-
Notifications
You must be signed in to change notification settings - Fork 0
/
replan.py
613 lines (490 loc) · 23.7 KB
/
replan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
import os, math, random, time
from pydoc import doc
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from scipy.spatial.transform import Rotation as Rot
#from sqlalchemy import true
#moduli miei
import env, plotting, utils, smoothing
#nodo standard (x, y, parent)
class Node:
def __init__(self, S):
self.S = np.array(S) #stato
self.parent = None
#tree: [start, goal, V(vertex set), E(edge set), QE(coda edees), QV(coda vertex), Vold(salvo per confronto)]
class Tree:
def __init__(self, x_start, x_goal):
self.r = 4.0 #raggio di ricerca
self.V = set() #set di vertici connessi
self.E = set() #set di edges connessi
self.QE = set() #coda ordinata di edges
self.QV = set() #coda ordinata di vertici
self.V_old = set() #set di vertici vecchi (li uso per confronto)
#BIT* algorithm
class BITStar:
#costruttore
def __init__(self, x_start, x_goal, eta, p_safe):
#parametri iniziali
self.x_start = Node(x_start)
self.x_goal = Node(x_goal)
self.eta = eta
self.theta = 0
self.cMin = 0
self.cBest = np.inf
self.xCenter = 0
self.C = 0
self.m = 0
self.replan_factor = 10
#definisco environment
self.env = env.Env()
self.utils = utils.Utils(p_safe)
self.x_range = self.env.x_range
self.y_range = self.env.y_range
self.obs_circle = self.env.obs_circle
self.obs_rectangle = self.env.obs_rectangle
self.obs_boundary = self.env.obs_boundary
self.delta = self.utils.delta
#plotting
self.plot_on = True
self.animation_on = True
if self.animation_on or self.plot_on:
self.plotting = plotting.Plotting(x_start, x_goal)
self.fig, self.ax = plt.subplots()
#inizializzo albero con start e goal (lo uso sia per forward che reverse search)
self.Tree = Tree(self.x_start, self.x_goal)
#set e dict che uso
self.X_unconn = set() #set di nodi non connessi ma potenzialmente migliarano soluzione
self.g_F = dict() #dict dove salvo costo nodi
#dati per benchmark
self.iteration = 0
self.benchmark_list = []
#inizializzo nuovo batch
def init(self):
self.Tree.V.update([self.x_start, self.x_goal]) #aggiungo Xstart e X_goal a V(set di vertici
self.X_unconn.add(self.x_goal) #aggiungo Xgoal a X_unconn(unconnected samples
self.g_F[self.x_start] = 0.0 #costo vero Xstart = 0
self.g_F[self.x_goal] = np.inf #costo vero Xgoal = inf
#aggiorno parametri
self.RotationToWorldFrame()
self.xCenter = np.array([[(self.x_start.S[0] + self.x_goal.S[0]) / 2.0],
[(self.x_start.S[1] + self.x_goal.S[1]) / 2.0], [0.0]])
self.m = 300 #numero di sample per batch
#planning
def planning(self, steps):
self.init()
start_time = time.time() #inizializzo parametri di ricerca (per primo batch)
#numero di batch (numero massimo di volte che eseguo resampling)
while self.g_F[self.x_goal] >= np.inf:
#controllo se QE e QV sono vuoti --> new batch
if not self.Tree.QE and not self.Tree.QV:
if self.plot_on:
if self.x_goal.parent is not None:
self.PlotFinalPath(True) #plotto path finale e interpolato con B-spline
dm = self.Prune(self.g_F[self.x_goal]) #elimino tutti i vertici non inclusi nel nuovo ellisse
self.X_unconn.update(self.Sample(self.m-dm)) #resample nella nuovo regione selezionata con [m] samples
self.Tree.V_old = {v for v in self.Tree.V} #salvo V << Vold per controllo successivo
self.Tree.QV = {v for v in self.Tree.V} #salvo QV << V --> coda di vertici da processare in ordine di costo soluzione (vincolata a passare per nodi correnti in albero)
#-------- costruisco tree con edge in ordine di costo -----------------------------------
#BestVertexQueueValue(QV) --> stima miglior soluzione in QV --> espando solamente finche miglioramenti possibili
while self.Tree.QV and self.BestVertexQueueValue() <= self.BestEdgeQueueValue():
self.ExpandVertex(self.BestInVertexQueue()) #ogni vertice selezionato --> expando edges e aggiungo a QE (con condizioni)
if not self.Tree.QE:
continue
vm, xm = self.BestInEdgeQueue() #seleziono miglior edge in QE
self.Tree.QE.remove((vm, xm)) #tolgo da QE il miglior edge (vm, xm) da processare
#---------- check miglioramento(current_solution, current_tree) -------------------------
if self.gF(vm) + self.calc_dist(vm, xm) + self.h_estimated(xm) < self.gF(self.x_goal): #se stima ha potenziale --> procedo (risparmio collision check molte volte)
actual_cost = self.cost(vm, xm) # <-- costo (vm, xm) che tiene conto di collisioni
if self.g_estimated(vm) + actual_cost + self.h_estimated(xm) < self.gF(self.x_goal): #check con costo vero
if self.gF(vm) + actual_cost < self.gF(xm): #controllo se anche cost_to_come(xm) migliorabile
if xm in self.Tree.V:
#xm era gia nell albero --> edge = wiring --> rimuovo edges(target_vertex, tree)
edge_delete = set()
for v, x in self.Tree.E: #controllo gli edges che arrivano in xm nell albero
if x == xm: #aggiungo edge a lista eliminabili
edge_delete.add((v, x))
for edge in edge_delete: #rimuovo edges inutili da albero
self.Tree.E.remove(edge)
else:
#xm non era nell albero --> edge = expansion --> sposto edges da X_unconn a QV (lo metto in coda per expansion)
self.X_unconn.remove(xm) #rimuovo xm da X_unconn --> non devo piu processarlo
self.Tree.V.add(xm) #aggiungo xm a albero
self.Tree.QV.add(xm) #aggiungo xm in coda a QV (non ho ancora assegnato costo)
self.g_F[xm] = self.gF(vm) + actual_cost #assegno a xm il suo costo nel dizionario
self.Tree.E.add((vm, xm)) #aggiungo edge (vm, xm) nell albero
xm.parent = vm #assegno vm come parent di xm
set_delete = set() #edges che non migliorano soluzione in QE
for v, x in self.Tree.QE:
#tutti gli edge (v, xm) con costo > nuovo cost_to_come(xm) --> aggiungo lista eliminabili
if x == xm and self.g_F[v] + self.calc_dist(v, xm) >= self.gF(xm):
set_delete.add((v, x))
#rimuovo edges eliminabili da QE
for edge in set_delete:
self.Tree.QE.remove(edge)
else:
#stima cost_to_come(x_goal) troppo alta --> svuoto e new batch (nessun altro edge puo migliorare soluzione)
self.Tree.QE = set() #svuoto dict QE
self.Tree.QV = set() #svuoto dict QV
#plotto
self.iteration = self.iteration + 1
if self.animation_on:
if self.iteration % 5 == 0:
self.animation(self.xCenter, self.gF(self.x_goal), self.cMin, self.theta)
#plotto a fine batch
if self.plot_on:
if self.x_goal.parent is not None:
self.PlotFinalPath(True) #plotto path finale e interpolato con B-spline
#salvo dati per benchmark --> tengo conto di distanza e tempo
self.benchmark_list.append([time.time() - start_time, self.gF(self.x_goal)])
return self.returnPath(steps)
#filtro vertici cambiati
def cleanTree(self, v):
return self.utils.is_inside_obs(v)
#elimino nodi precedenti (gia passati)
def removePrevious(self, v):
return self.gF(v) < self.gF(self.x_start)
#riparo e per replanning
def replan(self):
#reinizializzo tutto
self.Tree.QE = set()
self.Tree.QV = set()
self.Tree.E = set()
self.X_unconn = set()
self.X_unconn.add(self.x_goal)
self.g_F.clear()
#tolgo da dict campioni dietro current x_start da dict
self.Tree.V = set(filter(self.cleanTree, self.Tree.V))
#sicura se cancello start o goal
self.Tree.V.add(self.x_start)
self.Tree.V.add(self.x_goal)
self.g_F[self.x_start] = 0
self.g_F[self.x_goal] = np.inf
#resample nella nuovo regione selezionata con [m] samples
self.X_unconn.update(self.Sample(self.m))
self.Tree.V_old = {v for v in self.Tree.V}
self.Tree.QV = {v for v in self.Tree.V}
#aggiungo rumore per muovere ostacoli e testare environment
def moveObstacles(self, dx, dy, x_est, delta):
#muovo ostacoli circolari
for o in self.obs_circle:
#rumore random
dxo = np.random.uniform(-1, 1)*dx
dyo = np.random.uniform(-1, 1)*dy
#controlla se non e' collisione immediata
if math.hypot(x_est.S[0] - (o[0] + dxo), x_est.S[1] - (o[1] + dyo)) > o[2] + delta:
#aggiorna centro ostacolo
o[0] = o[0] + dxo
o[1] = o[1] + dyo
#muovo ostacoli rettangolari
for o in self.obs_rectangle:
#rumore random
dxo = np.random.uniform(-1, 1)*dx
dyo = np.random.uniform(-1, 1)*dy
#controlla se non e' collisione immediata
if 0 > x_est.S[0] - ((o[0] + dxo) - delta) <= o[2] + 2 * delta \
or 0 > x_est.S[1] - ((o[1] + dyo) - delta) <= o[3] + 2 * delta:
#aggiorna centro ostacolo
o[0] = o[0] + dxo
o[1] = o[1] + dyo
#aggiorno ostacoli per utils
self.utils.update_obs(self.obs_circle, self.obs_boundary, self.obs_rectangle)
#ciclo in dietro di steps
def cycle(self, x, steps):
i=0
if x == None:
return True
while x.parent and i < steps:
i = i+1
x = x.parent
if x == self.x_start and i == steps:
return False
return True
#ciclo su parent --> estraggo x, y del path
def ExtractPath(self):
node = self.x_goal
path_x, path_y = [node.S[0]], [node.S[1]]
while node.parent:
node = node.parent
path_x.append(node.S[0])
path_y.append(node.S[1])
return path_x, path_y
#come ExtractPath ma piu comodo per coppie (x, y)
def returnPath(self, steps):
x = self.x_goal
while x and self.cycle(x, steps):
x = x.parent
return x
#prune --> aggiorno X_unconn, vertes_set, edge_set
def Prune(self, cBest):
#seleziono solo x in Xsample con stima costo minore di miglior costo reale corrente
self.X_unconn = {x for x in self.X_unconn if self.f_estimated(x) < cBest}
#seleziono solo vertici V nell albero con stima costo minore di miglior costo reale corrente
self.Tree.V = {v for v in self.Tree.V if self.f_estimated(v) <= cBest}
#seleziono solo vertici edges (v, w) nell albero con stima costo (entrambi nodi) minore di miglior costo reale corrente
self.Tree.E = {(v, w) for v, w in self.Tree.E
if self.f_estimated(v) <= cBest and self.f_estimated(w) <= cBest}
#disconnetto da albero vertici con costo inf --> aggiungo a Xsample da riconnettere
self.X_unconn.update({v for v in self.Tree.V if self.gF(v) == np.inf})
self.Tree.V = {v for v in self.Tree.V if self.gF(v) < np.inf}
return len(self.X_unconn)
#ritorno costo come distanza tra start-end (inf se ostacolo)
def cost(self, start, end):
if self.utils.is_collision(start, end):
return np.inf
return self.calc_dist(start, end)
#stima cost_to_come(x) + cost_to_go(x) --> costo path
def f_estimated(self, node):
return self.g_estimated(node) + self.h_estimated(node)
#stima cost_to_come(x) --> alzo le euristiche per replan
def g_estimated(self, node):
return self.calc_dist(self.x_start, node) * self.replan_factor
#stima cost_to_go(x) --> alzo le euristiche per replan
def h_estimated(self, node):
return self.calc_dist(node, self.x_goal) * self.replan_factor
#meglio cosi per errori
def gF(self, v):
if not v in self.g_F: #imporante! se non e nel dict --> inf
return np.inf
else:
return self.g_F[v] #leggo valore nel dict
#creo m nuovi sample Xrand
def Sample(self, m):
if self.cBest < np.inf: #se ho gia trovato un path --> stringo ellissoide
return self.SampleEllipsoid(m, self.cBest, self.cMin, self.xCenter, self.C)
else: #primo sample uniforme in c-space (posso subito applicare euristica volendo)
return self.SampleFreeSpace(m)
#plotto il path finale
def PlotFinalPath(self, smooth):
path_x, path_y = self.ExtractPath()
if smooth and len(path_x) > 3: #se voglio interpolare con B-spline
path_x, path_y = smoothing.approximate_b_spline_path(path_x, path_y, 4*len(path_x), degree=3)
plt.plot(path_x, path_y, linewidth=2, color='r')
plt.pause(0.1)
#sample in regione definita da ellissoide
def SampleEllipsoid(self, m, cMax, cMin, xCenter, C):
r = [cMax / 2.0,
math.sqrt(abs(cMax ** 2 - cMin ** 2)) / 2.0,
math.sqrt(abs(cMax ** 2 - cMin ** 2)) / 2.0]
L = np.diag(r)
ind = 0
Sample = set()
#creo m sample
while ind < m:
xBall = self.SampleUnitNBall()
x_rand = np.dot(np.dot(C, L), xBall) + xCenter
node = Node((x_rand[(0, 0)], x_rand[(1, 0)])) #aggiungo covariance
in_obs = self.utils.is_inside_obs(node) #check se sample interno a ostacolo
in_x_range = self.x_range[0] <= node.S[0] <= self.x_range[1]
in_y_range = self.y_range[0] <= node.S[1] <= self.y_range[1]
#check se aggiungere o no
if not in_obs and in_x_range and in_y_range:
Sample.add(node)
ind += 1
return Sample
#sampleFree normale
def SampleFreeSpace(self, m):
delta = self.utils.delta
Sample = set()
ind = 0
while ind < m:
node = Node((random.uniform(self.x_range[0], self.x_range[1] - delta),
random.uniform(self.y_range[0], self.y_range[1]) - delta))
if self.utils.is_inside_obs(node):
continue
else:
Sample.add(node)
ind += 1
return Sample
#aggiorno raggio di ricerca
def radius(self, q):
cBest = self.g_F[self.x_goal]
lambda_X = len([1 for v in self.Tree.V if self.f_estimated(v) <= cBest])
radius = 2 * self.eta * (1.5 * lambda_X / math.pi * math.log(q) / q) ** 0.5
return radius
#dato vertice V in QV --> creo edges che aggiungo a QE
def ExpandVertex(self, v):
self.Tree.QV.remove(v) #selexiono V e lo rimuovo da QV
X_near = {x for x in self.X_unconn if self.calc_dist(x, v) <= self.Tree.r} #trovo set vicini di V nel set di sample non connessi
#se potenzialmente soluzione migliorabile --> aggiungo edge
for x in X_near:
#g_estimated(v) = cost to come (v) , calc_dist(v, x) = calcolo costo da V a x , h_estimated(x) = stima cost to go(x) , g_F[self.x_goal] = costo soluzione corrente nell albero [inf se non ce]
if self.g_estimated(v) + self.calc_dist(v, x) + self.h_estimated(x) < self.gF(self.x_goal):
self.g_F[x] = np.inf #inizialmente setto costo a inf (correggo dopo)
self.Tree.QE.add((v, x)) #aggiungo (v, x) in coda a QE
#se V non era gia nell'albero trovo vicini di V nell albero corrente
if v and v not in self.Tree.V_old:
V_near = {w for w in self.Tree.V if self.calc_dist(w, v) <= self.Tree.r}
for w in V_near:
#se (v, w) not in E (edge non compreso nell albero) --> se puo migliorare soluzione [sia X_goal che w] --> inserisco (v, w) in QE
if (v, w) not in self.Tree.E and \
self.g_estimated(v) + self.calc_dist(v, w) + self.h_estimated(w) < self.gF(self.x_goal) and \
self.gF(v) + self.calc_dist(v, w) < self.gF(w):
self.Tree.QE.add((v, w))
#se vertice w non ha costo assegnato --> cost = inf
if w not in self.g_F:
self.g_F[w] = np.inf
#ritorno stima costo minore vertice
def BestVertexQueueValue(self):
if not self.Tree.QV:
return np.inf
return min(self.gF(v) + self.h_estimated(v) for v in self.Tree.QV)
#ritorno stima cost_to_come da V minore
def BestEdgeQueueValue(self):
if not self.Tree.QE:
return np.inf
return min(self.gF(v) + self.calc_dist(v, x) + self.h_estimated(x)
for v, x in self.Tree.QE)
#ritorno miglior vertice in coda QV con ordine corrente
def BestInVertexQueue(self):
if not self.Tree.QV:
print("QV is Empty!")
return None
v_value = {v: self.gF(v) + self.h_estimated(v) for v in self.Tree.QV}
#leggo da dict QV key con val = min(cost)
return min(v_value, key=v_value.get)
#ritorno edge di QE con stima coso minore
def BestInEdgeQueue(self):
if not self.Tree.QE:
print("QE is Empty!")
return None, None
e_value = {(v, x): self.gF(v) + self.calc_dist(v, x) + self.h_estimated(x)
for v, x in self.Tree.QE}
#seleziono vertice con costo minimo dal dizionario
return min(e_value, key=e_value.get)
#sample in ball raggio 1x1 (in 2D)
@staticmethod
def SampleUnitNBall():
while True:
x, y = random.uniform(-1, 1), random.uniform(-1, 1)
if x ** 2 + y ** 2 < 1:
return np.array([[x], [y], [0.0]])
#trovo direzione x_start-x_goal (direzione) --> aggiorno C
def RotationToWorldFrame(self):
#controllo per replanning
if self.cMin < 1:
return
self.cMin, self.theta = self.calc_dist_and_angle(self.x_start, self.x_goal)
a1 = np.array([[(self.x_goal.S[0] - self.x_start.S[0]) / self.cMin], [(self.x_goal.S[1] - self.x_start.S[1]) / self.cMin], [0.0]]) #vettore scalato x_start-->x_goal
e1 = np.array([[1.0], [0.0], [0.0]])
M = a1 @ e1.T #creo matrice 3x3 per applicare SVD
U, _, V_T = np.linalg.svd(M, True, True) #SVD --> trovo direzioni principali per ruotare ellisse
self.C = U @ np.diag([1.0, 1.0, np.linalg.det(U) * np.linalg.det(V_T.T)]) @ V_T
#distanza tra due nodi
@staticmethod
def calc_dist(start, end):
return math.hypot(start.S[0] - end.S[0], start.S[1] - end.S[1])
#distanza e angolo tra due nodi
@staticmethod
def calc_dist_and_angle(node_start, node_end):
dx = node_end.S[0] - node_start.S[0]
dy = node_end.S[1] - node_start.S[1]
return math.hypot(dx, dy), math.atan2(dy, dx)
#definisco animation specifica di BIT* (non posso usare stessa di RRT...)
def animation(self, xCenter, cMax, cMin, theta):
plt.cla()
self.plot_grid("Batch Informed Trees (BIT*)")
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
for v in self.X_unconn:
plt.plot(v.S[0], v.S[1], marker='.', color='lightgrey', markersize='2')
if cMax < np.inf:
self.draw_ellipse(xCenter, cMax, cMin, theta)
for v, w in self.Tree.E:
plt.plot([v.S[0], w.S[0]], [v.S[1], w.S[1]], '-g')
plt.pause(1e-5)
#plotto tutto
def plot_grid(self, name):
for (ox, oy, w, h) in self.obs_rectangle:
self.ax.add_patch(
patches.Rectangle(
(ox, oy), w, h,
edgecolor='black',
facecolor='black',
fill=True
)
)
for (ox, oy, r) in self.obs_circle:
self.ax.add_patch(
patches.Circle(
(ox, oy), r,
edgecolor='black',
facecolor='black',
fill=True
)
)
plt.plot(self.x_start.S[0], self.x_start.S[1], "rs", linewidth=3)
plt.plot(self.x_goal.S[0], self.x_goal.S[1], "rs", linewidth=3)
plt.title(name)
plt.axis("equal")
#draw ellipse specifico per BIT*
@staticmethod
def draw_ellipse(x_center, c_best, dist, theta):
a = math.sqrt(c_best ** 2 - dist ** 2) / 2.0
b = c_best / 2.0
angle = math.pi / 2.0 - theta
cx = x_center[0]
cy = x_center[1]
t = np.arange(0, 2 * math.pi + 0.1, 0.2)
x = [a * math.cos(it) for it in t]
y = [b * math.sin(it) for it in t]
rot = Rot.from_euler('z', -angle).as_matrix()[0:2, 0:2]
fx = rot @ np.array([x, y])
px = np.array(fx[0, :] + cx).flatten()
py = np.array(fx[1, :] + cy).flatten()
plt.plot(cx, cy, marker='.', color='darkorange')
plt.plot(px, py, linestyle='--', color='darkorange', linewidth=2)
#=================== MAIN ==================================================
def main():
#lista dove salvo i dati
results = []
tot_iter = 1
#dati problema
x_start = (5, 5)
x_goal = (46, 28)
steps = 4 #numero di step per volta
iter = 0 #numero iterazioni
#faccio iterazioni per salvare dati
while iter < tot_iter:
print(iter)
#istanzio planner
bit = BITStar(x_start, x_goal, 2, 0)
x_est = bit.planning(steps = steps) #primo planning
sample_density = bit.m / bit.calc_dist(bit.x_start, bit.x_goal) #densita samples in regione
start_time = time.time()
#ciclo fino a che non arrivo alla fine
while x_est != None:
#muovo ostacoli (no collisione immediata)
bit.moveObstacles(3, 3, x_est, bit.utils.delta)
bit.cMin = bit.calc_dist(x_est, bit.x_goal) #nuovo costo minimo
bit.m = round(sample_density * bit.cMin) #nuovo numero samples regione piu piccola
#rimuovo precedenti
bit.Tree.V = set(filter(bit.removePrevious, bit.Tree.V))
#aggiorno x_start
bit.x_start = x_est
bit.x_start.parent = None
bit.Tree.V.add(bit.x_start)
#aggiorno centro elllissoide
bit.xCenter = np.array([[(bit.x_start.S[0] + bit.x_goal.S[0]) / 2.0],
[(bit.x_start.S[1] + bit.x_goal.S[1]) / 2.0], [0.0]])
#aggiorno cbest
bit.cBest = bit.g_F[bit.x_goal] - bit.gF(x_est)
#ruoto frame man mano che mi muovo
bit.RotationToWorldFrame()
#inizializzo replanning
bit.replan()
#corrisponde a ABITni del pseudocodice --> replanning
x_est = bit.planning(steps)
#sicura
if not(bit.plot_on or bit.animation_on):
if time.time()-start_time > 3:
break
results.append(bit.benchmark_list)
iter = iter + 1
#salvo
if tot_iter > 10:
data_dir = os.path.join("../data", "replan.npy")
np.save(data_dir, results)
if __name__ == '__main__':
main()