forked from CC2Vec/CC2Vec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlmg_utils.py
51 lines (45 loc) · 2.15 KB
/
lmg_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import torch
import numpy as np
import math
def commit_msg_label(data, dict_msg):
labels_ = np.array([1 if w in d.split() else 0 for d in data for w in dict_msg])
labels_ = np.reshape(labels_, (int(labels_.shape[0] / len(dict_msg)), len(dict_msg)))
return labels_
def save(model, save_dir, save_prefix, epochs):
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
save_prefix = os.path.join(save_dir, save_prefix)
save_path = '{}_{}.pt'.format(save_prefix, epochs)
torch.save(model.state_dict(), save_path)
def mini_batches(X_added_code, X_removed_code, Y, mini_batch_size=64, seed=0, Shuffled=True):
m = Y.shape[0] # number of training examples
mini_batches = []
if Shuffled == True:
np.random.seed(seed)
# Step 1: Shuffle (X, Y)
permutation = list(np.random.permutation(m))
shuffled_X_added = X_added_code[permutation, :, :]
shuffled_X_removed = X_removed_code[permutation, :, :]
if len(Y.shape) == 1:
shuffled_Y = Y[permutation]
else:
shuffled_Y = Y[permutation, :]
else:
shuffled_X_added = X_added_code
shuffled_X_removed = X_removed_code
shuffled_Y = Y
# Step 2: Partition (X, Y). Minus the end case.
num_complete_minibatches = math.floor(
m / float(mini_batch_size)) # number of mini batches of size mini_batch_size in your partitionning
num_complete_minibatches = int(num_complete_minibatches)
for k in range(0, num_complete_minibatches):
mini_batch_X_added = shuffled_X_added[k * mini_batch_size: k * mini_batch_size + mini_batch_size, :, :]
mini_batch_X_removed = shuffled_X_removed[k * mini_batch_size: k * mini_batch_size + mini_batch_size, :, :]
if len(Y.shape) == 1:
mini_batch_Y = shuffled_Y[k * mini_batch_size: k * mini_batch_size + mini_batch_size]
else:
mini_batch_Y = shuffled_Y[k * mini_batch_size: k * mini_batch_size + mini_batch_size, :]
mini_batch = (mini_batch_X_added, mini_batch_X_removed, mini_batch_Y)
mini_batches.append(mini_batch)
return mini_batches