forked from RfidResearchGroup/proxmark3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmifaresim.c
1424 lines (1266 loc) · 66.6 KB
/
mifaresim.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//-----------------------------------------------------------------------------
// Copyright (C) Gerhard de Koning Gans - May 2008
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
// Mifare Classic Card Simulation
//-----------------------------------------------------------------------------
// Verbose Mode:
// DBG_NONE 0
// DBG_ERROR 1
// DBG_INFO 2
// DBG_DEBUG 3
// DBG_EXTENDED 4
// /!\ Printing Debug message is disrupting emulation,
// Only use with caution during debugging
#include "mifaresim.h"
#include <inttypes.h>
#include "iso14443a.h"
#include "BigBuf.h"
#include "string.h"
#include "mifareutil.h"
#include "fpgaloader.h"
#include "proxmark3_arm.h"
#include "cmd.h"
#include "protocols.h"
#include "appmain.h"
#include "util.h"
#include "commonutil.h"
#include "crc16.h"
#include "dbprint.h"
#include "ticks.h"
#include "parity.h"
static bool IsKeyBReadable(uint8_t blockNo) {
uint8_t sector_trailer[16];
emlGetMem(sector_trailer, SectorTrailer(blockNo), 1);
uint8_t AC = ((sector_trailer[7] >> 5) & 0x04)
| ((sector_trailer[8] >> 2) & 0x02)
| ((sector_trailer[8] >> 7) & 0x01);
return (AC == 0x00 || AC == 0x01 || AC == 0x02);
}
static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
uint8_t sector_trailer[16];
emlGetMem(sector_trailer, blockNo, 1);
uint8_t AC = ((sector_trailer[7] >> 5) & 0x04)
| ((sector_trailer[8] >> 2) & 0x02)
| ((sector_trailer[8] >> 7) & 0x01);
switch (action) {
case AC_KEYA_READ: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsTrailerAccessAllowed: AC_KEYA_READ");
return false;
}
case AC_KEYA_WRITE: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsTrailerAccessAllowed: AC_KEYA_WRITE");
return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01))
|| (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
}
case AC_KEYB_READ: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsTrailerAccessAllowed: AC_KEYB_READ");
return (keytype == AUTHKEYA && (AC == 0x00 || AC == 0x02 || AC == 0x01));
}
case AC_KEYB_WRITE: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsTrailerAccessAllowed: AC_KEYB_WRITE");
return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01))
|| (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
}
case AC_AC_READ: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsTrailerAccessAllowed: AC_AC_READ");
return ((keytype == AUTHKEYA)
|| (keytype == AUTHKEYB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
}
case AC_AC_WRITE: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsTrailerAccessAllowed: AC_AC_WRITE");
return ((keytype == AUTHKEYA && (AC == 0x01))
|| (keytype == AUTHKEYB && (AC == 0x03 || AC == 0x05)));
}
default:
return false;
}
}
static bool IsDataAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
uint8_t sector_trailer[16];
emlGetMem(sector_trailer, SectorTrailer(blockNo), 1);
uint8_t sector_block;
if (blockNo <= MIFARE_2K_MAXBLOCK) {
sector_block = blockNo & 0x03;
} else {
sector_block = (blockNo & 0x0f) / 5;
}
uint8_t AC;
switch (sector_block) {
case 0x00: {
AC = ((sector_trailer[7] >> 2) & 0x04)
| ((sector_trailer[8] << 1) & 0x02)
| ((sector_trailer[8] >> 4) & 0x01);
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsDataAccessAllowed: case 0x00 - %02x", AC);
break;
}
case 0x01: {
AC = ((sector_trailer[7] >> 3) & 0x04)
| ((sector_trailer[8] >> 0) & 0x02)
| ((sector_trailer[8] >> 5) & 0x01);
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsDataAccessAllowed: case 0x01 - %02x", AC);
break;
}
case 0x02: {
AC = ((sector_trailer[7] >> 4) & 0x04)
| ((sector_trailer[8] >> 1) & 0x02)
| ((sector_trailer[8] >> 6) & 0x01);
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsDataAccessAllowed: case 0x02 - %02x", AC);
break;
}
default:
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsDataAccessAllowed: Error");
return false;
}
switch (action) {
case AC_DATA_READ: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsDataAccessAllowed - AC_DATA_READ: OK");
return ((keytype == AUTHKEYA && !(AC == 0x03 || AC == 0x05 || AC == 0x07))
|| (keytype == AUTHKEYB && !(AC == 0x07)));
}
case AC_DATA_WRITE: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsDataAccessAllowed - AC_DATA_WRITE: OK");
return ((keytype == AUTHKEYA && (AC == 0x00))
|| (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
}
case AC_DATA_INC: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsDataAccessAllowed - AC_DATA_INC: OK");
return ((keytype == AUTHKEYA && (AC == 0x00))
|| (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06)));
}
case AC_DATA_DEC_TRANS_REST: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("AC_DATA_DEC_TRANS_REST: OK");
return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x06 || AC == 0x01))
|| (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
}
}
return false;
}
static bool IsAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
if (IsSectorTrailer(blockNo)) {
return IsTrailerAccessAllowed(blockNo, keytype, action);
} else {
return IsDataAccessAllowed(blockNo, keytype, action);
}
}
static uint8_t MifareMaxSector(uint16_t flags) {
if (IS_FLAG_MF_SIZE(flags, MIFARE_MINI_MAX_BYTES)) {
return MIFARE_MINI_MAXSECTOR;
} else if (IS_FLAG_MF_SIZE(flags, MIFARE_1K_MAX_BYTES)) {
return MIFARE_1K_MAXSECTOR;
} else if (IS_FLAG_MF_SIZE(flags, MIFARE_2K_MAX_BYTES)) {
return MIFARE_2K_MAXSECTOR;
} else if (IS_FLAG_MF_SIZE(flags, MIFARE_4K_MAX_BYTES)) {
return MIFARE_4K_MAXSECTOR;
} else {
return MIFARE_4K_MAXSECTOR;
}
}
bool MifareSimInit(uint16_t flags, uint8_t *uid, uint16_t atqa, uint8_t sak, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len, uint8_t **rats, uint8_t *rats_len) {
uint8_t uid_tmp[10] = {0};
// SPEC: https://www.nxp.com/docs/en/application-note/AN10833.pdf
// ATQA
static uint8_t rATQA_Mini[] = {0x04, 0x00}; // indicate Mifare classic Mini 4Byte UID
static uint8_t rATQA_1k[] = {0x04, 0x00}; // indicate Mifare classic 1k 4Byte UID
static uint8_t rATQA_2k[] = {0x04, 0x00}; // indicate Mifare classic 2k 4Byte UID
static uint8_t rATQA_4k[] = {0x02, 0x00}; // indicate Mifare classic 4k 4Byte UID
// SAK
static uint8_t rSAK_Mini = 0x09; // mifare Mini
static uint8_t rSAK_1k = 0x08; // mifare 1k
static uint8_t rSAK_2k = 0x08; // mifare 2k with RATS support
static uint8_t rSAK_4k = 0x18; // mifare 4k
static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level
static uint8_t rUIDBCC1b4[] = {0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level, last 4 bytes
static uint8_t rUIDBCC1b3[] = {0x00, 0x00, 0x00}; // UID 1st cascade level, last 3 bytes
static uint8_t rUIDBCC1b2[] = {0x00, 0x00}; // UID 1st cascade level, last 2 bytes
static uint8_t rUIDBCC1b1[] = {0x00}; // UID 1st cascade level, last byte
static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level
static uint8_t rUIDBCC2b4[] = {0x00, 0x00, 0x00, 0x00}; // UID 2st cascade level, last 4 bytes
static uint8_t rUIDBCC2b3[] = {0x00, 0x00, 0x00}; // UID 2st cascade level, last 3 bytes
static uint8_t rUIDBCC2b2[] = {0x00, 0x00}; // UID 2st cascade level, last 2 bytes
static uint8_t rUIDBCC2b1[] = {0x00}; // UID 2st cascade level, last byte
static uint8_t rUIDBCC3[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 3nd cascade level
static uint8_t rUIDBCC3b4[] = {0x00, 0x00, 0x00, 0x00}; // UID 3st cascade level, last 4 bytes
static uint8_t rUIDBCC3b3[] = {0x00, 0x00, 0x00}; // UID 3st cascade level, last 3 bytes
static uint8_t rUIDBCC3b2[] = {0x00, 0x00}; // UID 3st cascade level, last 2 bytes
static uint8_t rUIDBCC3b1[] = {0x00}; // UID 3st cascade level, last byte
static uint8_t rATQA[] = {0x00, 0x00}; // Current ATQA
static uint8_t rSAK[] = {0x00, 0x00, 0x00}; // Current SAK, CRC
static uint8_t rSAKuid[] = {0x04, 0xda, 0x17}; // UID incomplete cascade bit, CRC
// RATS answer for 2K NXP mifare classic (with CRC)
static uint8_t rRATS[] = {0x0c, 0x75, 0x77, 0x80, 0x02, 0xc1, 0x05, 0x2f, 0x2f, 0x01, 0xbc, 0xd6, 0x60, 0xd3};
*uid_len = 0;
// By default use 1K tag
memcpy(rATQA, rATQA_1k, sizeof(rATQA));
rSAK[0] = rSAK_1k;
//by default RATS not supported
*rats_len = 0;
*rats = NULL;
// -- Determine the UID
// Can be set from emulator memory or incoming data
// Length: 4,7,or 10 bytes
if (IS_FLAG_UID_IN_EMUL(flags)) {
if (uid == NULL) {
uid = uid_tmp;
}
// Get UID, SAK, ATQA from EMUL
uint8_t block0[16];
emlGet(block0, 0, 16);
// Check for 4 bytes uid: bcc corrected and single size uid bits in ATQA
if ((block0[0] ^ block0[1] ^ block0[2] ^ block0[3]) == block0[4] && (block0[6] & 0xc0) == 0) {
FLAG_SET_UID_IN_DATA(flags, 4);
memcpy(uid, block0, 4);
rSAK[0] = block0[5];
memcpy(rATQA, &block0[6], sizeof(rATQA));
}
// Check for 7 bytes UID: double size uid bits in ATQA
else if ((block0[8] & 0xc0) == 0x40) {
FLAG_SET_UID_IN_DATA(flags, 7);
memcpy(uid, block0, 7);
rSAK[0] = block0[7];
memcpy(rATQA, &block0[8], sizeof(rATQA));
} else {
Dbprintf("ERROR: " _RED_("Invalid dump. UID/SAK/ATQA not found"));
return false;
}
} else {
if (uid == NULL) {
Dbprintf("ERROR: " _RED_("Missing UID"));
return false;
}
}
// Tune tag type, if defined directly
// Otherwise use defined by default or extracted from EMUL
if (IS_FLAG_MF_SIZE(flags, MIFARE_MINI_MAX_BYTES)) {
memcpy(rATQA, rATQA_Mini, sizeof(rATQA));
rSAK[0] = rSAK_Mini;
if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare Mini ATQA/SAK");
} else if (IS_FLAG_MF_SIZE(flags, MIFARE_1K_MAX_BYTES)) {
memcpy(rATQA, rATQA_1k, sizeof(rATQA));
rSAK[0] = rSAK_1k;
if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare 1K ATQA/SAK");
} else if (IS_FLAG_MF_SIZE(flags, MIFARE_2K_MAX_BYTES)) {
memcpy(rATQA, rATQA_2k, sizeof(rATQA));
rSAK[0] = rSAK_2k;
*rats = rRATS;
*rats_len = sizeof(rRATS);
if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare 2K ATQA/SAK with RATS support");
} else if (IS_FLAG_MF_SIZE(flags, MIFARE_4K_MAX_BYTES)) {
memcpy(rATQA, rATQA_4k, sizeof(rATQA));
rSAK[0] = rSAK_4k;
if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare 4K ATQA/SAK");
}
// Prepare UID arrays
if (IS_FLAG_UID_IN_DATA(flags, 4)) {
memcpy(rUIDBCC1, uid, 4);
*uid_len = 4;
// save CUID
*cuid = bytes_to_num(rUIDBCC1, 4);
// BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MifareSimInit - Flags: %04X - BCC1: %02X", flags, rUIDBCC1[4]);
if (g_dbglevel > DBG_NONE) {
Dbprintf("4B UID: %02x%02x%02x%02x", rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
}
// Correct uid size bits in ATQA
rATQA[0] = (rATQA[0] & 0x3f); // single size uid
} else if (IS_FLAG_UID_IN_DATA(flags, 7)) {
memcpy(&rUIDBCC1[1], uid, 3);
memcpy(rUIDBCC2, uid + 3, 4);
*uid_len = 7;
// save CUID
*cuid = bytes_to_num(rUIDBCC2, 4);
// CascadeTag, CT
rUIDBCC1[0] = MIFARE_SELECT_CT;
// BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MifareSimInit - Flags: %04X - BCC1: %02X - BCC2: %02X", flags, rUIDBCC1[4], rUIDBCC2[4]);
if (g_dbglevel > DBG_NONE) {
Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[0], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3]);
}
// Correct uid size bits in ATQA
rATQA[0] = (rATQA[0] & 0x3f) | 0x40; // double size uid
} else if (IS_FLAG_UID_IN_DATA(flags, 10)) {
memcpy(&rUIDBCC1[1], uid, 3);
memcpy(&rUIDBCC2[1], uid + 3, 3);
memcpy(rUIDBCC3, uid + 6, 4);
*uid_len = 10;
// save CUID
*cuid = bytes_to_num(rUIDBCC3, 4);
// CascadeTag, CT
rUIDBCC1[0] = MIFARE_SELECT_CT;
rUIDBCC2[0] = MIFARE_SELECT_CT;
// BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MifareSimInit - Flags: %04X - BCC1: %02X - BCC2: %02X - BCC3: %02X", flags, rUIDBCC1[4], rUIDBCC2[4], rUIDBCC3[4]);
if (g_dbglevel > DBG_NONE) {
Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3],
rUIDBCC3[0], rUIDBCC3[1], rUIDBCC3[2], rUIDBCC3[3]
);
}
// Correct uid size bits in ATQA
rATQA[0] = (rATQA[0] & 0x3f) | 0x80; // triple size uid
} else {
Dbprintf("ERROR: " _RED_("UID size not defined"));
return false;
}
if (flags & FLAG_ATQA_IN_DATA) {
rATQA[0] = atqa >> 8;
rATQA[1] = atqa & 0xff;
}
if (flags & FLAG_SAK_IN_DATA) {
rSAK[0] = sak;
}
if (g_dbglevel > DBG_NONE) {
Dbprintf("ATQA : %02X %02X", rATQA[1], rATQA[0]);
Dbprintf("SAK : %02X", rSAK[0]);
}
// clone UIDs for byte-frame anti-collision multiple tag selection procedure
memcpy(rUIDBCC1b4, &rUIDBCC1[1], 4);
memcpy(rUIDBCC1b3, &rUIDBCC1[2], 3);
memcpy(rUIDBCC1b2, &rUIDBCC1[3], 2);
memcpy(rUIDBCC1b1, &rUIDBCC1[4], 1);
if (*uid_len >= 7) {
memcpy(rUIDBCC2b4, &rUIDBCC2[1], 4);
memcpy(rUIDBCC2b3, &rUIDBCC2[2], 3);
memcpy(rUIDBCC2b2, &rUIDBCC2[3], 2);
memcpy(rUIDBCC2b1, &rUIDBCC2[4], 1);
}
if (*uid_len == 10) {
memcpy(rUIDBCC3b4, &rUIDBCC3[1], 4);
memcpy(rUIDBCC3b3, &rUIDBCC3[2], 3);
memcpy(rUIDBCC3b2, &rUIDBCC3[3], 2);
memcpy(rUIDBCC3b1, &rUIDBCC3[4], 1);
}
// Calculate actual CRC
AddCrc14A(rSAK, sizeof(rSAK) - 2);
#define TAG_RESPONSE_COUNT 18
static tag_response_info_t responses_init[TAG_RESPONSE_COUNT] = {
{ .response = rATQA, .response_n = sizeof(rATQA) }, // Answer to request - respond with card type
{ .response = rSAK, .response_n = sizeof(rSAK) }, //
{ .response = rSAKuid, .response_n = sizeof(rSAKuid) }, //
// Do not reorder. Block used via relative index of rUIDBCC1
{ .response = rUIDBCC1, .response_n = sizeof(rUIDBCC1) }, // Anticollision cascade1 - respond with first part of uid
{ .response = rUIDBCC1b4, .response_n = sizeof(rUIDBCC1b4)},
{ .response = rUIDBCC1b3, .response_n = sizeof(rUIDBCC1b3)},
{ .response = rUIDBCC1b2, .response_n = sizeof(rUIDBCC1b2)},
{ .response = rUIDBCC1b1, .response_n = sizeof(rUIDBCC1b1)},
// Do not reorder. Block used via relative index of rUIDBCC2
{ .response = rUIDBCC2, .response_n = sizeof(rUIDBCC2) }, // Anticollision cascade2 - respond with 2nd part of uid
{ .response = rUIDBCC2b4, .response_n = sizeof(rUIDBCC2b4)},
{ .response = rUIDBCC2b3, .response_n = sizeof(rUIDBCC2b3)},
{ .response = rUIDBCC2b2, .response_n = sizeof(rUIDBCC2b2)},
{ .response = rUIDBCC2b1, .response_n = sizeof(rUIDBCC2b1)},
// Do not reorder. Block used via relative index of rUIDBCC3
{ .response = rUIDBCC3, .response_n = sizeof(rUIDBCC3) }, // Anticollision cascade3 - respond with 3th part of uid
{ .response = rUIDBCC3b4, .response_n = sizeof(rUIDBCC3b4)},
{ .response = rUIDBCC3b3, .response_n = sizeof(rUIDBCC3b3)},
{ .response = rUIDBCC3b2, .response_n = sizeof(rUIDBCC3b2)},
{ .response = rUIDBCC3b1, .response_n = sizeof(rUIDBCC3b1)}
};
// Prepare ("precompile") the responses of the anticollision phase.
// There will be not enough time to do this at the moment the reader sends its REQA or SELECT
// There are 18 predefined responses with a total of 53 bytes data to transmit.
// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
// 53 * 8 data bits, 53 * 1 parity bits, 18 start bits, 18 stop bits, 18 correction bits -> need 571 bytes buffer
#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 571
uint8_t *free_buffer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
// modulation buffer pointer and current buffer free space size
uint8_t *free_buffer_pointer = free_buffer;
size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
for (size_t i = 0; i < TAG_RESPONSE_COUNT; i++) {
if (prepare_allocated_tag_modulation(&responses_init[i], &free_buffer_pointer, &free_buffer_size) == false) {
Dbprintf("Not enough modulation buffer size, exit after %d elements", i);
return false;
}
}
*responses = responses_init;
// indices into responses array:
#define ATQA 0
#define SAK 1
#define SAKuid 2
#define UIDBCC1 3
#define UIDBCC2 8
#define UIDBCC3 13
return true;
}
/**
*MIFARE 1K simulate.
*
*@param flags: See pm3_cmd.h for the full definitions
*@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
* (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attempted)
*/
void Mifare1ksim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *uid, uint16_t atqa, uint8_t sak) {
tag_response_info_t *responses;
uint8_t cardSTATE = MFEMUL_NOFIELD;
uint8_t uid_len = 0; // 4, 7, 10
uint32_t cuid = 0, selTimer = 0, authTimer = 0;
uint32_t nr, ar;
uint8_t blockNo;
bool encrypted_data;
uint8_t cardWRBL = 0;
uint8_t cardAUTHSC = 0;
uint8_t cardMaxSEC = MifareMaxSector(flags);
uint8_t cardAUTHKEY = AUTHKEYNONE; // no authentication
uint32_t cardRr = 0;
uint32_t ans = 0;
uint32_t cardINTREG = 0;
uint8_t cardINTBLOCK = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
uint32_t numReads = 0; //Counts numer of times reader reads a block
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
uint16_t receivedCmd_len;
uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
uint8_t *rats = NULL;
uint8_t rats_len = 0;
//Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2
// This will be used in the reader-only attack.
//allow collecting up to 16 sets of nonces to allow recovery of up to 16 keys
#define ATTACK_KEY_COUNT 16
nonces_t ar_nr_resp[ATTACK_KEY_COUNT]; // for moebius attack type
memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
// Authenticate response - nonce
uint8_t rAUTH_NT[4] = {0, 0, 0, 1};
uint8_t rAUTH_NT_keystream[4];
uint32_t nonce = 0;
const tUart14a *uart = GetUart14a();
// free eventually allocated BigBuf memory but keep Emulator Memory
BigBuf_free_keep_EM();
if (MifareSimInit(flags, uid, atqa, sak, &responses, &cuid, &uid_len, &rats, &rats_len) == false) {
BigBuf_free_keep_EM();
return;
}
// We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
// clear trace
clear_trace();
set_tracing(true);
LED_D_ON();
ResetSspClk();
uint8_t *p_em = BigBuf_get_EM_addr();
uint8_t cve_flipper = 0;
int counter = 0;
bool finished = false;
bool running_nested_auth_attack = false;
bool button_pushed = BUTTON_PRESS();
while ((button_pushed == false) && (finished == false)) {
WDT_HIT();
if (counter == 1000) {
if (data_available()) {
Dbprintf("----------- " _GREEN_("BREAKING") " ----------");
break;
}
counter = 0;
} else {
counter++;
}
/*
// find reader field
if (cardSTATE == MFEMUL_NOFIELD) {
vHf = (MAX_ADC_HF_VOLTAGE * SumAdc(ADC_CHAN_HF, 32)) >> 15;
if (vHf > MF_MINFIELDV) {
cardSTATE_TO_IDLE();
LED_A_ON();
}
button_pushed = BUTTON_PRESS();
continue;
}
*/
FpgaEnableTracing();
//Now, get data
int res = EmGetCmd(receivedCmd, sizeof(receivedCmd), &receivedCmd_len, receivedCmd_par);
if (res == 2) { //Field is off!
//FpgaDisableTracing();
if ((flags & FLAG_CVE21_0430) == FLAG_CVE21_0430) {
p_em[1] = 0x21;
cve_flipper = 0;
}
LEDsoff();
cardSTATE = MFEMUL_NOFIELD;
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("cardSTATE = MFEMUL_NOFIELD");
continue;
} else if (res == 1) { // button pressed
FpgaDisableTracing();
button_pushed = true;
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("Button pressed");
break;
}
// WUPA in HALTED state or REQA or WUPA in any other state
if (receivedCmd_len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
selTimer = GetTickCount();
if (g_dbglevel >= DBG_EXTENDED) {
//Dbprintf("EmSendPrecompiledCmd(&responses[ATQA]);");
}
EmSendPrecompiledCmd(&responses[ATQA]);
FpgaDisableTracing();
// init crypto block
crypto1_deinit(pcs);
cardAUTHKEY = AUTHKEYNONE;
nonce = prng_successor(selTimer, 32);
// prepare NT for nested authentication
num_to_bytes(nonce, 4, rAUTH_NT);
num_to_bytes(cuid ^ nonce, 4, rAUTH_NT_keystream);
LED_B_OFF();
LED_C_OFF();
cardSTATE = MFEMUL_SELECT;
if ((flags & FLAG_CVE21_0430) == FLAG_CVE21_0430) {
p_em[1] = 0x21;
cve_flipper = 0;
}
continue;
}
switch (cardSTATE) {
case MFEMUL_NOFIELD: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MFEMUL_NOFIELD");
break;
}
case MFEMUL_HALTED: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MFEMUL_HALTED");
break;
}
case MFEMUL_IDLE: {
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MFEMUL_IDLE");
break;
}
// The anti-collision sequence, which is a mandatory part of the card activation sequence.
// It auto with 4-byte UID (= Single Size UID),
// 7 -byte UID (= Double Size UID) or 10-byte UID (= Triple Size UID).
// For details see chapter 2 of AN10927.pdf
//
// This case is used for all Cascade Levels, because:
// 1) Any devices (under Android for example) after full select procedure completed,
// when UID is known, uses "fast-selection" method. In this case reader ignores
// first cascades and tries to select tag by last bytes of UID of last cascade
// 2) Any readers (like ACR122U) uses bit oriented anti-collision frames during selectin,
// same as multiple tags. For details see chapter 6.1.5.3 of ISO/IEC 14443-3
case MFEMUL_SELECT: {
int uid_index = -1;
// Extract cascade level
if (receivedCmd_len >= 2) {
switch (receivedCmd[0]) {
case ISO14443A_CMD_ANTICOLL_OR_SELECT:
uid_index = UIDBCC1;
break;
case ISO14443A_CMD_ANTICOLL_OR_SELECT_2:
uid_index = UIDBCC2;
break;
case ISO14443A_CMD_ANTICOLL_OR_SELECT_3:
uid_index = UIDBCC3;
break;
}
}
if (uid_index < 0) {
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
cardSTATE_TO_IDLE();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] Incorrect cascade level received");
break;
}
// Incoming SELECT ALL for any cascade level
if (receivedCmd_len == 2 && receivedCmd[1] == 0x20) {
EmSendPrecompiledCmd(&responses[uid_index]);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("SELECT ALL - EmSendPrecompiledCmd(%02x)", &responses[uid_index]);
break;
}
// Incoming SELECT CLx for any cascade level
if (receivedCmd_len == 9 && receivedCmd[1] == 0x70) {
if (memcmp(&receivedCmd[2], responses[uid_index].response, 4) == 0) {
bool cl_finished = (uid_len == 4 && uid_index == UIDBCC1) ||
(uid_len == 7 && uid_index == UIDBCC2) ||
(uid_len == 10 && uid_index == UIDBCC3);
EmSendPrecompiledCmd(&responses[cl_finished ? SAK : SAKuid]);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("SELECT CLx %02x%02x%02x%02x received", receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5]);
if (cl_finished) {
LED_B_ON();
cardSTATE = MFEMUL_WORK;
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_WORK");
}
} else {
// IDLE, not our UID
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
cardSTATE_TO_IDLE();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_IDLE");
}
break;
}
// Incoming anti-collision frame
// receivedCmd[1] indicates number of byte and bit collision, supports only for bit collision is zero
if (receivedCmd_len >= 3 && receivedCmd_len <= 6 && (receivedCmd[1] & 0x0f) == 0) {
// we can process only full-byte frame anti-collision procedure
if (memcmp(&receivedCmd[2], responses[uid_index].response, receivedCmd_len - 2) == 0) {
// response missing part of UID via relative array index
EmSendPrecompiledCmd(&responses[uid_index + receivedCmd_len - 2]);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("SELECT ANTICOLLISION - EmSendPrecompiledCmd(%02x)", &responses[uid_index]);
} else {
// IDLE, not our UID or split-byte frame anti-collision (not supports)
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
cardSTATE_TO_IDLE();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_IDLE");
}
break;
}
// Unknown selection procedure
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
cardSTATE_TO_IDLE();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] Unknown selection procedure");
break;
}
// WORK
case MFEMUL_WORK: {
if (g_dbglevel >= DBG_EXTENDED) {
// Dbprintf("[MFEMUL_WORK] Enter in case");
}
if (receivedCmd_len == 0) {
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] NO CMD received");
break;
}
encrypted_data = (cardAUTHKEY != AUTHKEYNONE);
if (encrypted_data) {
// decrypt seqence
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec);
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] Decrypt sequence");
} else {
// Data in clear
memcpy(receivedCmd_dec, receivedCmd, receivedCmd_len);
}
// all commands must have a valid CRC
if (CheckCrc14A(receivedCmd_dec, receivedCmd_len) == false) {
EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] All commands must have a valid CRC %02X (%d)", receivedCmd_dec, receivedCmd_len);
break;
}
if (receivedCmd_len == 4 && (receivedCmd_dec[0] == MIFARE_AUTH_KEYA || receivedCmd_dec[0] == MIFARE_AUTH_KEYB)) {
// Reader asks for AUTH: 6X XX
// RCV: 60 XX => Using KEY A
// RCV: 61 XX => Using KEY B
// XX: Block number
authTimer = GetTickCount();
// received block num -> sector
// Example: 6X [00]
// 4K tags have 16 blocks per sector 32..39
cardAUTHSC = MifareBlockToSector(receivedCmd_dec[1]);
// cardAUTHKEY: 60 => Auth use Key A
// cardAUTHKEY: 61 => Auth use Key B
cardAUTHKEY = receivedCmd_dec[0] & 0x01;
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] KEY %c: %012" PRIx64, (cardAUTHKEY == 0) ? 'A' : 'B', emlGetKey(cardAUTHSC, cardAUTHKEY));
// sector out of range - do not respond
if (cardAUTHSC >= cardMaxSEC) {
cardAUTHKEY = AUTHKEYNONE; // not authenticated
cardSTATE_TO_IDLE();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] Out of range sector %d(0x%02x)", cardAUTHSC, cardAUTHSC);
break;
}
// first authentication
crypto1_deinit(pcs);
// Load key into crypto
crypto1_init(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
running_nested_auth_attack = false;
if (!encrypted_data) {
// Receive Cmd in clear txt
// Update crypto state (UID ^ NONCE)
crypto1_word(pcs, cuid ^ nonce, 0);
// rAUTH_NT contains prepared nonce for authenticate
EmSendCmd(rAUTH_NT, sizeof(rAUTH_NT));
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) {
Dbprintf("[MFEMUL_WORK] Reader authenticating for block %d (0x%02x) with key %c - nonce: %08X - cuid: %08X",
receivedCmd_dec[1],
receivedCmd_dec[1],
(cardAUTHKEY == 0) ? 'A' : 'B',
nonce,
cuid
);
}
} else {
// nested authentication
/*
ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
num_to_bytes(ans, 4, rAUTH_AT);
*/
// if key not known and FLAG_NESTED_AUTH_ATTACK and we have nt/nt_enc/parity, send recorded nt_enc and parity
if ((flags & FLAG_NESTED_AUTH_ATTACK) == FLAG_NESTED_AUTH_ATTACK) {
if (emlGetKey(cardAUTHSC, cardAUTHKEY) == 0) {
uint8_t buf[16] = {0};
emlGetMem(buf, (CARD_MEMORY_RF08S_OFFSET / MIFARE_BLOCK_SIZE) + cardAUTHSC, 1);
if (buf[(cardAUTHKEY * 8) + 3] == 0xAA) { // extra check to tell we have nt/nt_enc/par_err
running_nested_auth_attack = true;
// nt
nonce = bytes_to_num(buf + (cardAUTHKEY * 8), 2);
nonce = nonce << 16 | prng_successor(nonce, 16);
// nt_enc
memcpy(response, buf + (cardAUTHKEY * 8) + 4, 4);
uint8_t nt_par_err = buf[(cardAUTHKEY * 8) + 2];
uint32_t nt_enc = bytes_to_num(response, 4);
response_par[0] = ((((nt_par_err >> 3) & 1) ^ oddparity8((nt_enc >> 24) & 0xFF)) << 7 |
(((nt_par_err >> 2) & 1) ^ oddparity8((nt_enc >> 16) & 0xFF)) << 6 |
(((nt_par_err >> 1) & 1) ^ oddparity8((nt_enc >> 8) & 0xFF)) << 5 |
(((nt_par_err >> 0) & 1) ^ oddparity8((nt_enc >> 0) & 0xFF)) << 4);
ar_nr_resp[0].cuid = cuid;
ar_nr_resp[0].sector = cardAUTHSC;
ar_nr_resp[0].keytype = cardAUTHKEY;
ar_nr_resp[0].nonce = nonce;
ar_nr_resp[0].nonce2 = nt_enc;
};
}
}
if (running_nested_auth_attack == false) {
// rAUTH_NT, rAUTH_NT_keystream contains prepared nonce and keystream for nested authentication
// we need calculate parity bits for non-encrypted sequence
mf_crypto1_encryptEx(pcs, rAUTH_NT, rAUTH_NT_keystream, response, 4, response_par);
}
EmSendCmdPar(response, 4, response_par);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) {
Dbprintf("[MFEMUL_WORK] Reader doing nested authentication for block %d (0x%02x) with key %c",
receivedCmd_dec[1],
receivedCmd_dec[1],
(cardAUTHKEY == 0) ? 'A' : 'B'
);
}
}
cardSTATE = MFEMUL_AUTH1;
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_AUTH1 - rAUTH_NT: %02X", rAUTH_NT);
break;
}
// rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
// BUT... ACK --> NACK
if (receivedCmd_len == 1 && receivedCmd_dec[0] == CARD_ACK) {
EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA);
FpgaDisableTracing();
break;
}
// rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
if (receivedCmd_len == 1 && receivedCmd_dec[0] == CARD_NACK_NA) {
EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_ACK) : CARD_ACK);
FpgaDisableTracing();
break;
}
// case MFEMUL_WORK => if Cmd is Read, Write, Inc, Dec, Restore, Transfer
if (receivedCmd_len == 4 && (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK
|| receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK
|| receivedCmd_dec[0] == MIFARE_CMD_INC
|| receivedCmd_dec[0] == MIFARE_CMD_DEC
|| receivedCmd_dec[0] == MIFARE_CMD_RESTORE
|| receivedCmd_dec[0] == MIFARE_CMD_TRANSFER)) {
// all other commands must be encrypted (authenticated)
if (!encrypted_data) {
EmSend4bit(CARD_NACK_NA);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] Commands must be encrypted (authenticated)");
break;
}
// iceman, u8 can never be larger the MIFARE_4K_MAXBLOCK (256)
// Check if Block num is not too far
/*
if (receivedCmd_dec[1] > MIFARE_4K_MAXBLOCK) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
FpgaDisableTracing();
if (g_dbglevel >= DBG_ERROR) Dbprintf("[MFEMUL_WORK] Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], receivedCmd_dec[1]);
break;
}
*/
blockNo = receivedCmd_dec[1];
if (MifareBlockToSector(blockNo) != cardAUTHSC) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
FpgaDisableTracing();
if (g_dbglevel >= DBG_ERROR)
Dbprintf("[MFEMUL_WORK] Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], cardAUTHSC);
break;
}
// Compliance of MIFARE Classic EV1 1K Datasheet footnote of Table 8
// If access bits show that key B is Readable, any subsequent memory access will be refused.
// Some cards don't respect it so we can also skip it with FLAG_MF_USE_READ_KEYB
if ((flags & FLAG_MF_USE_READ_KEYB) != FLAG_MF_USE_READ_KEYB) {
if (cardAUTHKEY == AUTHKEYB && IsKeyBReadable(blockNo)) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
FpgaDisableTracing();
if (g_dbglevel >= DBG_ERROR)
Dbprintf("[MFEMUL_WORK] Access denied: Reader tried to access memory on authentication with key B while key B is readable in sector (0x%02x)", cardAUTHSC);
break;
}
}
}
// case MFEMUL_WORK => CMD READ block
if (receivedCmd_len == 4 && receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK) {
blockNo = receivedCmd_dec[1];
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("[MFEMUL_WORK] Reader reading block %d (0x%02x)", blockNo, blockNo);
// android CVE 2021_0430
// Simulate a MFC 1K, with a NDEF message.
// these values uses the standard LIBNFC NDEF message
//
// In short, first a value read of block 4,
// update the length byte before second read of block 4.
// on iphone etc there might even be 3 reads of block 4.
// fiddling with when to flip the byte or not, has different effects
if ((flags & FLAG_CVE21_0430) == FLAG_CVE21_0430) {
// first block
if (blockNo == 4) {
p_em += blockNo * 16;
// TLV in NDEF, flip length between
// 4 | 03 21 D1 02 1C 53 70 91 01 09 54 02 65 6E 4C 69
// 0xFF means long length
// 0xFE mean max short length
// We could also have a go at message len byte at p_em[4]...
if (p_em[1] == 0x21 && cve_flipper == 1) {
p_em[1] = 0xFE;
} else {
cve_flipper++;
}
}
}
emlGetMem(response, blockNo, 1);
if (g_dbglevel >= DBG_EXTENDED) {
Dbprintf("[MFEMUL_WORK - ISO14443A_CMD_READBLOCK] Data Block[%d]: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", blockNo,
response[0], response[1], response[2], response[3], response[4], response[5], response[6],
response[7], response[8], response[9], response[10], response[11], response[12], response[13],
response[14], response[15]);
}
// Access permission management:
//
// Sector Trailer:
// - KEY A access
// - KEY B access
// - AC bits access
//
// Data block:
// - Data access
// If permission is not allowed, data is cleared (00) in emulator memory.
// ex: a0a1a2a3a4a561e789c1b0b1b2b3b4b5 => 00000000000061e789c1b0b1b2b3b4b5
// Check if selected Block is a Sector Trailer
if (IsSectorTrailer(blockNo)) {
if (IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYA_READ) == false) {
memset(response, 0x00, 6); // keyA can never be read