpy as np
2from typing import List
3 +
4# Engine inputs to transformers is 3 lists of np.arrays representing
5# the encoded input, the attention mask, and token types.
6# Each of the np.arrays is of shape (batch, max_seq_len), so
7# engine_inputs[0][0] gives the encodings of the first item in the batch.
8# The number of non-zeros in this slice is the sequence length.
9def sequence_length(engine_inputs: List[np.ndarray]):
10 return np.count_nonzero(engine_inputs[0][0])

Launching the Server and Logging Metrics

Download the server-config.yaml, example_custom_fn.py, and goldfish.jpeg for the demo.

1wget https://raw.githubusercontent.com/neuralmagic/docs/rs/logging-feature/src/files-for-examples/logging/server-config.yaml
2wget https://raw.githubusercontent.com/neuralmagic/docs/rs/logging-feature/src/files-for-examples/logging/example_custom_fn.py
3wget https://raw.githubusercontent.com/neuralmagic/docs/rs/logging-feature/src/files-for-examples/logging/goldfish.jpg

Launch the Server with the following:

deepsparse.server --config-file server-config.yaml

Submit a request to the image classification endpoint.

1import requests
2url = "http://0.0.0.0:5543/image_classification/predict/from_files"
3paths = ["goldfish.jpg"]
4files = [("request", open(img, 'rb')) for img in paths]
5resp = requests.post(url=url, files=files)
6print(resp.text)

Submit a request to the sentiment analysis endpoint with the following:

1import requests
2url = "http://0.0.0.0:5543/sentiment_analysis/predict"
3obj = {"sequences": "Snorlax loves my Tesla!"}
4resp = requests.post(url=url, json=obj)
5print(resp.text)

You should see the metrics logged to the Server's standard output and to Prometheus (see at http://localhost:6100 to quickly inspect the exposed metrics).

Using the numactl Utility to Control Resource Utilization with DeepSparse
Deploying DeepSparse
\ No newline at end of file diff --git a/user-guide/deepsparse-engine/numactl-utility/index.html b/user-guide/deepsparse-engine/numactl-utility/index.html index 09e5f57f0c6..18e5fd26a34 100644 --- a/user-guide/deepsparse-engine/numactl-utility/index.html +++ b/user-guide/deepsparse-engine/numactl-utility/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsUsing the numactl Utility to Control Resource Utilization with the DeepSparse Engine
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
DeepSparse Engine
numactl Utility

Using the numactl Utility to Control Resource Utilization with the DeepSparse Engine

The DeepSparse Engine achieves better performance on multiple-socket systems as well as with hyperthreading disabled; models with larger batch sizes are likely to see an improvement. One standard way of controlling compute/memory resources when running processes is to use the numactl utility. numactl can be used when multiple processes need to run on the same hardware but require their own CPU/memory resources to run optimally.

To run the DeepSparse Engine on a single socket (N) of a multi-socket system, you would start the DeepSparse Engine using numactl. For example:

numactl --cpunodebind N <deepsparseengine-process>

To run the DeepSparse Engine on multiple sockets (N,M), run:

numactl --cpunodebind N,M <deepsparseengine-process>

It is advised to also allocate memory from the same socket on which the engine is running. So, --membind or --preferred should be used when using --cpunodebind. For example:

1 numactl --cpunodebind N --preferred N <deepsparseengine-process>
2 or
3 numactl --cpunodebind N --membind N <deepsparseengine-process>

The difference between --membind and --preferred is that --preferred allows memory from other sockets to be allocated if the current socket is out of memory. --membind does not allow memory to be allocated outside the specified socket.

For more fine-grained control, numactl can be used to bind the process running the DeepSparse Engine to a set of specific CPUs using --physcpubind. CPUs are numbered from 0-N, where N is the maximum number of logical cores available on the system. On systems with hyper-threading (or SMT), there may be more than one logical thread per physical CPU. Usually, the logical CPUs/threads are numbered after all the physical CPUs/threads. For example, in a system with two threads per CPU and N physical CPUs, the threads for a particular CPU (K) will be K and K+N for all 0<=K<N. The DeepSparse Engine currently works best with hyper-threading/SMT disabled, so only one set of threads should be selected using numactl, i.e., 0 through (N-1) or N through (N-1).

Similarly, for a multi-socket system with N sockets and C physical CPUs per socket, the CPUs located on a single socket will range from KC to ((K+1)C)-1 where 0<=K<N. For multi-socket, multi-thread systems, the logical threads are separated by N*C. For example, for a two socket, two thread per CPU system with 8 cores per CPU, the logical threads for socket 0 would be numbered 0-7 and 16-23, and the threads for socket 1 would be numbered 8-15 and 24-31.

Given the architecture above, to run the DeepSparse Engine on the first four CPUs on the second socket, you would use the following:

numactl --physcpubind 8-11 --preferred 1 <deepsparseengine-process>

Appending --preferred 1 is needed here since the DeepSparse Engine is being bound to CPUs on the second socket.

Note: When running on multiple sockets using a batch size that is evenly divisible by the number of sockets will yield the best performance.

DeepSparse Engine and Thread Pinning

When using numactl to specify which CPUs/sockets the engine is allowed to run on, there is no restriction as to which CPU a particular computation thread is executed on. A single thread of computation may run on one or more CPUs during the course of execution. This is desirable if the system is being shared between multiple processes so that idle CPU threads are not prevented from doing other work.

However, the engine works best when threads are pinned (i.e., not allowed to migrate from one CPU to another). Thread pinning can be enabled using the NM_BIND_THREADS_TO_CORES environment variable. For example:

1 NM_BIND_THREADS_TO_CORES=1 <deepsparseengine-process>
2 or
3 export NM_BIND_THREADS_TO_CORES=1 <deepsparseengine-process>

NM_BIND_THREADS_TO_CORES should be used with care since it forces the DeepSparse Engine to run on only the threads it has been allocated at startup. If any other process ends up running on the same threads, it could result in a major degradation of performance.

Note: The threads-to-cores mappings described above are specific to Intel only. AMD has a different mapping. For AMD, all the threads for a single core are consecutive, i.e., if each core has two threads and there are N cores, the threads for a particular core K are 2K and 2K+1. The mapping of cores to sockets is also straightforward, for a N socket system with C cores per socket, the cores for a particular socket S are numbered SC to ((S+1)C)-1.

Additional Notes

numactl --hardware

Displays the inventory of available sockets/CPUs on a system.

numactl --show

Displays the resources available to the current process.

For further details about these and other parameters, see the man page on numactl:

man numactl
Logging Guidance for Diagnostics and Debugging
DeepSparse
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
DeepSparse
numactl Utility

Using the numactl Utility to Control Resource Utilization with DeepSparse

DeepSparse achieves better performance on multiple-socket systems as well as with hyperthreading disabled; models with larger batch sizes are likely to see an improvement. One standard way of controlling compute/memory resources when running processes is to use the numactl utility. numactl can be used when multiple processes need to run on the same hardware but require their own CPU/memory resources to run optimally.

To run DeepSparse on a single socket (N) of a multi-socket system, you would start the DeepSparse using numactl. For example:

numactl --cpunodebind N <deepsparseengine-process>

To run DeepSparse on multiple sockets (N,M), run:

numactl --cpunodebind N,M <deepsparseengine-process>

It is advised to also allocate memory from the same socket on which the engine is running. So, --membind or --preferred should be used when using --cpunodebind. For example:

1 numactl --cpunodebind N --preferred N <deepsparseengine-process>
2 or
3 numactl --cpunodebind N --membind N <deepsparseengine-process>

The difference between --membind and --preferred is that --preferred allows memory from other sockets to be allocated if the current socket is out of memory. --membind does not allow memory to be allocated outside the specified socket.

For more fine-grained control, numactl can be used to bind the process running DeepSparse to a set of specific CPUs using --physcpubind. CPUs are numbered from 0-N, where N is the maximum number of logical cores available on the system. On systems with hyper-threading (or SMT), there may be more than one logical thread per physical CPU. Usually, the logical CPUs/threads are numbered after all the physical CPUs/threads. For example, in a system with two threads per CPU and N physical CPUs, the threads for a particular CPU (K) will be K and K+N for all 0<=K<N. DeepSparse currently works best with hyper-threading/SMT disabled, so only one set of threads should be selected using numactl, i.e., 0 through (N-1) or N through (N-1).

Similarly, for a multi-socket system with N sockets and C physical CPUs per socket, the CPUs located on a single socket will range from KC to ((K+1)C)-1 where 0<=K<N. For multi-socket, multi-thread systems, the logical threads are separated by N*C. For example, for a two socket, two thread per CPU system with 8 cores per CPU, the logical threads for socket 0 would be numbered 0-7 and 16-23, and the threads for socket 1 would be numbered 8-15 and 24-31.

Given the architecture above, to run DeepSparse on the first four CPUs on the second socket, you would use:

numactl --physcpubind 8-11 --preferred 1 <deepsparseengine-process>

Appending --preferred 1 is needed here since DeepSparse is being bound to CPUs on the second socket.

Note: When running on multiple sockets, using a batch size that is evenly divisible by the number of sockets will yield the best performance.

DeepSparse and Thread Pinning

When using numactl to specify the CPUs/sockets on which the engine is allowed to run, there is no restriction as to the CPU on which a particular computation thread is executed. A single thread of computation may run on one or more CPUs during the course of execution. This is desirable if the system is being shared between multiple processes so that idle CPU threads are not prevented from doing other work.

However, the engine works best when threads are pinned (i.e., not allowed to migrate from one CPU to another). Thread pinning can be enabled using the NM_BIND_THREADS_TO_CORES environment variable. For example:

1 NM_BIND_THREADS_TO_CORES=1 <deepsparseengine-process>
2 or
3 export NM_BIND_THREADS_TO_CORES=1 <deepsparseengine-process>

Use NM_BIND_THREADS_TO_CORES with care since it forces DeepSparse to run on only the threads it has been allocated at startup. If any other process ends up running on the same threads, it could result in a major degradation of performance.

Note: The threads-to-cores mappings described above are specific to Intel only. AMD has a different mapping. For AMD, all the threads for a single core are consecutive; that is, if each core has two threads and there are N cores, the threads for a particular core K are 2K and 2K+1. The mapping of cores to sockets is also straightforward. For an N socket system with C cores per socket, the cores for a particular socket S are numbered SC to ((S+1)C)-1.

Additional Notes

This displays the inventory of available sockets/CPUs on a system:

numactl --hardware

This displays the resources available to the current process:

numactl --show

For further details about these and other parameters, see the man page on numactl:

man numactl
Logging Guidance for Diagnostics and Debugging
DeepSparse Logging
\ No newline at end of file diff --git a/user-guide/deepsparse-engine/scheduler/index.html b/user-guide/deepsparse-engine/scheduler/index.html index 0b282060979..f653d74685b 100644 --- a/user-guide/deepsparse-engine/scheduler/index.html +++ b/user-guide/deepsparse-engine/scheduler/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsInference Types with the DeepSparse Scheduler
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
DeepSparse Engine
Inference Types

Inference Types with the DeepSparse Scheduler

This page explains the various settings for DeepSparse, which enable you to tune the performance to your workload.

Schedulers are special system software which handle the distribution of work across cores in parallel computation. -The goal of a good scheduler is to ensure that while work is available, cores aren’t sitting idle. -On the contrary, as long as parallel tasks are available, all cores should be kept busy.

Single Stream (Default)

In most use cases, the default scheduler is the preferred choice when running inferences with the DeepSparse Engine. -It's highly optimized for minimum per-request latency, using all of the system's resources provided to it on every request it gets. -Often, particularly when working with large batch sizes, the scheduler is able to distribute the workload of a single request across as many cores as it's provided.

Single-stream scheduling; requests execute serially by default:

single stream diagram

Multi Stream

However, there are circumstances in which more cores does not imply better performance. If the computation can't be divided up to produce enough parallelism (while maximizing use of the CPU cache), then adding more cores simply adds more compute power with little to apply it to.

An alternative, "multi-stream" scheduler is provided with the software. In cases where parallelism is low, sending multiple requests simultaneously can more adequately saturate the available cores. In other words, if speedup can't be achieved by adding more cores, then perhaps speedup can be achieved by adding more work.

If increasing core count doesn't decrease latency, that's a strong indicator that parallelism is low in your particular model/batch-size combination. It may be that total throughput can be increased by making more requests simultaneously. Using the deepsparse.engine.Scheduler API, the multi-stream scheduler can be selected, and requests made by multiple Python threads will be handled concurrently.

Multi-stream scheduling; requests execute in parallel and may utilize HW resources better:

multi stream diagram

Whereas the default scheduler will queue up requests made simultaneously and handle them serially, the multi-stream scheduler allows multiple requests to be run in parallel. The num_streams argument to the Engine/Context classes controls how the multi-streams scheduler partitions up the machine. Each stream maps to a contiguous set of hardware threads. By default, only one hyperthread per core is used. There is no sharing amongst the partitions and it is generally good practice make sure that the num_streams value evenly divides into your number of cores. By default num_streams is set to multiplex requests across L3 caches.

Here's an example: Consider a machine with 2 sockets, each with 8 cores. In this case the multi-stream scheduler will create two streams, one per socket by default. The first stream will contain cores 0-7 and the second stream will contain cores 8-15.

Manually increasing num_streams to 3 will result in the following stream breakdown: threads 0-5 in the first stream, 6-10 in the second, and 11-15 in the last. This is problematic for our two socket system. The second stream (threads 6-10) is straddling both sockets, meaning that each request being serviced by that stream is going to incur a performance penalty each time one of its threads makes a remote memory access. The impact of this penalty will depend on the workload, but it will likely be significant.

Manually increasing num_streams to 4 is interesting. Here's the stream breakdown: threads 0-3 in the first stream, 4-7 in the second, 8-11 in the third, and 12-15 in the fourth. Each stream is only making memory accesses that are local to its socket which is good. However, the first two and last two streams are sharing the same L3 cache which can result in worse performance due to cache thrashing. Depending on the workload, the performance gain from the increased parallelism may negate this penalty, though.

The most common use cases for the multi-stream scheduler are where parallelism is low with respect to core count, and where requests need to be made asynchronously without time to batch them. Implementing a model server may fit such a scenario and be ideal for using multi-stream scheduling.

Enabling a Scheduler

Depending on your engine execution strategy, enable one of these options by running:

engine = compile_model(model_path, scheduler="single_stream")

or

engine = compile_model(model_path, scheduler="multi_stream", num_streams=None) # None is the default

or pass in the enum value directly, since "multi_stream" == Scheduler.multi_stream

By default, the scheduler will map to a single stream.

Supported Hardware for the DeepSparse Engine
Benchmarking ONNX Models with the DeepSparse Engine
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
DeepSparse
Inference Types

Inference Types with DeepSparse Scheduler

This page explains the various settings for DeepSparse, which enable you to tune the performance to your workload.

Schedulers are special system software, which handle the distribution of work across cores in parallel computation. +The goal of a good scheduler is to ensure that, while work is available, cores are not sitting idle. +On the contrary, as long as parallel tasks are available, all cores should be kept busy.

Single Stream (Default)

In most use cases, the default scheduler is the preferred choice when running inferences with DeepSparse. +The default scheduler is highly optimized for minimum per-request latency, using all of the system's resources provided to it on every request it gets. +Often, particularly when working with large batch sizes, the scheduler is able to distribute the workload of a single request across as many cores as it's provided.

Single-stream scheduling; requests execute serially by default:

single stream diagram

Multi-Stream

There are circumstances in which more cores does not imply better performance. If the computation can't be divided up to produce enough parallelism (while maximizing use of the CPU cache), then adding more cores simply adds more compute power with little to apply it to.

An alternative, multi-stream scheduler is provided with the software. In cases where parallelism is low, sending multiple requests simultaneously can more adequately saturate the available cores. In other words, if speedup can't be achieved by adding more cores, then perhaps speedup can be achieved by adding more work.

If increasing core count does not decrease latency, that's a strong indicator that parallelism is low in your particular model/batch-size combination. It may be that total throughput can be increased by making more requests simultaneously. Using the deepsparse.engine.Scheduler API, the multi-stream scheduler can be selected, and requests made by multiple Python threads will be handled concurrently.

Multi-stream scheduling; requests execute in parallel and may better utilize hardware resources:

multi stream diagram

Whereas the default scheduler will queue up requests made simultaneously and handle them serially, the multi-stream scheduler allows multiple requests to be run in parallel. The num_streams argument to the Engine/Context classes controls how the multi-streams scheduler partitions up the machine. Each stream maps to a contiguous set of hardware threads. By default, only one hyperthread per core is used. There is no sharing amongst the partitions and it is generally good practice to make sure the num_streams value evenly divides into your number of cores. By default num_streams is set to multiplex requests across L3 caches.

Here's an example. Consider a machine with 2 sockets, each with 8 cores. In this case, the multi-stream scheduler will create two streams, one per socket by default. The first stream will contain cores 0-7 and the second stream will contain cores 8-15.

Manually increasing num_streams to 3 will result in the following stream breakdown: threads 0-5 in the first stream, 6-10 in the second, and 11-15 in the last. This is problematic for our 2-socket system. The second stream (threads 6-10) is straddling both sockets, meaning that each request being serviced by that stream is going to incur a performance penalty each time one of its threads makes a remote memory access. The impact of this penalty will depend on the workload, but it will likely be significant.

Manually increasing num_streams to 4 is interesting. Here's the stream breakdown: threads 0-3 in the first stream, 4-7 in the second, 8-11 in the third, and 12-15 in the fourth. Each stream is only making memory accesses that are local to its socket, which is good. However, the first two and last two streams are sharing the same L3 cache, which can result in worse performance due to cache thrashing. Depending on the workload, though, the performance gain from the increased parallelism may negate this penalty.

The most common use cases for the multi-stream scheduler are where parallelism is low with respect to core count, and where requests need to be made asynchronously without time to batch them. Implementing a model server may fit such a scenario and be ideal for using multi-stream scheduling.

Enabling a Scheduler

Depending on your engine execution strategy, enable one of these options by running:

engine = compile_model(model_path, scheduler="single_stream")

or:

engine = compile_model(model_path, scheduler="multi_stream", num_streams=None) # None is the default

or pass in the enum value directly, since "multi_stream" == Scheduler.multi_stream.

By default, the scheduler will map to a single stream.

Supported Hardware for DeepSparse
Benchmarking ONNX Models with DeepSparse
\ No newline at end of file diff --git a/user-guide/deploying-deepsparse/aws-lambda/index.html b/user-guide/deploying-deepsparse/aws-lambda/index.html new file mode 100644 index 00000000000..4a2aec0dd21 --- /dev/null +++ b/user-guide/deploying-deepsparse/aws-lambda/index.html @@ -0,0 +1,16 @@ +Neural Magic DocsNeural Magic DocsUsing DeepSparse on AWS Lambda
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
Deploying DeepSparse
AWS Lambda

Deploying with DeepSparse on AWS Lambda

AWS Lambda is an event-driven, serverless computing infrastructure for deploying applications at minimal cost. Since +DeepSparse runs on commodity CPUs, you can deploy DeepSparse on Lambda!

The DeepSparse GitHub repo contains a guided example +for deploying a DeepSparse Pipeline on AWS Lambda for the sentiment analysis task.

The scope of this application encompasses:

  1. The construction of a local Docker image.
  2. The creation of an ECR repo in AWS.
  3. Pushing the local image to ECR.
  4. The creation of the appropriate IAM permissions for handling Lambda.
  5. The creation of a Lambda function alongside an API Gateway in a CloudFormation stack.

Requirements

The following credentials, tools, and libraries are also required:

  • The AWS CLI version 2.X that is configured. Double check if the region that is configured in your AWS CLI matches the region passed in the SparseLambda class found in the endpoint.py file. Currently, the default region being used is us-east-1.
  • The AWS Serverless Application Model (AWS SAM), an open-source CLI framework used for building serverless applications on AWS.
  • Docker and the docker cli.
  • The boto3 python AWS SDK: pip install boto3.

Quick Start

1git clone https://github.com/neuralmagic/deepsparse.git
2cd deepsparse/examples/aws-lambda
3pip install -r requirements.txt

Model Configuration

To use a different sparse model please edit the model zoo stub in the Dockerfile. +To change pipeline configuration (e.g., change task, engine), edit the pipeline object in the app.py file. Both files can be found in the /lambda-deepsparse/app directory.

Create Endpoint

Run the following command to build your Lambda endpoint.

python endpoint.py create

Call Endpoint

After the endpoint has been staged (~3 minutes), AWS SAM will provide your API Gateway endpoint URL in CLI. You can start making requests by passing this URL into the LambdaClient object. Afterwards, you can run inference by passing in your text input:

1from client import LambdaClient
2 +
3LC = LambdaClient("https://#########.execute-api.us-east-1.amazonaws.com/inference")
4answer = LC.client({"sequences": "i like pizza"})
5 +
6print(answer)

answer: {'labels': ['positive'], 'scores': [0.9990884065628052]}

On your first cold start, it will take a ~30 seconds to get your first inference, but afterwards, it should be in milliseconds.

Delete Endpoint

If you want to delete your Lambda endpoint, run:

python endpoint.py destroy
Deploying with DeepSparse on AWS SageMaker
Using DeepSparse on Google Cloud Run
\ No newline at end of file diff --git a/use-cases/deploying-deepsparse/aws-sagemaker/index.html b/user-guide/deploying-deepsparse/aws-sagemaker/index.html similarity index 61% rename from use-cases/deploying-deepsparse/aws-sagemaker/index.html rename to user-guide/deploying-deepsparse/aws-sagemaker/index.html index f331db70e3d..f5835b9ec23 100644 --- a/use-cases/deploying-deepsparse/aws-sagemaker/index.html +++ b/user-guide/deploying-deepsparse/aws-sagemaker/index.html @@ -8,64 +8,60 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Deploying DeepSparse
AWS SageMaker

Deploying with DeepSparse on AWS SageMaker

Amazon SageMaker +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
Deploying DeepSparse
AWS SageMaker

Deploying with DeepSparse on AWS SageMaker

Amazon SageMaker offers an easy-to-use infrastructure for deploying deep learning models at scale. This directory provides a guided example for deploying a DeepSparse inference server on SageMaker for the question answering NLP task. Deployments benefit from both sparse-CPU acceleration with -DeepSparse and automatic scaling from SageMaker.

Installation Requirements

The listed steps can be easily completed using a python and bash. The following -credentials, tools, and libraries are also required:

  • The AWS CLI version 2.X that is configured. Double check if the region that is configured in your AWS CLI matches the region in the SparseMaker class found in the endpoint.py file. Currently, the default region being used is us-east-1.
  • The ARN of your AWS role requires access to full SageMaker permissions.
    • AmazonSageMakerFullAccess
  • In the following steps, we will refer to this as ROLE_ARN. It should take the form "arn:aws:iam::XXX:role/service-role/XXX". In addition to role permissions, make sure the AWS user who configured the AWS CLI configuration has ECR/SageMaker permissions.
  • Docker and the docker cli.
  • The boto3 python AWS sdk (pip install boto3).

Quick Start

1git clone https://github.com/neuralmagic/deepsparse.git
2cd deepsparse/examples/aws-sagemaker
3pip install -r requirements.txt

Before starting, replace the role_arn PLACEHOLDER string with your AWS ARN at the bottom of SparseMaker class on the endpoint.py file. Your ARN should look something like this: "arn:aws:iam::XXX:role/service-role/XXX"

Run the following command to build your SageMaker endpoint.

python endpoint.py create

After the endpoint has been staged (~1 minute), you can start making requests by passing your endpoint region name and your endpoint name. Afterwards you can run inference by passing in your question and context:

1from qa_client import Endpoint
2 +DeepSparse and automatic scaling from SageMaker.

Installation Requirements

The listed steps can be easily completed using python and bash. The following +credentials, tools, and libraries are also required:

  • AWS CLI version 2.X that is configured. Double-check if the region that is configured in your AWS CLI matches the region in the SparseMaker class found in the endpoint.py file. Currently, the default region being used is us-east-1.
  • The ARN of your AWS role requires access to full SageMaker permissions.
    • AmazonSageMakerFullAccess
    • In the following steps, we will refer to this as ROLE_ARN. It should take the form "arn:aws:iam::XXX:role/service-role/XXX". In addition to role permissions, make sure the AWS user who configured the AWS CLI configuration has ECR/SageMaker permissions.
  • Docker and the docker CLI.
  • The boto3 Python AWS SDK (pip install boto3).

Quick Start

1git clone https://github.com/neuralmagic/deepsparse.git
2cd deepsparse/examples/aws-sagemaker
3pip install -r requirements.txt

Before starting, replace the role_arn PLACEHOLDER string with your AWS ARN at the bottom of SparseMaker class on the endpoint.py file. Your ARN should look something like this: "arn:aws:iam::XXX:role/service-role/XXX"

Run the following command to build your SageMaker endpoint.

python endpoint.py create

After the endpoint has been staged (~1 minute), you can start making requests by passing your endpoint region name and your endpoint name. Afterwards, you can run inference by passing in your question and context:

1from qa_client import Endpoint
2
3
4qa = Endpoint("us-east-1", "question-answering-example-endpoint")
5answer = qa.predict(question="who is batman?", context="Mark is batman.")
6 -
7print(answer)

answer: b'{"score":0.6484262943267822,"answer":"Mark","start":0,"end":4}'

If you want to delete your endpoint, please use:

python endpoint.py destroy

Continue reading to learn more about the files in this directory, the build requirements, and a descriptive step-by-step guide for launching a SageMaker endpoint.

Contents

In addition to the step-by-step instructions below, the directory contains -additional files to aid in the deployment.

Dockerfile

The included Dockerfile builds an image on top of the standard python:3.8 image -with deepsparse installed and creates an executable command serve that runs +

7print(answer)

The answer is: b'{"score":0.6484262943267822,"answer":"Mark","start":0,"end":4}'

If you want to delete your endpoint, use:

python endpoint.py destroy

Continue reading to learn more about the files in this directory, the build requirements, and a descriptive step-by-step guide for launching a SageMaker endpoint.

Contents

In addition to the step-by-step instructions below, the directory contains +files to aid in the deployment.

Dockerfile

The included Dockerfile builds an image on top of the standard python:3.8 image +with deepsparse installed, and creates an executable command serve that runs deepsparse.server on port 8080. SageMaker will execute this image by running docker run serve and expects the image to serve inference requests at the invocations/ endpoint.

For general customization of the server, changes should not need to be made -to the Dockerfile, but to the config.yaml file that the Dockerfile reads from -instead.

config.yaml

config.yaml is used to configure the DeepSparse server running in the Dockerfile. -The config must contain the line integration: sagemaker so +to the Dockerfile but, instead, to the config.yaml file from which the Dockerfile reads.

config.yaml

config.yaml is used to configure DeepSparse Server running in the Dockerfile. +The configuration must contain the line integration: sagemaker so endpoints may be provisioned correctly to match SageMaker specifications.

Notice that the model_path and task are set to run a sparse-quantized -question-answering model from SparseZoo. +question answering model from SparseZoo. To use a model directory stored in s3, set model_path to /opt/ml/model in -the config and add ModelDataUrl=<MODEL-S3-PATH> to the CreateModel arguments. +the configuration and add ModelDataUrl=<MODEL-S3-PATH> to the CreateModel arguments. SageMaker will automatically copy the files from the s3 path into /opt/ml/model -which the server can then read from.

push_image.sh

Bash script for pushing your local Docker image to the AWS ECR repository.

endpoint.py

Contains the SparseMaker object for automating the build of a SageMaker endpoint from a Docker Image. You have the option to customize the parameters of the class in order to match the prefered state of your deployment.

qa_client.py

Contains a client object for making requests to the SageMaker inference endpoint for the question answering task.


More information on the DeepSparse server and its configuration can be found -here.

Deploying to SageMaker

The following steps are required to provision and deploy DeepSparse to SageMaker -for inference:

  • Build the DeepSparse-SageMaker Dockerfile into a local docker image
  • Create an Amazon ECR repository to host the image
  • Push the image to the ECR repository
  • Create a SageMaker Model that reads from the hosted ECR image
  • Build a SageMaker EndpointConfig that defines how to provision the model deployment
  • Launch the SageMaker Endpoint defined by the Model and EndpointConfig

Building the DeepSparse-SageMaker Image Locally

The Dockerfile can be build from this directory from a bash shell using the following command. -The image will be tagged locally as deepsparse-sagemaker-example.

docker build -t deepsparse-sagemaker-example .

Creating an ECR Repository

The following code snippet can be used in Python to create an ECR repository. +from which the server then can read.

push_image.sh

This is a Bash script for pushing your local Docker image to the AWS ECR repository.

endpoint.py

This file contains the SparseMaker object for automating the build of a SageMaker endpoint from a Docker image. You have the option to customize the parameters of the class in order to match the prefered state of your deployment.

qa_client.py

This file contains a client object for making requests to the SageMaker inference endpoint for the question answering task.

Review DeepSparse Server for more information about the server and its configuration.

Deploying to SageMaker

The following steps are required to provision and deploy DeepSparse to SageMaker +for inference:

  • Build the DeepSparse-SageMaker Dockerfile into a local docker image.
  • Create an Amazon ECR repository to host the image.
  • Push the image to the ECR repository.
  • Create a SageMaker Model that reads from the hosted ECR image.
  • Build a SageMaker EndpointConfig that defines how to provision the model deployment.
  • Launch the SageMaker Endpoint defined by the Model and EndpointConfig.

Building the DeepSparse-SageMaker Image Locally

Build the Dockerfile from this directory from a bash shell using the following command. +The image will be tagged locally as deepsparse-sagemaker-example.

docker build -t deepsparse-sagemaker-example .

Creating an ECR Repository

Use the following code snippet in Python to create an ECR repository. The region_name can be swapped to a preferred region. The repository will be named -deepsparse-sagemaker. If the repository is already created, this step may be skipped.

1import boto3
2 -
3ecr = boto3.client("ecr", region_name='us-east-1')
4create_repository_res = ecr.create_repository(repositoryName="deepsparse-sagemaker")

Pushing the Local Image to the ECR Repository

Once the image is built and the ECR repository is created, the image can be pushed using the following +deepsparse-sagemaker. If the repository is already created, you may skip this step.

1import boto3
2 +
3ecr = boto3.client("ecr", region_name='us-east-1')
4create_repository_res = ecr.create_repository(repositoryName="deepsparse-sagemaker")

Pushing the Local Image to the ECR Repository

Once the image is built and the ECR repository is created, you can push the image using the following bash commands.

1account=$(aws sts get-caller-identity --query Account | sed -e 's/^"//' -e 's/"$//')
2region=$(aws configure get region)
3ecr_account=${account}.dkr.ecr.${region}.amazonaws.com
4
5aws ecr get-login-password --region $region | docker login --username AWS --password-stdin $ecr_account
6fullname=$ecr_account/deepsparse-sagemaker:latest
7 -
8docker tag deepsparse-sagemaker-example:latest $fullname
9docker push $fullname

An abbreviated successful output will look like:

1Login Succeeded
2The push refers to repository [XXX.dkr.ecr.us-east-1.amazonaws.com/deepsparse-example]
33c2284f66840: Preparing
408fa02ce37eb: Preparing
5a037458de4e0: Preparing
6bafdbe68e4ae: Preparing
7a13c519c6361: Preparing
86817758dd480: Waiting
96d95196cbe50: Waiting
10e9872b0f234f: Waiting
11c18b71656bcf: Waiting
122174eedecc00: Waiting
1303ea99cd5cd8: Pushed
14585a375d16ff: Pushed
155bdcc8e2060c: Pushed
16latest: digest: sha256:XXX size: 3884

Creating a SageMaker Model

A SageMaker Model can now be created referencing the pushed image. +

8docker tag deepsparse-sagemaker-example:latest $fullname
9docker push $fullname

An abbreviated successful output will look like:

1Login Succeeded
2The push refers to repository [XXX.dkr.ecr.us-east-1.amazonaws.com/deepsparse-example]
33c2284f66840: Preparing
408fa02ce37eb: Preparing
5a037458de4e0: Preparing
6bafdbe68e4ae: Preparing
7a13c519c6361: Preparing
86817758dd480: Waiting
96d95196cbe50: Waiting
10e9872b0f234f: Waiting
11c18b71656bcf: Waiting
122174eedecc00: Waiting
1303ea99cd5cd8: Pushed
14585a375d16ff: Pushed
155bdcc8e2060c: Pushed
16latest: digest: sha256:XXX size: 3884

Creating a SageMaker Model

Create a SageMaker Model referencing the pushed image. The example model will be named question-answering-example. As mentioned in the requirements, ROLE_ARN should be a string arn of an AWS role with full access to SageMaker.

1import boto3
2
3sm_boto3 = boto3.client("sagemaker", region_name="us-east-1")
4
5region = boto3.Session().region_name
6account_id = boto3.client("sts").get_caller_identity()["Account"]
7
8image_uri = "{}.dkr.ecr.{}.amazonaws.com/deepsparse-sagemaker:latest".format(account_id, region)
9 -
10create_model_res = sm_boto3.create_model(
11 ModelName="question-answering-example",
12 Containers=[
13 {
14 "Image": image_uri,
15 },
16 ],
17 ExecutionRoleArn=ROLE_ARN,
18 EnableNetworkIsolation=False,
19)

More information about options for configuring SageMaker Model instances can -be found here.

Building a SageMaker EndpointConfig

The EndpointConfig is used to set the instance type to provision, how many, scaling +

10create_model_res = sm_boto3.create_model(
11 ModelName="question-answering-example",
12 Containers=[
13 {
14 "Image": image_uri,
15 },
16 ],
17 ExecutionRoleArn=ROLE_ARN,
18 EnableNetworkIsolation=False,
19)

Refer to AWS documentation for more information about options for configuring SageMaker Model instances.

Building a SageMaker EndpointConfig

The EndpointConfig is used to set the instance type to provision, how many, scaling rules, and other deployment settings. The following code snippet defines an endpoint with a single machine using an ml.c5.large CPU.

1model_name = "question-answering-example" # model defined above
2initial_instance_count = 1
3instance_type = "ml.c5.2xlarge" # 8 vcpus
4
5variant_name = "QuestionAnsweringDeepSparseDemo" # ^[a-zA-Z0-9](-*[a-zA-Z0-9]){0,62}
6
7production_variants = [
8 {
9 "VariantName": variant_name,
10 "ModelName": model_name,
11 "InitialInstanceCount": initial_instance_count,
12 "InstanceType": instance_type,
13 }
14]
15
16endpoint_config_name = "QuestionAnsweringExampleConfig" # ^[a-zA-Z0-9](-*[a-zA-Z0-9]){0,62}
17
18endpoint_config = {
19 "EndpointConfigName": endpoint_config_name,
20 "ProductionVariants": production_variants,
21}
22 -
23endpoint_config_res = sm_boto3.create_endpoint_config(**endpoint_config)

Launching a SageMaker Endpoint

Once the EndpointConfig is defined, the endpoint can be easily launched using -the create_endpoint command:

1endpoint_name = "question-answering-example-endpoint"
2endpoint_res = sm_boto3.create_endpoint(
3 EndpointName=endpoint_name, EndpointConfigName=endpoint_config_name
4)

After creating the endpoint, its status can be checked by running the following. +

23endpoint_config_res = sm_boto3.create_endpoint_config(**endpoint_config)

Launching a SageMaker Endpoint

Once the EndpointConfig is defined, launch the endpoint using +the create_endpoint command:

1endpoint_name = "question-answering-example-endpoint"
2endpoint_res = sm_boto3.create_endpoint(
3 EndpointName=endpoint_name, EndpointConfigName=endpoint_config_name
4)

After creating the endpoint, you can check its status by running the following. Initially, the EndpointStatus will be Creating. Checking after the image is successfully launched, it will be InService. If there are any errors, it will -become Failed.

1from pprint import pprint
2pprint(sm_boto3.describe_endpoint(EndpointName=endpoint_name))

Making a Request to the Endpoint

After the endpoint is in service, requests can be made to it through the -invoke_endpoint api. Inputs will be passed as a JSON payload.

1import json
2 +be Failed.

1from pprint import pprint
2pprint(sm_boto3.describe_endpoint(EndpointName=endpoint_name))

Making a Request to the Endpoint

After the endpoint is in service, you can make requests to it through the +invoke_endpoint API. Inputs will be passed as a JSON payload.

1import json
2
3sm_runtime = boto3.client("sagemaker-runtime", region_name="us-east-1")
4
5body = json.dumps(
6 dict(
7 question="Where do I live?",
8 context="I am a student and I live in Cambridge",
9 )
10)
11
12content_type = "application/json"
13accept = "text/plain"
14
15res = sm_runtime.invoke_endpoint(
16 EndpointName=endpoint_name,
17 Body=body,
18 ContentType=content_type,
19 Accept=accept,
20)
21 -
22print(res["Body"].readlines())

Cleanup

The model and endpoint can be deleted with the following commands:

1sm_boto3.delete_endpoint(EndpointName=endpoint_name)
2sm_boto3.delete_endpoint_config(EndpointConfigName=endpoint_config_name)
3sm_boto3.delete_model(ModelName=model_name)

Next Steps

These steps create an invokable SageMaker inference endpoint powered by the DeepSparse -Engine. The EndpointConfig settings may be adjusted to set instance scaling rules based -on deployment needs.

More information on deploying custom models with SageMaker can be found -here.

Deploying with the DeepSparse Server
Using/Creating a DeepSparse Docker Image
\ No newline at end of file +
22print(res["Body"].readlines())

Cleanup

You can delete the model and endpoint with the following commands:

1sm_boto3.delete_endpoint(EndpointName=endpoint_name)
2sm_boto3.delete_endpoint_config(EndpointConfigName=endpoint_config_name)
3sm_boto3.delete_model(ModelName=model_name)

Next Steps

These steps create an invokable SageMaker inference endpoint powered by DeepSparse.
+The EndpointConfig settings may be adjusted to set instance scaling rules based +on deployment needs.

Refer to AWS documentation for more information on deploying custom models with SageMaker.

Deploying with DeepSparse Server
Using DeepSparse on AWS Lambda
\ No newline at end of file diff --git a/use-cases/deploying-deepsparse/deepsparse-server/index.html b/user-guide/deploying-deepsparse/deepsparse-server/index.html similarity index 51% rename from use-cases/deploying-deepsparse/deepsparse-server/index.html rename to user-guide/deploying-deepsparse/deepsparse-server/index.html index 75704f46089..61fc3e79c43 100644 --- a/use-cases/deploying-deepsparse/deepsparse-server/index.html +++ b/user-guide/deploying-deepsparse/deepsparse-server/index.html @@ -1,4 +1,4 @@ -Neural Magic DocsNeural Magic DocsDeploying with the DeepSparse Server
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Deploying DeepSparse
DeepSparse Server

Deploying with the DeepSparse Server

This section explains how to deploy with DeepSparse Server

Installation Requirements

This section requires the DeepSparse Server Install.

Usage

The DeepSparse Server allows you to serve models and Pipelines for deployment in HTTP. The server runs on top of the popular FastAPI web framework and Uvicorn web server. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
Deploying DeepSparse
DeepSparse Server

Deploying with DeepSparse Server

This section explains how to deploy with DeepSparse Server.

Installation Requirements

This use case requires the installation of DeepSparse Server.

Usage

DeepSparse Server allows you to serve models and Pipelines for deployment in HTTP. The server runs on top of the popular FastAPI web framework and Uvicorn web server. The server supports any task from DeepSparse, such as Pipelines including NLP, image classification, and object detection tasks. An updated list of available tasks can be found -here

Run the help CLI to lookup the available arguments.

$deepsparse.server --help
>Usage: deepsparse.server [OPTIONS] COMMAND [ARGS]...
>
>Start a DeepSparse inference server for serving the models and pipelines.
>
>1. `deepsparse.server config [OPTIONS] <config path>`
>
>2. `deepsparse.server task [OPTIONS] <task>
>
>Examples for using the server:
>
>`deepsparse.server config server-config.yaml`
>
>`deepsparse.server task question_answering --batch-size 2`
>
>`deepsparse.server task question_answering --host "0.0.0.0"`
>
>Example config.yaml for serving:
>
>\```yaml
>num_cores: 2
>num_workers: 2
>endpoints:
>- task: question_answering
>route: /unpruned/predict
>model: zoo:some/zoo/stub
>- task: question_answering
>route: /pruned/predict
>model: /path/to/local/model
>\```
>
>Options:
>--help Show this message and exit.
>
>Commands:
>config Run the server using configuration from a .yaml file.
>task Run the server using configuration with CLI options, which can...

Single Model Inference

Example CLI command for serving a single model for the question answering task:

1deepsparse.server \
2 task question_answering \
3 --model_path "zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni"

To make a request to your server, use the requests library and pass the request URL:

1import requests
2 +in the DeepSparse Pipelines Introduction.

Run the help CLI to look up the available arguments.

$deepsparse.server --help
>Usage: deepsparse.server [OPTIONS] COMMAND [ARGS]...
>
>Start a DeepSparse inference server for serving the models and pipelines.
>
>1. `deepsparse.server config [OPTIONS] <config path>`
>
>2. `deepsparse.server task [OPTIONS] <task>
>
>Examples for using the server:
>
>`deepsparse.server config server-config.yaml`
>
>`deepsparse.server task question_answering --batch-size 2`
>
>`deepsparse.server task question_answering --host "0.0.0.0"`
>
>Example config.yaml for serving:
>
>\```yaml
>num_cores: 2
>num_workers: 2
>endpoints:
>- task: question_answering
>route: /unpruned/predict
>model: zoo:some/zoo/stub
>- task: question_answering
>route: /pruned/predict
>model: /path/to/local/model
>\```
>
>Options:
>--help Show this message and exit.
>
>Commands:
>config Run the server using configuration from a .yaml file.
>task Run the server using configuration with CLI options, which can...

Single Model Inference

Here is an example CLI command for serving a single model for the question answering task:

1deepsparse.server \
2 task question_answering \
3 --model_path "zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni"

To make a request to your server, use the requests library and pass the request URL:

1import requests
2
3url = "http://localhost:5543/predict"
4
5obj = {
6 "question": "Who is Mark?",
7 "context": "Mark is batman."
8}
9 -
10response = requests.post(url, json=obj)

In addition, you can make a request with a curl command from terminal:

1curl -X POST \
2 'http://localhost:5543/predict' \
3 -H 'accept: application/json' \
4 -H 'Content-Type: application/json' \
5 -d '{
6 "question": "Who is Mark?",
7 "context": "Mark is batman."
8}'

Multiple Model Inference

To serve multiple models you can build a config.yaml file. -In the sample YAML file below, we are defining two BERT models to be served by the deepsparse.server for the question answering task:

1num_cores: 2
2num_workers: 2
3endpoints:
4 - task: question_answering
5 route: /unpruned/predict
6 model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none
7 batch_size: 1
8 - task: question_answering
9 route: /pruned/predict
10 model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni
11 batch_size: 1

You can now run the server with the config file path using the config sub command:

deepsparse.server config config.yaml

You can send requests to a specific model by appending the model's alias from the config.yaml to the end of the request url. For example, to call the second model, you can send a request to its configured route:

1import requests
2 +
10response = requests.post(url, json=obj)

In addition, you can make a request with a curl command from the terminal:

1curl -X POST \
2 'http://localhost:5543/predict' \
3 -H 'accept: application/json' \
4 -H 'Content-Type: application/json' \
5 -d '{
6 "question": "Who is Mark?",
7 "context": "Mark is batman."
8}'

Multiple Model Inference

To serve multiple models, you can build a config.yaml file. +In the sample YAML file below, we are defining two BERT models to be served by the deepsparse.server for the question answering task:

1num_cores: 2
2num_workers: 2
3endpoints:
4 - task: question_answering
5 route: /unpruned/predict
6 model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/base-none
7 batch_size: 1
8 - task: question_answering
9 route: /pruned/predict
10 model: zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/12layer_pruned80_quant-none-vnni
11 batch_size: 1

You can now run the server with the configuration file path using the config subcommand:

deepsparse.server config config.yaml

You can send requests to a specific model by appending the model's alias from the config.yaml to the end of the request url. For example, to call the second model, you can send a request to its configured route:

1import requests
2
3url = "http://localhost:5543/pruned/predict"
4
5obj = {
6 "question": "Who is Mark?",
7 "context": "Mark is batman."
8}
9 -
10response = requests.post(url, json=obj)

💡 PRO TIP 💡: While your server is running, you can always use the awesome swagger UI that's built into FastAPI to view your model's pipeline POST routes. +

10response = requests.post(url, json=obj)

PRO TIP: While your server is running, you can always use the awesome swagger UI that's built into FastAPI to view your model's pipeline POST routes. The UI also enables you to easily make sample requests to your server. -All you need is to add /docs at the end of your host URL:

localhost:5543/docs

alt text

Object Detection Deployments with DeepSparse
Deploying with DeepSparse on AWS SageMaker
\ No newline at end of file +All you need is to add /docs at the end of your host URL:

localhost:5543/docs

Swagger UI For Viewing Model Pipeline

Deploying DeepSparse
Deploying with DeepSparse on AWS SageMaker
\ No newline at end of file diff --git a/user-guide/deploying-deepsparse/google-cloud-run/index.html b/user-guide/deploying-deepsparse/google-cloud-run/index.html new file mode 100644 index 00000000000..01e5f4b2568 --- /dev/null +++ b/user-guide/deploying-deepsparse/google-cloud-run/index.html @@ -0,0 +1,19 @@ +Neural Magic DocsNeural Magic DocsUsing DeepSparse on Google Cloud Run
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
Deploying DeepSparse
Google Cloud Run

Deploying with DeepSparse on GCP Cloud Run

GCP's Cloud Run is a serverless, event-driven environment for making quick deployments for various applications including machine learning in various programming languages. +Since DeepSparse runs on commodity CPUs, you can deploy DeepSparse on Cloud Run!

The DeepSparse GitHub repo contains a guided example +for deploying a DeepSparse Pipeline on GCP Cloud Run for the token classification task.

Requirements

The listed steps can be easily completed using Python and Bash. The following tools, and libraries are also required:

Before starting, replace the billing_id PLACEHOLDER with your own GCP billing ID at the bottom of the SparseRun class in the endpoint.py file. It should be alphanumeric and look something like this: XXXXX-XXXXX-XXXXX.

Your billing id can be found in the BILLING menu of your GCP console or you can run the following gcloud command to get a list of all of your billing ids:

gcloud beta billing accounts list

Installation

1git clone https://github.com/neuralmagic/deepsparse.git
2cd deepsparse/examples/google-cloud-run

Model Configuration

The current server configuration is running token classification. To alter the model, task or other parameters (e.g., number of cores, workers, routes or batch size), edit the config.yaml file.

Create Endpoint

Run the following command to build the Cloud Run endpoint.

python endpoint.py create

Call Endpoint

After the endpoint has been staged (~3 minutes), gcloud CLI will output the API Service URL. You can start making requests by passing this URL AND its route (found in config.yaml) into the CloudRunClient object.

For example, if the Service URL is https://deepsparse-cloudrun-qsi36y4uoa-ue.a.run.app and the route is /inference, the URL passed into the client would be: https://deepsparse-cloudrun-qsi36y4uoa-ue.a.run.app/inference

Afterwards, call your endpoint by passing in the text input:

1from client import CloudRunClient
2 +
3CR = CloudRunClient("https://deepsparse-cloudrun-qsi36y4uoa-ue.a.run.app/inference")
4answer = CR.client("Drive from California to Texas!")
5print(answer)

[{'entity': 'LABEL_0','word': 'drive', ...}, +{'entity': 'LABEL_0','word': 'from', ...}, +{'entity': 'LABEL_5','word': 'california', ...}, +{'entity': 'LABEL_0','word': 'to', ...}, +{'entity': 'LABEL_5','word': 'texas', ...}, +{'entity': 'LABEL_0','word': '!', ...}]

Additionally, you can also call the endpoint via a cURL command:

1curl -X 'POST' \
2 'https://deepsparse-cloudrun-qsi36y4uoa-ue.a.run.app/inference' \
3 -H 'accept: application/json' \
4 -H 'Content-Type: application/json' \
5 -d '{
6 "inputs": [
7 "Drive from California to Texas!"
8 ],
9 "is_split_into_words": false
10}'

FYI, on the first cold start, it will take a ~60 seconds to get your first inference, but afterwards, it should be in milliseconds.

Delete Endpoint

If you want to delete the Cloud Run endpoint, run:

python endpoint.py destroy
Using DeepSparse on AWS Lambda
DeepSparse
\ No newline at end of file diff --git a/use-cases/deploying-deepsparse/index.html b/user-guide/deploying-deepsparse/index.html similarity index 56% rename from use-cases/deploying-deepsparse/index.html rename to user-guide/deploying-deepsparse/index.html index fa7c1111258..285349dfa40 100644 --- a/use-cases/deploying-deepsparse/index.html +++ b/user-guide/deploying-deepsparse/index.html @@ -8,4 +8,4 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
Use Cases
Deploying DeepSparse

Deploying DeepSparse

Neural Magic Documentation
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
Deploying DeepSparse

User Guides For Deploying DeepSparse

This user guide offers more information for Deploying DeepSparse.

Guides

DeepSparse Logging
Deploying with DeepSparse Server
\ No newline at end of file diff --git a/user-guide/index.html b/user-guide/index.html index 2bea69b4e01..c040e5d68e0 100644 --- a/user-guide/index.html +++ b/user-guide/index.html @@ -8,4 +8,4 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide

User Guide

Neural Magic Documentation
\ No newline at end of file +
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide

User Guide

Neural Magic Documentation
\ No newline at end of file diff --git a/user-guide/onnx-export/index.html b/user-guide/onnx-export/index.html index cb596c57c6a..e8e551fd757 100644 --- a/user-guide/onnx-export/index.html +++ b/user-guide/onnx-export/index.html @@ -8,19 +8,19 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
ONNX Export

Exporting to the ONNX Format

This page explains how to export a model to the ONNX format for use with DeepSparse Engine.

ONNX is a generic representation for neural network graphs that most ML frameworks can be converted to. -Some inference engines such as DeepSparse natively take in ONNX for deployment pipelines, so convenience functions for conversion and export are provided for the supported frameworks.

Installation Requirements

See SparseML installation page for installation requirements of each integration.

Exporting PyTorch to ONNX

ONNX is built into the PyTorch system natively. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
ONNX Export

Exporting to the ONNX Format

You can export a model to the ONNX format for use with DeepSparse.

ONNX is a generic representation for neural network graphs to which most ML frameworks can be converted. +Some inference engines such as DeepSparse natively take in ONNX for deployment pipelines, so convenience functions for conversion and export are provided for the supported frameworks.

Installation Requirements

See the SparseML installation page for installation requirements of each integration.

Exporting PyTorch to ONNX

ONNX is built into the PyTorch system natively. The ModuleExporter class under the sparseml.pytorch.utils package features an export_onnx function built on this native support. -Example code:

1import os
2import torch
3from sparseml.pytorch.models import mnist_net
4from sparseml.pytorch.utils import ModuleExporter
5 -
6model = mnist_net()
7exporter = ModuleExporter(model, output_dir=os.path.join(".", "onnx-export"))
8exporter.export_onnx(sample_batch=torch.randn(1, 1, 28, 28))

Exporting Keras to ONNX

ONNX is not built into the Keras system but is supported through an ONNX official tool keras2onnx. The ModelExporter class under the sparseml.keras.utils package features an export_onnx function built on top of keras2onnx. -Example code:

1import os
2from sparseml.keras.utils import ModelExporter
3 -
4model = None # fill in with your model
5exporter = ModelExporter(model, output_dir=os.path.join(".", "onnx-export"))
6exporter.export_onnx()

Exporting TensorFlow V1 to ONNX

ONNX is not built into the TensorFlow system but is supported through an ONNX official tool +Example code is:

1import os
2import torch
3from sparseml.pytorch.models import mnist_net
4from sparseml.pytorch.utils import ModuleExporter
5 +
6model = mnist_net()
7exporter = ModuleExporter(model, output_dir=os.path.join(".", "onnx-export"))
8exporter.export_onnx(sample_batch=torch.randn(1, 1, 28, 28))

Exporting Keras to ONNX

ONNX is not built into the Keras system, but is supported through an ONNX official tool, keras2onnx. The ModelExporter class under the sparseml.keras.utils package features an export_onnx function built on top of keras2onnx. +Example code is:

1import os
2from sparseml.keras.utils import ModelExporter
3 +
4model = None # fill in with your model
5exporter = ModelExporter(model, output_dir=os.path.join(".", "onnx-export"))
6exporter.export_onnx()

Exporting TensorFlow V1 to ONNX

ONNX is not built into the TensorFlow system, but is supported through an ONNX official tool, tf2onnx. The GraphExporter class under the sparseml.tensorflow_v1.utils package features an export_onnx function built on top of tf2onnx. Note that the ONNX file is created from the protobuf graph representation, so export_pb must be called first. -Example code:

1import os
2from sparseml.tensorflow_v1.utils import tf_compat, GraphExporter
3from sparseml.tensorflow_v1.models import mnist_net
4 +Example code is:

1import os
2from sparseml.tensorflow_v1.utils import tf_compat, GraphExporter
3from sparseml.tensorflow_v1.models import mnist_net
4
5exporter = GraphExporter(output_dir=os.path.join(".", "mnist-tf-export"))
6
7with tf_compat.Graph().as_default() as graph:
8 inputs = tf_compat.placeholder(
9 tf_compat.float32, [None, 28, 28, 1], name="inputs"
10 )
11 logits = mnist_net(inputs)
12 input_names = [inputs.name]
13 output_names = [logits.name]
14
15 with tf_compat.Session() as sess:
16 sess.run(tf_compat.global_variables_initializer())
17 exporter.export_pb(outputs=[logits])
18 -
19exporter.export_onnx(inputs=input_names, outputs=output_names)
Enabling Pipelines to work with SparseML Recipes
User Guides for the DeepSparse Engine
\ No newline at end of file +
19exporter.export_onnx(inputs=input_names, outputs=output_names)
Enabling Pipelines to work with SparseML Recipes
User Guides for DeepSparse Engine
\ No newline at end of file diff --git a/user-guide/recipes/creating/index.html b/user-guide/recipes/creating/index.html index cd48dc2ac57..421e6986694 100644 --- a/user-guide/recipes/creating/index.html +++ b/user-guide/recipes/creating/index.html @@ -8,91 +8,91 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
Recipes
Creating

Creating Sparsification Recipes

This page explains how to create recipes.

All SparseML Sparsification APIs are designed to work with recipes. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
Recipes
Creating

Creating Sparsification Recipes

All SparseML Sparsification APIs are designed to work with recipes. The files encode the instructions needed for modifying the model and/or training process as a list of modifiers. Example modifiers can be anything from setting the learning rate for the optimizer to gradual magnitude pruning. The files are written in YAML and stored in YAML or -markdown files using +Markdown files using YAML front matter. -The rest of the SparseML system is coded to parse the recipe files into a native format for the desired framework +The rest of the SparseML system is coded to parse the recipe files into a native format for the desired framework, and apply the modifications to the model and training pipeline.

In a recipe, modifiers must be written in a list that includes "modifiers" in its name.

The easiest ways to get or create recipes are by either using the pre-configured recipes in SparseZoo or using Sparsify's automatic creation. Especially for users performing sparse transfer learning from our pre-sparsified models in the SparseZoo, we highly reccomend using the -pre-made transfer learning recipes found on SparseZoo. However, power users may be inclined to create their recipes by hand to enable more +pre-made transfer learning recipes found on SparseZoo. However, power users may be inclined to create their recipes to enable more fine-grained control or add custom modifiers when sparsifying a new model from scratch.

A sample recipe for pruning a model generally looks like the following:

1version: 0.1.0
2modifiers:
3 - !EpochRangeModifier
4 start_epoch: 0.0
5 end_epoch: 70.0
6
7 - !LearningRateModifier
8 start_epoch: 0
9 end_epoch: -1.0
10 update_frequency: -1.0
11 init_lr: 0.005
12 lr_class: MultiStepLR
13 lr_kwargs: {'milestones': [43, 60], 'gamma': 0.1}
14
15 - !GMPruningModifier
16 start_epoch: 0
17 end_epoch: 40
18 update_frequency: 1.0
19 init_sparsity: 0.05
20 final_sparsity: 0.85
21 mask_type: unstructured
22 params: ['sections.0.0.conv1.weight', 'sections.0.0.conv2.weight', 'sections.0.0.conv3.weight']

Modifiers Intro

Recipes can contain multiple modifiers, each modifying a portion of the training process in a different way. -In general, each modifier will have a start and an end epoch for when the modifier should be active. +In general, each modifier will have a start and end epoch for when the modifier should be active. The modifiers will start at start_epoch and run until end_epoch. -Note that it does not run through end_epoch. -Additionally, all epoch values support decimal values such that they can be started somewhere in the middle of an epoch. +Note that it does not run through end_epoch. +Additionally, all epoch values support decimal values such that they can be started anywhere within an epoch. For example, start_epoch: 2.5 will start in the middle of the second training epoch.

The most commonly used modifiers are enumerated as subsections below.

Training Epoch Modifiers

The EpochRangeModifier controls the range of epochs for training a model. Each supported ML framework has an implementation to enable easily retrieving this number of epochs. -Note, that this is not a hard rule and if other modifiers have a larger end_epoch or smaller start_epoch -then those values will be used instead.

The only parameters that can be controlled for EpochRangeModifier are the start_epoch and end_epoch. -Both parameters are required.

Required Parameters:

  • start_epoch: The start range for the epoch (0 indexed)
  • end_epoch: The end range for the epoch

Example:

1 - !EpochRangeModifier
2 start_epoch: 0.0
3 end_epoch: 25.0

Pruning Modifiers

The pruning modifiers handle pruning +Note that this is not a hard rule and, if other modifiers have a larger end_epoch or smaller start_epoch, +those values will be used instead.

The only parameters that can be controlled for EpochRangeModifier are the start_epoch and end_epoch. +Both parameters are required:

  • start_epoch indicates the start range for the epoch (0 indexed).
  • end_epoch indicates the end range for the epoch.

For example:

1 - !EpochRangeModifier
2 start_epoch: 0.0
3 end_epoch: 25.0

Pruning Modifiers

The pruning modifiers handle pruning the specified layer(s) in a given model.

ConstantPruningModifier

The ConstantPruningModifier enforces the sparsity structure and level for an already pruned layer(s) in a model. The modifier is generally used for transfer learning from an already pruned model or to enforce sparsity while quantizing. -The weights remain trainable in this setup; however, the sparsity is unchanged.

Required Parameters:

  • params: The parameters in the model to prune. +The weights remain trainable in this setup; however, the sparsity is unchanged.

    The required parameter is:

    • paramsindicates the parameters in the model to prune. This can be set to a string containing __ALL__ to prune all parameters, a list to specify the targeted parameters, or regex patterns prefixed by 're:' of parameter name patterns to match. For example: ['blocks.1.conv'] for PyTorch and ['mnist_net/blocks/conv0/conv'] for TensorFlow. -Regex can also be used to match all conv params: ['re:.*conv'] for PyTorch and ['re:.*/conv'] for TensorFlow.

    Example:

    1 - !ConstantPruningModifier
    2 params: __ALL__

    GMPruningModifier

    The GMPruningModifier prunes the parameter(s) in a model to a -target sparsity (percentage of 0's for a layer's param/variable) +Regex can also be used to match all conv params: ['re:.*conv'] for PyTorch and ['re:.*/conv'] for TensorFlow.

For example:

1 - !ConstantPruningModifier
2 params: __ALL__

GMPruningModifier

The GMPruningModifier prunes the parameter(s) in a model to a +target sparsity (percentage of 0s for a layer's parameter/variable) using gradual magnitude pruning. This is done gradually from an initial to final sparsity (init_sparsity, final_sparsity) over a range of epochs (start_epoch, end_epoch) and updated at a specific interval defined by the update_frequency. -For example, using the following settings start_epoch: 0, end_epoch: 5, update_frequency: 1, -init_sparsity: 0.05, final_sparsity: 0.8 will do the following:

  • at epoch 0 set the sparsity for the specified param(s) to 5%
  • once every epoch, gradually increase the sparsity towards 80%
  • by the start of epoch 5, stop pruning and set the final sparsity for the specified param(s) to 80%

Required Parameters:

  • params: The parameters in the model to prune. +For example, using the following settings:

    start_epoch: 0, end_epoch: 5, update_frequency: 1, +init_sparsity: 0.05, final_sparsity: 0.8

    will do the following.

    • At epoch 0, set the sparsity for the specified param(s) to 5%
    • Once every epoch, gradually increase the sparsity toward 80%
    • By the start of epoch 5, stop pruning and set the final sparsity for the specified parameter(s) to 80%

    The required parameters are:

    • params indicates the parameters in the model to prune. This can be set to a string containing __ALL__ to prune all parameters, a list to specify the targeted parameters, or regex patterns prefixed by 're:' of parameter name patterns to match. For example: ['blocks.1.conv'] for PyTorch and ['mnist_net/blocks/conv0/conv'] for TensorFlow. -Regex can also be used to match all conv params: ['re:.*conv'] for PyTorch and ['re:.*/conv'] for TensorFlow.
    • init_sparsity: The decimal value for the initial sparsity to start pruning with. -At start_epoch will set the sparsity for the param/variable to this value. -Generally, this is kept at 0.05 (5%).
    • final_sparsity: The decimal value for the final sparsity to end pruning with. -By the start of end_epoch will set the sparsity for the param/variable to this value. -Generally, this is kept in a range from 0.6 to 0.95 depending on the model and layer. -Anything less than 0.4 is not useful for performance.
    • start_epoch: The epoch to start the pruning at (0 indexed). -This supports floating-point values to enable starting pruning between epochs.
    • end_epoch: The epoch before which to stop pruning. -This supports floating-point values to enable stopping pruning between epochs.
    • update_frequency: The number of epochs/fractions of an epoch between each pruning step. -It supports floating-point values to enable updating inside of epochs. +Regex can also be used to match all conv params: ['re:.*conv'] for PyTorch and ['re:.*/conv'] for TensorFlow.
    • init_sparsity is the decimal value for the initial sparsity with which to start pruning. +start_epoch will set the sparsity for the parameter/variable to this value. +Generally, this is kept at 0.05 (5%).
    • final_sparsity is the decimal value for the final sparsity with which to end pruning. +By the start of end_epoch will set the sparsity for the parameter/variable to this value. +Generally, this is kept in a range from 0.6 to 0.95, depending on the model and layer. +Anything less than 0.4 is not useful for performance.
    • start_epoch sets the epoch at which to start the pruning (0 indexed). +This supports floating point values to enable starting pruning between epochs.
    • end_epoch sets the epoch before which to stop pruning. +This supports floating point values to enable stopping pruning between epochs.
    • update_frequency is the number of epochs/fractions of an epoch between each pruning step. +It supports floating point values to enable updating inside of epochs. Generally, this is set to update once per epoch (1.0). However, if the loss for the model recovers quickly, it should be set to a lesser value. -For example: set it to 0.5 for once every half epoch (twice per epoch).

    Example:

    1 - !GMPruningModifier
    2 params: ['blocks.1.conv']
    3 init_sparsity: 0.05
    4 final_sparsity: 0.8
    5 start_epoch: 5.0
    6 end_epoch: 20.0
    7 update_frequency: 1.0

    Quantization Modifiers

    The QuantizationModifier sets the model to run with +For example, set it to 0.5 for once every half epoch (twice per epoch).

For example:

1 - !GMPruningModifier
2 params: ['blocks.1.conv']
3 init_sparsity: 0.05
4 final_sparsity: 0.8
5 start_epoch: 5.0
6 end_epoch: 20.0
7 update_frequency: 1.0

Quantization Modifiers

The QuantizationModifier sets the model to run with quantization aware training (QAT). QAT emulates the precision loss of int8 quantization during training so weights can be learned to limit any accuracy loss from quantization. Once the QuantizationModifier is enabled, it cannot be disabled (no end_epoch). Quantization zero points are set to be asymmetric for activations and symmetric for weights. -Currently only available in PyTorch.

Notes:

  • ONNX exports of PyTorch QAT models will be QAT models themselves (emulated quantization). -To convert your QAT ONNX model to a fully quantizerd model use +Currently, quantization modifiers are available only in PyTorch.

    Notes:

    • ONNX exports of PyTorch QAT models will be QAT models themselves (emulated quantization). +To convert your QAT ONNX model to a fully quantizerd model, use the script scripts/pytorch/model_quantize_qat_export.py or the function neuralmagicML.pytorch.quantization.quantize_qat_export.
    • If performing QAT on a sparse model, you must preserve sparsity during QAT by applying a ConstantPruningModifier or have already used a GMPruningModifier with -leave_enabled set to True.

    Required Parameters:

    • start_epoch: The epoch to start QAT. This supports floating-point values to enable -starting pruning between epochs.

    Example:

    1 - !QuantizationModifier
    2 start_epoch: 0.0

    Learning Rate Modifiers

    The learning rate modifiers set the learning rate (LR) for an optimizer during training. +leave_enabled set to True.

The required parameter is:

  • start_epoch sets the epoch to start QAT. This supports floating-point values to enable +starting pruning between epochs.

For example:

1 - !QuantizationModifier
2 start_epoch: 0.0

Learning Rate Modifiers

The learning rate modifiers set the learning rate (LR) for an optimizer during training. If you are using an Adam optimizer, then generally, these are not useful. -If you are using a standard stochastic gradient descent optimizer, then these give a convenient way to control the LR.

SetLearningRateModifier

The SetLearningRateModifier sets the learning rate (LR) for the optimizer to a specific value at a specific point -in the training process.

Required Parameters:

  • start_epoch: The epoch in the training process to set the learning_rate value for the optimizer. -This supports floating-point values to enable setting the LR between epochs.
  • learning_rate: The floating-point value to set as the learning rate for the optimizer at start_epoch.

Example:

1 - !SetLearningRateModifier
2 start_epoch: 5.0
3 learning_rate: 0.1

LearningRateModifier

The LearningRateModifier sets schedules for controlling the learning rate for an optimizer during training. +If you are using a standard stochastic gradient descent optimizer, these give a convenient way to control the LR.

SetLearningRateModifier

The SetLearningRateModifier sets the LR for the optimizer to a specific value at a specific point +in the training process.

Required parameters are:

  • start_epoch is the epoch in the training process to set the learning_rate value for the optimizer. +This supports floating point values to enable setting the LR between epochs.
  • learning_rate is the floating-point value to set as the LR for the optimizer at start_epoch.

For example:

1 - !SetLearningRateModifier
2 start_epoch: 5.0
3 learning_rate: 0.1

LearningRateModifier

The LearningRateModifier sets schedules for controlling the LR for an optimizer during training. If you are using an Adam optimizer, then generally, these are not useful. -If you are using a standard stochastic gradient descent optimizer, then these give a convenient way to control the LR. -Provided schedules to choose from are the following:

  • ExponentialLR: Multiplies the learning rate by a gamma value every epoch. -To use this one, lr_kwargs should be set to a dictionary containing gamma. -For example: {'gamma': 0.9}
  • StepLR: Multiplies the learning rate by a gamma value after a certain epoch period defined by step. -To use this one, lr_kwargs must be set to a dictionary containing gamma and step_size. -For example: {'gamma': 0.9, 'step_size': 2.0}
  • MultiStepLR: Multiplies the learning rate by a gamma value at specific epoch points defined by milestones. -To use this one, lr_kwargs must be set to a dictionary containing gamma and milestones. -For example: {'gamma': 0.9, 'milestones': [2.0, 5.5, 10.0]}

Required Parameters:

  • start_epoch: The epoch to start modifying the LR at (0 indexed). -This supports floating-point values to enable starting pruning between epochs.
  • end_epoch: The epoch to stop modifying the LR before. -This supports floating-point values to enable stopping pruning between epochs.
  • lr_class: The LR class to use, one of [ExponentialLR, StepLR, MultiStepLR].
  • lr_kwargs: The named arguments for the lr_class.
  • init_lr: [Optional] The initial LR to set at start_epoch and to use for creating the schedules. -If not given, the optimizer's current LR will be used at startup.

Example:

1 - !LearningRateModifier
2 start_epoch: 0.0
3 end_epoch: 25.0
4 lr_class: MultiStepLR
5 lr_kwargs:
6 gamma: 0.9
7 milestones: [2.0, 5.5, 10.0]
8 init_lr: 0.1

Params/Variables Modifiers

TrainableParamsModifier

The TrainableParamsModifier controls the params that are marked as trainable for the current optimizer. -This is generally useful when transfer learning to easily mark which parameters should or should not be frozen/trained.

Required Parameters:

\ No newline at end of file +Regex can also be used to match all conv params: ['re:.*conv'] for PyTorch and ['re:.*/conv'] for TensorFlow.

For example:

1 - !TrainableParamsModifier
2 params: __ALL__

Optimizer Modifiers

SetWeightDecayModifier

The SetWeightDecayModifier sets the weight decay (L2 penalty) for the optimizer to a +specific value at a specific point in the training process.

Required parameters are:

  • start_epoch is the epoch in the training process to set the weight_decay value for the +optimizer. This supports floating point values to enable setting the weight decay +between epochs.
  • weight_decay is the floating point value to set as the weight decay for the optimizer +at start_epoch.

For example:

1 - !SetWeightDecayModifier
2 start_epoch: 5.0
3 weight_decay: 0.0
What are Sparsification Recipes?
Enabling Pipelines to work with SparseML Recipes
\ No newline at end of file diff --git a/user-guide/recipes/enabling/index.html b/user-guide/recipes/enabling/index.html index dbb5f0fc74f..77136092422 100644 --- a/user-guide/recipes/enabling/index.html +++ b/user-guide/recipes/enabling/index.html @@ -8,11 +8,11 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
Recipes
Enabling Pipelines

Enabling Pipelines to work with SparseML Recipes

This page explains how to use recipes with common training pipelines to sparsify your custom model.

We currently support PyTorch, Keras, and TensorFlow. The pseudocode below will work for both sparse transfer learning and sparsifying from scratch, -simply by passing the appropriate recipe.

See SparseML installation page for installation requirements of each integration.

PyTorch Pipelines

The PyTorch sparsification libraries are located under the sparseml.pytorch.optim package. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
Recipes
Enabling Pipelines

Enabling Pipelines to Work with SparseML Recipes

You can use recipes with common training pipelines to sparsify your custom model.

We currently support PyTorch, Keras, and TensorFlow. The pseudocode below will work for both sparse transfer learning and sparsifying from scratch, +simply by passing the appropriate recipe.

See the SparseML installation page for installation requirements of each integration.

PyTorch Pipelines

The PyTorch sparsification libraries are located under the sparseml.pytorch.optim package. Inside are APIs designed to make model sparsification as easy as possible by integrating seamlessly into PyTorch training pipelines.

First, the ScheduledModifierManager is created. This class accepts a recipe file and parses the hyperparameters at initialization. The modify() function wraps an optimizer or optimizer-like object (contains a step function) to override the step invocation. -With this setup, the training process can then be modified to sparsify the model.

To enable all of this, the integration code is accomplished by writing a handful of lines:

1from sparseml.pytorch.optim import ScheduledModifierManager
2 +With this setup, the training process can be modified to sparsify the model.

To enable all of this, the integration code is accomplished by writing a handful of lines:

1from sparseml.pytorch.optim import ScheduledModifierManager
2
3## fill in definitions below
4model = Model() # model definition
5optimizer = Optimizer() # optimizer definition
6train_data = TrainData() # train data definition
7batch_size = BATCH_SIZE # training batch size
8steps_per_epoch = len(train_data) // batch_size
9
10manager = ScheduledModifierManager.from_yaml(PATH_TO_RECIPE)
11optimizer = manager.modify(model, optimizer, steps_per_epoch)
12
13# PyTorch training code
14 @@ -29,17 +29,17 @@
19# finalize cleans up the graph for export
20save_model = manager.finalize(model)

TensorFlow V1 Pipelines

The TensorFlow sparsification libraries for TensorFlow version 1.X are located under the sparseml.tensorflow_v1.optim package. Inside are APIs designed to make model sparsification as easy as possible by integrating seamlessly into TensorFlow V1 training pipelines.

The integration is done using the ScheduledModifierManager class, which can be created from a recipe file. This class handles modifying the TensorFlow graph for the desired algorithms. -With this setup, the training process can then be modified to sparsify the model.

Estimator-Based Pipelines

Estimator-based pipelines are simpler to integrate with as compared to session-based pipelines. +With this setup, the training process can be modified to sparsify the model.

Estimator-Based Pipelines

It is simpler to integrate with estimator-based pipelines as compared to session-based pipelines. The ScheduledModifierManager can override the necessary callbacks in the estimator to modify the graph using the modify_estimator function.

1from sparseml.tensorflow_v1.optim import ScheduledModifierManager
2
3## fill in definitions below
4estimator = None # your estimator definition
5num_train_batches = len(train_data) / batch_size # your number of batches per training epoch
6
7manager = ScheduledModifierManager.from_yaml("/PATH/TO/config.yaml")
8manager.modify_estimator(estimator, steps_per_epoch=num_train_batches)
9
10# Normal estimator training code...

Session-Based Pipelines

Session-based pipelines need a little bit more compared to estimator-based pipelines; however, -it is still designed to require only a few lines of code for integration. +session-based pipelines are designed to require only a few lines of code for integration. After graph creation, the manager's create_ops method must be called. This will modify the graph as needed for the algorithms and return modifying ops and extras. After creating the session and training, call into session.run with the modifying ops after each step. -Modifying extras contain objects such as tensorboard summaries of the modifiers to be used if desired. -Finally, once completed, complete_graph must be called to remove the modifying ops for saving and export.

1from sparseml.tensorflow_v1.utils import tf_compat
2from sparseml.tensorflow_v1.optim import ScheduledModifierManager
3 +Modifying extras contain objects such as TensorBoard summaries of the modifiers to be used, if desired. +Finally, once completed, complete_graph must be called to remove the modifying ops for saving and exporting.

1from sparseml.tensorflow_v1.utils import tf_compat
2from sparseml.tensorflow_v1.optim import ScheduledModifierManager
3
4
5## fill in definitions below
6with tf_compat.Graph().as_default() as graph:
7 # Normal graph setup....
8 num_train_batches = len(train_data) / batch_size # your number of batches per training epoch
9
10 # Modifying graphs, be sure this is called after graph is created and before session is created
11 manager = ScheduledModifierManager.from_yaml("/PATH/TO/config.yaml")
12 mod_ops, mod_extras = manager.create_ops(steps_per_epoch=num_train_batches)
13 diff --git a/user-guide/recipes/index.html b/user-guide/recipes/index.html index 21934e17178..b7ca3ef61c1 100644 --- a/user-guide/recipes/index.html +++ b/user-guide/recipes/index.html @@ -8,12 +8,12 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
Recipes

What are Sparsification Recipes?

Sparsification recipes are YAML or MarkDown files that encode the instructions for how to sparsify or sparse transfer learn a model. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
Recipes

What are Sparsification Recipes?

Sparsification recipes are YAML or Markdown files that encode the instructions for how to sparsify or sparse transfer learn a model. These instructions include the sparsification algorithms to apply along with any hyperparameters. -Recipes work with the SparseML library to easily apply sparse transfer learning or sparsification algorithms to any neural network and training pipeline.

All SparseML Sparsification APIs are designed to work with recipes. +Recipes work with the SparseML library to easily apply sparse transfer learning or sparsification algorithms to any neural network and training pipeline.

All SparseML sparsification APIs are designed to work with recipes. The files encode the instructions needed for modifying the model and training process as a list of modifiers. Example modifiers can be anything from setting the learning rate for the optimizer to gradual magnitude pruning. The rest of the SparseML system is coded to parse the recipe files into a native format for the desired framework and apply the modifications to the model and training pipeline.

The easiest ways to get or create recipes are by using the pre-configured recipes in SparseZoo or using Sparsify's automatic creation. Especially for users performing sparse transfer learning from our pre-sparsified models in the SparseZoo, we highly reccomend using the -pre-made transfer learning recipes found on SparseZoo. However, power users may be inclined to create their recipes by hand to enable more +pre-made transfer learning recipes found on SparseZoo. However, power users may be inclined to create their recipes to enable more fine-grained control or add custom modifiers when sparsifying a new model from scratch.

Follow the links below for more detail on how to create and use recipes.

Guides

What is Sparsification?
Creating Sparsification Recipes
\ No newline at end of file diff --git a/user-guide/sparsification/index.html b/user-guide/sparsification/index.html index 0a2b9bc645a..48016633928 100644 --- a/user-guide/sparsification/index.html +++ b/user-guide/sparsification/index.html @@ -8,10 +8,10 @@ gtag('config', 'G-L2QW513YN1', {"send_page_view":false}); } -
Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
Sparsification

What is Sparsification?

The process of sparsification is taking a trained deep learning model and removing redundant information from the over-parameterized network resulting in a faster and smaller model. +

Neural Magic LogoNeural Magic Logo
Products
menu-icon
Products
DeepSparse EngineSparseMLSparseZoo
User Guide
Sparsification

What is Sparsification?

The process of sparsification is taking a trained deep learning model and removing redundant information from the over-parameterized network resulting in a faster and smaller model. Techniques for sparsification include everything from inducing sparsity using pruning and quantization to distilling from a larger model to create a smaller version. When implemented correctly, these techniques result in significantly more performant and smaller models with limited to no effect on the baseline metrics.

Combining multiple sparsification algorithms will generally result in more compressed and faster models than any individual algorithm. This combination of algorithms is what is termed as Compound Sparsification. For example, combining both pruning and quantization is very common to create sparse-quantized models that can be up to 4 times smaller. Additionally, it is common for NLP models to combine distillation, weight pruning, layer dropping, and quantization to create much smaller models that recover close to the original baseline.

See our blog for a detailed conceptual discussion of pruning.

Ultimately the power of sparsification is only realized when the deployment environment supports it. -The DeepSparse Engine is specifically engineered to utilize sparse networks for GPU-class performance on CPUs.

Using/Creating a DeepSparse Docker Image
What are Sparsification Recipes?
\ No newline at end of file +DeepSparse is specifically engineered to utilize sparse networks for GPU-class performance on CPUs.

Object Detection Deployments with DeepSparse
What are Sparsification Recipes?
\ No newline at end of file