-
Notifications
You must be signed in to change notification settings - Fork 601
/
Copy pathdepthTo3d.py
175 lines (110 loc) · 5.8 KB
/
depthTo3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import numpy as np
import cv2 as cv
import glob
from matplotlib import pyplot as plt
################ FIND CHESSBOARD CORNERS - OBJECT POINTS AND IMAGE POINTS #############################
chessboardSize = (9,6)
frameSize = (640,480)
# termination criteria
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((chessboardSize[0] * chessboardSize[1], 3), np.float32)
objp[:,:2] = np.mgrid[0:chessboardSize[0],0:chessboardSize[1]].T.reshape(-1,2)
objp = objp * 30
#print(objp)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpointsL = [] # 2d points in image plane.
imgpointsR = [] # 2d points in image plane.
imagesLeft = sorted(glob.glob('images/stereoLeft/*.jpg'))
imagesRight = sorted(glob.glob('images/stereoRight/*.jpg'))
for imgLeft, imgRight in zip(imagesLeft, imagesRight):
imgL = cv.imread(imgLeft)
imgR = cv.imread(imgRight)
grayL = cv.cvtColor(imgL, cv.COLOR_BGR2GRAY)
grayR = cv.cvtColor(imgR, cv.COLOR_BGR2GRAY)
# Find the chess board corners
retL, cornersL = cv.findChessboardCorners(grayL, chessboardSize, None)
retR, cornersR = cv.findChessboardCorners(grayR, chessboardSize, None)
# If found, add object points, image points (after refining them)
if retL and retR == True:
objpoints.append(objp)
cornersL = cv.cornerSubPix(grayL, cornersL, (11,11), (-1,-1), criteria)
imgpointsL.append(cornersL)
cornersR = cv.cornerSubPix(grayR, cornersR, (11,11), (-1,-1), criteria)
imgpointsR.append(cornersR)
# Draw and display the corners
cv.drawChessboardCorners(imgL, chessboardSize, cornersL, retL)
cv.imshow('img left', imgL)
cv.drawChessboardCorners(imgR, chessboardSize, cornersR, retR)
cv.imshow('img right', imgR)
cv.waitKey(100)
cv.destroyAllWindows()
############## CALIBRATION #######################################################
retL, cameraMatrixL, distL, rvecsL, tvecsL = cv.calibrateCamera(objpoints, imgpointsL, frameSize, None, None)
heightL, widthL, channelsL = imgL.shape
newCameraMatrixL, roi_L = cv.getOptimalNewCameraMatrix(cameraMatrixL, distL, (widthL, heightL), 1, (widthL, heightL))
retR, cameraMatrixR, distR, rvecsR, tvecsR = cv.calibrateCamera(objpoints, imgpointsR, frameSize, None, None)
heightR, widthR, channelsR = imgR.shape
newCameraMatrixR, roi_R = cv.getOptimalNewCameraMatrix(cameraMatrixR, distR, (widthR, heightR), 1, (widthR, heightR))
print(cameraMatrixL)
print(newCameraMatrixL)
########## Stereo Vision Calibration #############################################
flags = 0
flags |= cv.CALIB_FIX_INTRINSIC
# Here we fix the intrinsic camara matrixes so that only Rot, Trns, Emat and Fmat are calculated.
# Hence intrinsic parameters are the same
criteria_stereo = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# This step is performed to transformation between the two cameras and calculate Essential and Fundamenatl matrix
retStereo, newCameraMatrixL, distL, newCameraMatrixR, distR, rot, trans, essentialMatrix, fundamentalMatrix = cv.stereoCalibrate(objpoints, imgpointsL, imgpointsR, newCameraMatrixL, distL, newCameraMatrixR, distR, grayL.shape[::-1], criteria_stereo, flags)
# Reprojection Error
mean_error = 0
for i in range(len(objpoints)):
imgpoints2, _ = cv.projectPoints(objpoints[i], rvecsL[i], tvecsL[i], newCameraMatrixL, distL)
error = cv.norm(imgpointsL[i], imgpoints2, cv.NORM_L2)/len(imgpoints2)
mean_error += error
print("total error: {}".format(mean_error/len(objpoints)))
########## Stereo Rectification #################################################
rectifyScale= 1
rectL, rectR, projMatrixL, projMatrixR, Q, roi_L, roi_R= cv.stereoRectify(newCameraMatrixL, distL, newCameraMatrixR, distR, grayL.shape[::-1], rot, trans, rectifyScale,(0,0))
stereoMapL = cv.initUndistortRectifyMap(newCameraMatrixL, distL, rectL, projMatrixL, grayL.shape[::-1], cv.CV_16SC2)
stereoMapR = cv.initUndistortRectifyMap(newCameraMatrixR, distR, rectR, projMatrixR, grayR.shape[::-1], cv.CV_16SC2)
print("Saving parameters!")
cv_file = cv.FileStorage('stereoMap.xml', cv.FILE_STORAGE_WRITE)
cv_file.write('stereoMapL_x',stereoMapL[0])
cv_file.write('stereoMapL_y',stereoMapL[1])
cv_file.write('stereoMapR_x',stereoMapR[0])
cv_file.write('stereoMapR_y',stereoMapR[1])
cv_file.release()
# Camera parameters to undistort and rectify images
cv_file = cv.FileStorage()
cv_file.open('stereoMap.xml', cv.FileStorage_READ)
stereoMapL_x = cv_file.getNode('stereoMapL_x').mat()
stereoMapL_y = cv_file.getNode('stereoMapL_y').mat()
stereoMapR_x = cv_file.getNode('stereoMapR_x').mat()
stereoMapR_y = cv_file.getNode('stereoMapR_y').mat()
imgL = cv.imread('images/stereoLeft/left10.jpg', cv.IMREAD_GRAYSCALE)
imgR = cv.imread('images/stereoRight/right10.jpg', cv.IMREAD_GRAYSCALE)
# Show the frames
cv.imshow("frame right", imgR)
cv.imshow("frame left", imgL)
# Undistort and rectify images
imgR = cv.remap(imgR, stereoMapR_x, stereoMapR_y, cv.INTER_LANCZOS4, cv.BORDER_CONSTANT, 0)
imgL = cv.remap(imgL, stereoMapL_x, stereoMapL_y, cv.INTER_LANCZOS4, cv.BORDER_CONSTANT, 0)
# Show the frames
cv.imshow("frame right", imgR)
cv.imshow("frame left", imgL)
stereo = cv.StereoBM_create(numDisparities=32, blockSize=9)
# For each pixel algorithm will find the best disparity from 0
# Larger block size implies smoother, though less accurate disparity map
disparity = stereo.compute(imgL, imgR)
#print(depPth)
image_3d_reprojection = cv.reprojectImageTo3D(disparity, Q, handleMissingValues=True)
cv.imshow("Left", imgL)
cv.imshow("right", imgR)
cv.imshow("Disparity", disparity)
cv.imshow("Reprojection", image_3d_reprojection)
cv.waitKey(0)
plt.imshow(disparity)
plt.axis('off')
plt.show()