-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
98 lines (87 loc) · 3.97 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# 导入所需的库
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import streamlit as st
from langchain_text_splitters import RecursiveJsonSplitter
from langchain_community.vectorstores import Chroma as Vectorstore
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from modelscope import snapshot_download
from pathlib import Path
import json
import os
# 在侧边栏中创建一个标题和一个链接
# st.logo("images/ICON.jpg")
with st.sidebar:
st.markdown("## IELTSDuck")
"[InternLM](https://github.com/InternLM/InternLM.git)"
"[雅鸭](https://github.com/neverbiasu/IELTSDuck.git)"
# 创建一个滑块,用于选择最大长度,范围在0到1024之间,默认值为512
max_length = st.slider("max_length", 0, 1024, 512, step=1)
system_prompt = st.text_input("System_Prompt", "现在你要是一位专业的雅思教师,请你根据我的作文进行批改。")
# 创建一个标题和一个副标题
st.title("💬 InternLM2-Chat-7B IELTSDuck")
st.caption("🚀 A streamlit chatbot powered by InternLM2 QLora")
# 定义模型路径
model_id = 'ModelE/IELTSDuck-Chat-7B'
mode_name_or_path = snapshot_download(model_id, revision='master')
# 定义一个函数,用于获取模型和tokenizer
@st.cache_resource
def get_model():
# 从预训练的模型中获取tokenizer
tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True)
# 从预训练的模型中获取模型,并设置模型参数
model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
model.eval()
return tokenizer, model
# 加载IELTSDuck的model和tokenizer
tokenizer, model = get_model()
# 如果session_state中没有"messages",则创建一个包含默认消息的列表
if "messages" not in st.session_state:
st.session_state["messages"] = []
# 遍历session_state中的所有消息,并显示在聊天界面上
for msg in st.session_state.messages:
st.chat_message("user").write(msg[0])
st.chat_message("assistant").write(msg[1])
# # Load JSON data
# file_path = Path('./data/train.json')
# json_data = json.loads(Path(file_path).read_text())
# # Split data
# chunk_size = 50
# splitter = RecursiveJsonSplitter(max_chunk_size=chunk_size)
# docs = splitter.create_documents(json_data)
# # Embedding model
# embeddings = HuggingFaceEmbeddings()
# # Create the vector database
# persist_directory = './data_base/vector_db/chroma'
# vectordb = Vectorstore.from_documents(
# documents=docs,
# embedding=embeddings,
# persist_directory=persist_directory)
# vectordb.persist()
def generate_response(prompt):
# Prompt template
template = """你是一个雅思作文小助手,需要帮用户按照雅思官方标准批改他们的作文。使用以下上下文来批改用户的问题。如果你不知道答案,就说你不知道。总是使用中文回答。
问题: {question}
可参考的上下文:
···
{context}
···
如果给定的上下文无法让你做出回答,请回答你不知道。
有用的回答:"""
# Create a RetrievalQA instance
qa_chain = RetrievalQA.from_chain_type(model, retriever=vectordb.as_retriever(), return_source_documents=True, chain_type_kwargs={"prompt": PromptTemplate(input_variables=["context","question"], template=template)})
# Generate response
return qa_chain.run({"question": prompt})
# Get user input
if prompt := st.chat_input():
# Display user input
st.chat_message("user").write(prompt)
# Generate response
# response = generate_response(prompt)
response, history = model.chat(tokenizer, prompt, meta_instruction=system_prompt, history=st.session_state.messages)
# Add response to session_state messages
st.session_state.messages.append((prompt, response))
# Display response
st.chat_message("assistant").write(response)