-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
132 lines (88 loc) · 3.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import sys
import torch
import argparse
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import torch.optim as optim
from torch.autograd import Variable
from torch.utils import data
from loaders.pascal_voc_loader import pascalVOCLoader
from loss import cross_entropy2d
from models.segmentor import fcn32s
from models.discriminator import LargeFOV
def initialize_fcn32s(n_classes):
segmentor = fcn32s
try:
segmentor = segmentor(n_classes=n_classes)
vgg16 = models.vgg16(pretrained=True)
# segmentor.init_vgg16_params(vgg16)
except:
print('Error occured in initialising fcn32s')
sys.exit(1)
return segmentor
batch_size = 1
use_gpu = torch.cuda.is_available()
segmentor = initialize_fcn32s(21)
discriminator = LargeFOV(n_class=21)
if use_gpu:
zeros = Variable(torch.zeros((batch_size)).cuda(), requires_grad=False)
ones = Variable(torch.ones((batch_size)).cuda(), requires_grad=False)
segmentor.cuda()
discriminator.cuda()
else:
zeros = Variable(torch.zeros((batch_size)), requires_grad=False)
ones = Variable(torch.ones((batch_size)), requires_grad=False)
d_loss = nn.BCELoss(size_average=False)
# Setup Model for segmentor and discriminator
g_optim = optim.Adam(segmentor.parameters(), lr=1e-5)
d_optim = optim.Adam(discriminator.parameters(), lr=1e-5)
# g = None
fake_loss_d = []
real_loss_d = []
real_loss_gen = []
def train(epochs):
# Setup Dataloader
data_loader = pascalVOCLoader
data_path = "/media/sangeet/Stuff/DC Shares/Datasets/VOCdevkit/VOC2012/"
loader = data_loader(data_path, is_transform=True, img_size=(256, 256))
n_classes = loader.n_classes
trainloader = data.DataLoader(loader, batch_size=1, num_workers=4, shuffle=True)
# segmentor.cuda()
# Setup optimizer for segmentor and discriminator
# optimizer = torch.optim.SGD(segmentor.parameters(), lr=1e-5, momentum=0.99, weight_decay=5e-4)
for epoch in range(epochs):
for i, (images, labels) in enumerate(trainloader):
if use_gpu:
images = Variable(images.cuda())
labels = Variable(labels.cuda())
else:
images = Variable(images)
labels = Variable(labels)
import pudb;pu.db
fake_out = segmentor(images)
discriminator.zero_grad()
segmentor.zero_grad()
d_fake_out = discriminator(fake_out)
fake_err = d_loss(d_fake_out, zeros)
fake_err.backward(retain_graph=True)
fake_loss_d.append(fake_err[0].clone().cpu().data.numpy()[0])
d_real_out = discriminator(labels.float())
real_err = d_loss(d_real_out, ones)
real_err.backward()
real_loss_d.append(real_err[0].clone().cpu().data.numpy()[0])
d_optim.step()
g_err = cross_entropy2d(fake_out, labels) + 0.65*(d_loss(d_fake_out,ones))
g_err.backward()
real_loss_gen.append(g_err[0].clone().cpu().data.numpy()[0])
g_optim.step()
#TODO
# Now that the we have the forward propagation done its time to define\
# the objective function to train
# if (i+1) % 20 == 0:
# print("Epoch [%d/%d] Loss: %.4f" % (epoch+1, epochs, loss.data[0]))
# torch.save(segmentor, "{}.pkl".format(epoch))
if __name__ == '__main__':
epochs = 100
train(epochs)