forked from martinbenson/deep-photo-styletransfer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeep_photo.py
240 lines (199 loc) · 11.3 KB
/
deep_photo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import argparse
import os
import shutil
import subprocess
import scipy.misc as spm
import scipy.ndimage as spi
import scipy.sparse as sps
import numpy as np
def getlaplacian1(i_arr: np.ndarray, consts: np.ndarray, epsilon: float = 0.0000001, win_size: int = 1):
neb_size = (win_size * 2 + 1) ** 2
h, w, c = i_arr.shape
img_size = w * h
consts = spi.morphology.grey_erosion(consts, footprint=np.ones(shape=(win_size * 2 + 1, win_size * 2 + 1)))
indsM = np.reshape(np.array(range(img_size)), newshape=(h, w), order='F')
tlen = int((-consts[win_size:-win_size, win_size:-win_size] + 1).sum() * (neb_size ** 2))
row_inds = np.zeros(tlen)
col_inds = np.zeros(tlen)
vals = np.zeros(tlen)
l = 0
for j in range(win_size, w - win_size):
for i in range(win_size, h - win_size):
if consts[i, j]:
continue
win_inds = indsM[i - win_size:i + win_size + 1, j - win_size: j + win_size + 1]
win_inds = win_inds.ravel(order='F')
win_i = i_arr[i - win_size:i + win_size + 1, j - win_size: j + win_size + 1, :]
win_i = win_i.reshape((neb_size, c), order='F')
win_mu = np.mean(win_i, axis=0).reshape(1, win_size * 2 + 1)
win_var = np.linalg.inv(
np.matmul(win_i.T, win_i) / neb_size - np.matmul(win_mu.T, win_mu) + epsilon / neb_size * np.identity(
c))
win_i2 = win_i - win_mu
tvals = (1 + np.matmul(np.matmul(win_i2, win_var), win_i2.T)) / neb_size
ind_mat = np.broadcast_to(win_inds, (neb_size, neb_size))
row_inds[l: (neb_size ** 2 + l)] = ind_mat.ravel(order='C')
col_inds[l: neb_size ** 2 + l] = ind_mat.ravel(order='F')
vals[l: neb_size ** 2 + l] = tvals.ravel(order='F')
l += neb_size ** 2
vals = vals.ravel(order='F')
row_inds = row_inds.ravel(order='F')
col_inds = col_inds.ravel(order='F')
a_sparse = sps.csr_matrix((vals, (row_inds, col_inds)), shape=(img_size, img_size))
sum_a = a_sparse.sum(axis=1).T.tolist()[0]
a_sparse = sps.diags([sum_a], [0], shape=(img_size, img_size)) - a_sparse
return a_sparse
def im2double(im):
min_val = np.min(im.ravel())
max_val = np.max(im.ravel())
return (im.astype('float') - min_val) / (max_val - min_val)
def reshape_img(in_img, l=512):
in_h, in_w, _ = in_img.shape
if in_h > in_w:
h2 = l
w2 = int(in_w * h2 / in_h)
else:
w2 = l
h2 = int(in_h * w2 / in_w)
return spm.imresize(in_img, (h2, w2))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-content_image", help="content image location", default='content.png')
parser.add_argument("-content_seg", help="content segmentation location", default='')
parser.add_argument("-style_image", help="style image locations", default='style.png')
parser.add_argument("-style_blend_weights", help="style image blending weights", default="")
parser.add_argument("-style_seg", help="style segmentation locations", default='style_seg.png')
parser.add_argument("-laplacian", help="laplacian file location", default='laplacian.csv')
parser.add_argument("-output_image", help="output image name", default='out.png')
parser.add_argument("-image_size", help="Maximum height / width of generated image", default=512)
parser.add_argument("-gpu", help="GPU indices", default=0)
parser.add_argument("-multigpu_strategy", help="multi-GPU layer splits", default="")
parser.add_argument("-content_weight", help="content weight", default=5)
parser.add_argument("-style_weight", help="style weight", default=10)
parser.add_argument("-tv_weight", help="tv weight", default=0.001)
parser.add_argument("-num_iterations", help="iterations", default=2000)
# parser.add_argument("-normalize_gradients", help="gradient normalisation", action='store_true')
parser.add_argument("-init", help="initialisation type", default="random", choices=["random", "image"])
parser.add_argument("-init_image", help="initial image", default="")
parser.add_argument("-optimizer", help="optimiser", default="lbfgs", choices=["lbfgs", "adam"])
parser.add_argument("-learning_rate", help="learning rate (adam only)", default=1)
parser.add_argument("-lbfgs_num_correction", help="lbfgs num correction", default=0)
parser.add_argument("-print_iter", help="print interval", default=50)
parser.add_argument("-save_iter", help="save interval", default=100)
parser.add_argument("-style_scale", help="style scale", default=1.0)
parser.add_argument("-original_colors", help="use original colours", choices=["0", "1"], default=0)
parser.add_argument("-pooling", help="pooling type", choices=["max", "avg"], default='max')
parser.add_argument("-proto_file", help="VGG 19 proto file location", default='models/VGG_ILSVRC_19_layers_deploy.prototxt')
parser.add_argument("-model_file", help="VGG 19 model file location", default='models/VGG_ILSVRC_19_layers.caffemodel')
parser.add_argument("-backend", help="backend", choices=["nn", "cudnn", "clnn"], default='cudnn')
parser.add_argument("-cudnn_autotune", help="cudnn autotune flag", action='store_true')
parser.add_argument("-seed", help="random number seed", default=-1)
parser.add_argument("-content_layers", help="VGG 19 content layers", default='relu4_2')
parser.add_argument("-style_layers", help="VGG 19 style layers", default='relu1_1,relu2_1,relu3_1,relu4_1,relu5_1')
parser.add_argument("-lambda", help="photorealism weight", dest="photo_lambda", default=1000)
parser.add_argument("-patch", help="matting patch size", default=3)
parser.add_argument("-eps", help="matting epsilon", default=1e-7)
parser.add_argument("-f_radius", help="f radius", default=7)
parser.add_argument("-f_edge", help="f edge", default=0.05)
args = parser.parse_args()
img_size = int(args.image_size)
if not os.path.exists("/tmp/deep_photo/"):
os.makedirs("/tmp/deep_photo/")
img = spi.imread(args.content_image, mode="RGB")
resized_img = reshape_img(img, img_size)
content_h, content_w, _ = resized_img.shape
tmp_content_name=args.content_image.replace(".png",args.image_size+".png")
spm.imsave(tmp_content_name, resized_img)
if args.content_seg=="":
resized_seg_img = resized_img.copy()
resized_seg_img.fill(0)
tmp_content_seg_name = tmp_content_name.replace(".png","_seg.png")
else:
seg_img = spi.imread(args.content_seg, mode="RGB")
resized_seg_img = spm.imresize(seg_img, (content_h, content_w))
tmp_content_seg_name = args.content_seg.replace(".png", args.image_size + ".png")
spm.imsave(tmp_content_seg_name, resized_seg_img)
style_images = args.style_image.split(",")
if args.style_seg!="":
style_segs = args.style_seg.split(",")
assert len(style_images)==len(style_segs), '-style_image and -style_seg must have the same number of elements'
tmp_style_names = []
tmp_style_seg_names=[]
for i, style_image in enumerate(style_images):
style_img = spi.imread(style_image, mode="RGB")
resized_style_img = reshape_img(style_img, img_size)
style_h, style_w, _ = resized_style_img.shape
tmp_style_name = style_image.replace(".png", args.image_size + ".png")
spm.imsave(tmp_style_name, resized_style_img)
tmp_style_names.append(tmp_style_name)
if args.style_seg == "":
resized_style_seg_img = resized_style_img.copy()
resized_style_seg_img.fill(0)
tmp_style_seg_name = tmp_style_name.replace(".png", "_seg.png")
else:
style_seg_img = spi.imread(style_segs[i], mode="RGB")
resized_style_seg_img = spm.imresize(style_seg_img, (style_h, style_w))
tmp_style_seg_name = style_segs[i].replace(".png", args.image_size + ".png")
tmp_style_seg_names.append(tmp_style_seg_name)
spm.imsave(tmp_style_seg_name, resized_style_seg_img)
if not os.path.exists(args.laplacian):
print("Calculating matting laplacian for " + str(args.content_image) + " as " + args.laplacian + "...")
img = im2double(resized_img)
h, w, c = img.shape
csr = getlaplacian1(img, np.zeros(shape=(h, w)), 1e-7, 1)
coo = csr.tocoo()
zipped = zip(coo.row + 1, coo.col + 1, coo.data)
with open(args.laplacian, 'w') as out_file:
out_file.write(str(len(coo.data)) + "\n")
for row, col, val in zipped:
out_file.write("%d,%d,%.15f\n" % (row, col, val))
neural_style_args = ["-content_image", str(tmp_content_name),
"-style_image", str(",".join(tmp_style_names)),
"-laplacian", str(args.laplacian),
"-output_image", str(args.output_image),
"-image_size", str(args.image_size),
"-gpu", str(args.gpu),
"-content_weight", str(args.content_weight),
"-style_weight", str(args.style_weight),
"-tv_weight", str(args.tv_weight),
"-num_iterations", str(args.num_iterations),
"-init", str(args.init),
"-optimizer", str(args.optimizer),
"-learning_rate", str(args.learning_rate),
"-lbfgs_num_correction", str(args.lbfgs_num_correction),
"-print_iter", str(args.print_iter),
"-save_iter", str(args.save_iter),
"-style_scale", str(args.style_scale),
"-original_colors", str(args.original_colors),
"-pooling", str(args.pooling),
"-proto_file", str(args.proto_file),
"-model_file", str(args.model_file),
"-backend", str(args.backend),
"-content_layers", str(args.content_layers),
"-style_layers", str(args.style_layers),
"-lambda", str(args.photo_lambda),
"-patch", str(args.patch),
"-eps", str(args.eps),
"-f_radius", str(args.f_radius),
"-f_edge", str(args.f_edge)]
if args.content_seg!="":
neural_style_args+=["-content_seg", str(tmp_content_seg_name)]
if args.style_seg!="":
neural_style_args+=["-style_seg", str(",".join(tmp_style_seg_names))]
if args.style_blend_weights!="":
neural_style_args+=["-style_blend_weights", str(args.style_blend_weights)]
if args.multigpu_strategy != "":
neural_style_args+=["-multigpu_strategy", str(args.multigpu_strategy)]
if args.init_image != "":
neural_style_args+=["-init_image", str(args.init_image)]
if args.seed>0:
neural_style_args+=["-seed", str(args.seed)]
# if args.normalize_gradients:
# neural_style_args +=["-normalize_gradients"]
if args.cudnn_autotune:
neural_style_args +=["-cudnn_autotune"]
cmd = 'th deepmatting_seg.lua ' + " ".join(neural_style_args)
print("Running "+cmd)
p = subprocess.Popen("exec bash -c '"+cmd+"'", shell=True)
p.wait()
shutil.rmtree("/tmp/deep_photo/", ignore_errors=True)