-
Notifications
You must be signed in to change notification settings - Fork 601
/
Copy pathdepthFace.py
110 lines (68 loc) · 3.73 KB
/
depthFace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import cv2
import mediapipe as mp
import time
mp_facedetector = mp.solutions.face_detection
mp_draw = mp.solutions.drawing_utils
path_model = "models/"
# Read Network
model_name = "model-f6b98070.onnx"; # MiDaS v2.1 Large
#model_name = "model-small.onnx"; # MiDaS v2.1 Small
# Load the DNN model
model = cv2.dnn.readNet(path_model + model_name)
if (model.empty()):
print("Could not load the neural net! - Check path")
# Set backend and target to CUDA to use GPU
#model.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
#model.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
cap = cv2.VideoCapture(0)
with mp_facedetector.FaceDetection(min_detection_confidence=0.7) as face_detection:
while cap.isOpened():
success, image = cap.read()
imgHeight, imgWidth, channels = img.shape
start = time.time()
# ----------------------------------------------------------------------------------
# Convert the BGR image to RGB
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# --------- Process the image and find faces with mediapipe ---------
results = face_detection.process(image)
if results.detections:
for id, detection in enumerate(results.detections):
mp_draw.draw_detection(image, detection)
print(id, detection)
bBox = detection.location_data.relative_bounding_box
h, w, c = image.shape
boundBox = int(bBox.xmin * w), int(bBox.ymin * h), int(bBox.width * w), int(bBox.height * h)
center_point = (boundBox[0] + boundBox[2] / 2, boundBox[1] + boundBox[3] / 2)
cv2.putText(image, f'{int(detection.score[0]*100)}%', (boundBox[0], boundBox[1] - 20), cv2.FONT_HERSHEY_SIMPLEX, 2, (0,255,0), 2)
# -------------- Depth map from neural net ---------------------------
# Create Blob from Input Image
# MiDaS v2.1 Large ( Scale : 1 / 255, Size : 384 x 384, Mean Subtraction : ( 123.675, 116.28, 103.53 ), Channels Order : RGB )
blob = cv2.dnn.blobFromImage(img, 1/255., (384,384), (123.675, 116.28, 103.53), True, False)
# MiDaS v2.1 Small ( Scale : 1 / 255, Size : 256 x 256, Mean Subtraction : ( 123.675, 116.28, 103.53 ), Channels Order : RGB )
#blob = cv2.dnn.blobFromImage(img, 1/255., (256,256), (123.675, 116.28, 103.53), True, False)
# Set input to the model
model.setInput(blob)
# Make forward pass in model
depth_map = model.forward()
depth_map = depth_map[0,:,:]
depth_map = cv2.resize(depth_map, (imgWidth, imgHeight))
# Normalize the output
depth_map = cv2.normalize(depth_map, None, 0, 1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
# Convert the image color back so it can be displayed
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# ----------------------------------------------------------------------------------------
# Depth to face
depth_face = depth_map[center_point[0], center_point[1]]
print("Depth to face: ", depth_face)
cv2.putText(image, "Depth: " + str(round(depth_face,2)), (50,50), cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0,255,0),3)
# Depth converted to distance
# ----------------------------------------------------------------------------------------
end = time.time()
totalTime = end - start
fps = 1 / totalTime
print("FPS: ", fps)
cv2.putText(image, f'FPS: {int(fps)}', (20,70), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0,255,0), 2)
cv2.imshow('Face Detection', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()