-
Notifications
You must be signed in to change notification settings - Fork 3
/
fast_indep_alg_speed.R
33 lines (30 loc) · 1.27 KB
/
fast_indep_alg_speed.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
require("energy")
require("kernlab")
require("mgc")
require("HHG")
require("microbenchmark")
num_samples_range = c(50, 100, 200, 500, 1000, 2000, 5000, 10000)
linear_data <- list()
i <- 1
for (num_samples in num_samples_range){
data <- mgc.sims.linear(num_samples, 1)
x <- data$X
y <- data$Y
times = seq(1, 3, by=1)
executions <- list()
for (t in times){
#x <- as.matrix(dist((x), diag = TRUE, upper = TRUE))
#y <- as.matrix(dist((y), diag = TRUE, upper = TRUE))
#time_taken <- microbenchmark(kmmd(x, y, ntimes=1000), times=1, unit="secs") # best of 5 executions
#time_taken <- microbenchmark(dcor.test(x, y, R=1000), times=1, unit="secs") # best of 5 executions
#time_taken <- microbenchmark(dcor.test(x, y, R=1000), times=1, unit="secs") # best of 5 executions
time_taken <- microbenchmark(dcor2d(x, y), times=1, unit="secs") # best of 5 executions
#time_taken <- microbenchmark(hhg.test(x, y, nr.perm = 1000), times=1, unit="secs") # best of 5 executions
executions <- c(executions, list(time_taken[1, 2]/(10^9)))
}
linear_data <- c(linear_data, list(sapply(executions, mean)))
print("Finished")
i <- i + 1
}
df <- data.frame(matrix(unlist(linear_data), nrow=length(linear_data), byrow=T), stringsAsFactors=FALSE)
write.csv(df, row.names=FALSE)