-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
726 lines (606 loc) · 21.6 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
/*
* Solution to course project # 4
* Introduction to programming course
* Faculty of Mathematics and Informatics of Sofia University
* Winter semester 2024-2025
*
* @author Nikol Tsanova
* @idnumber 4MI0600527
* @compiler VC
*
* <main file, run it to start the program>
*/
#include <iostream>
#include <vector>
using namespace std;
//<--------------------------------------------------------------------------------------------------------------------------------------------------->
// Function to compute the greatest common divisor
int gcd(int a, int b) {
while (b != 0) {
int temp = b;
b = a % b;
a = temp;
}
return a;
}
// LCM formula: (a * b) / GCD(a, b)
int lcm(int a, int b) {
return abs(a * b) / gcd(a, b);
}
// Function to simplify a fraction
void simplify(pair < int, int >& fraction) {
int commonDivisor = gcd(fraction.first, fraction.second);
fraction.first /= commonDivisor;
fraction.second /= commonDivisor;
if (fraction.second < 0) { // Ensure denominator is positive
fraction.first = -fraction.first;
fraction.second = -fraction.second;
}
}
// Function to add two rational numbers
pair < int, int > addRational(const pair < int, int >& r1,
const pair < int, int >& r2) {
int numerator = r1.first * r2.second + r2.first * r1.second;
int denominator = r1.second * r2.second;
pair < int, int > result = {
numerator,
denominator
};
simplify(result);
return result;
}
// Subtract two rational numbers
pair < int, int > subtractRational(const pair < int, int >& r1,
const pair < int, int >& r2) {
int numerator = r1.first * r2.second - r2.first * r1.second;
int denominator = r1.second * r2.second;
pair < int, int > result = {
numerator,
denominator
};
simplify(result);
return result;
}
// Function to add two fractions represented as pairs
pair < int, int > addFractions(pair < int, int > a, pair < int, int > b) {
int lcm_denom = lcm(a.second, b.second);
int new_num = a.first * (lcm_denom / a.second) + b.first * (lcm_denom / b.second);
return {
new_num,
lcm_denom
};
}
// Function to subtract two fractions represented as pairs
pair < int, int > subtractFractions(pair < int, int > a, pair < int, int > b) {
int lcm_denom = lcm(a.second, b.second);
int new_num = a.first * (lcm_denom / a.second) - b.first * (lcm_denom / b.second);
return {
new_num,
lcm_denom
};
}
// Function to multiply two fractions
pair < int, int > multiplyFractions(pair < int, int > a, pair < int, int > b) {
return {
a.first * b.first,
a.second * b.second
};
}
// Function to divide two fractions
pair < int, int > divideFractions(pair < int, int > a, pair < int, int > b) {
return {
a.first * b.second,
a.second * b.first
};
}
// Function to input a polynomial
void inputPolynomial(vector < pair < int, int >>& poly) {
int degree;
cout << "Enter the degree of your polynomial >> ";
cin >> degree;
poly.resize(degree + 1);
for (int i = degree; i >= 0; --i) {
cout << "Enter coefficient before x^" << i << ">> ";
int numerator, denominator = 1;
char slash;
cin >> numerator; // Always read numerator
if (cin.peek() == '/') {
cin >> slash >> denominator; // Read '/' and denominator if present
}
poly[i] = {
numerator,
denominator
};
simplify(poly[i]);
}
}
// Function to display a polynomial
void displayPolynomial(const vector < pair < int, int >>& poly) {
bool firstTerm = true;
for (int i = poly.size() - 1; i >= 0; --i) {
if (poly[i].first == 0)
continue;
if (!firstTerm && poly[i].first > 0) {
cout << "+";
}
if (poly[i].second == 1) {
cout << poly[i].first;
}
else {
cout << poly[i].first << "/" << poly[i].second;
}
if (i > 0)
cout << "x";
if (i > 1)
cout << "^" << i;
firstTerm = false;
}
if (firstTerm) {
cout << "0"; // if no things were printed, polynomial is 0
}
cout << endl;
}
//<--------------------------------------------------------------------------------------------------------------------------------------------------->
// The polynoms are inputed in desending order but saved as vector in assending order of deg
vector < pair < int, int >> inputAndDisplayPolynomial(const string& polyName) {
vector < pair < int, int >> poly;
cout << "Enter Polynomial " << polyName << "\n";
inputPolynomial(poly);
cout << polyName << " = ";
displayPolynomial(poly);
return poly;
}
pair < int, int > inputFraction() {
pair < int, int > number;
cout << "Enter a Number >> ";
int numerator, denominator = 1;
char slash;
cin >> numerator; // Always read numerator
if (cin.peek() == '/') {
cin >> slash >> denominator; // Read '/' and denominator if present
}
number = {
numerator,
denominator
};
return number;
}
void dispalyFraction(pair < int, int > result) {
cout << result.first << "/" << result.second << endl;
}
bool isZeroPolynomial(const vector < pair < int, int >>& poly) {
if (poly.empty()) {
return true;
}
for (const auto& term : poly) {
if (term.first != 0) {
return false;
}
}
return true;
}
// Perform addition or subtraction on two polynomials
vector < pair < int, int >> performPolynomialOperation(
const vector < pair < int, int >>& p1,
const vector < pair < int, int >>& p2,
pair < int, int >(*operation)(const pair < int, int >&,
const pair < int, int >&)) {
vector < pair < int, int >> result;
size_t maxSize = max(p1.size(), p2.size());
for (size_t i = 0; i < maxSize; ++i) {
int numerator1 = (i < p1.size()) ? p1[i].first : 0;
int denominator1 = (i < p1.size()) ? p1[i].second : 1;
int numerator2 = (i < p2.size()) ? p2[i].first : 0;
int denominator2 = (i < p2.size()) ? p2[i].second : 1;
pair < int, int > term1 = {
numerator1,
denominator1
};
pair < int, int > term2 = {
numerator2,
denominator2
};
result.push_back(operation(term1, term2));
}
return result;
}
vector < pair < int, int >> multiplyPolynomials(const vector < pair < int, int >>& p1,
const vector < pair < int, int >>& p2) {
size_t degree1 = p1.size();
size_t degree2 = p2.size();
vector < pair < int, int >> result(degree1 + degree2 - 1, { 0, 1 }); // Initialize result with 0s
for (size_t i = 0; i < degree1; ++i) {
for (size_t j = 0; j < degree2; ++j) {
int numerator = p1[i].first * p2[j].first;
int denominator = p1[i].second * p2[j].second;
// Add to the existing term in the result
pair < int, int > term = {
numerator,
denominator
};
result[i + j] = addRational(result[i + j], term);
}
}
return result;
}
pair < vector < pair < int, int >>, vector < pair < int, int >>> dividePolynomials(
vector < pair < int, int >> numinator,
vector < pair < int, int >> denominator
) {
size_t degNum = numinator.size() - 1;
if (denominator.empty()) {
cout << "Denominator cannot be zero.";
return {};
}
size_t degDen = denominator.size() - 1;
if (degNum < degDen) {
cout << "Degree of numerator must be greater than or equal to the degree of denominator." << endl;
return {};
}
vector < pair < int, int >> quotient(degNum - degDen + 1, { 0, 0 });
vector < pair < int, int >> remainder = numinator;
for (int i = degNum; i >= degDen; --i) {
if (remainder[i].first != 0) {
pair < int, int > coeffQuotient = divideFractions(remainder[i], denominator[degDen]);
int degreeQuotient = i - degDen;
quotient[degreeQuotient] = coeffQuotient;
for (int j = degDen; j >= 0; --j) {
int remainderIndex = i - (degDen - j);
remainder[remainderIndex] = subtractFractions(
remainder[remainderIndex],
multiplyFractions(coeffQuotient, denominator[j]));
}
}
}
return {
quotient,
remainder
};
}
void evaluatePolynomial() {
vector < pair < int, int >> poly = inputAndDisplayPolynomial("P(x) ");
pair < int, int > x = inputFraction();
pair < int, int > result = { 0, 1 };
for (int i = poly.size() - 1; i >= 0; --i) {
pair < int, int > coeff = poly[i];
pair < int, int > term = {
coeff.first,
coeff.second
};
pair < int, int > x_pow = { 1, 1 };
for (int j = 0; j < i; ++j) {
x_pow.first *= x.first;
x_pow.second *= x.second;
}
term.first *= x_pow.first;
term.second *= x_pow.second;
int gcd_val = gcd(term.first, term.second);
term.first /= gcd_val;
term.second /= gcd_val;
result.first = result.first * term.second + result.second * term.first;
result.second *= term.second;
gcd_val = gcd(result.first, result.second);
result.first /= gcd_val;
result.second /= gcd_val;
}
simplify(result);
dispalyFraction(x);
dispalyFraction(result);
}
void gcdPolynomials() {
vector < pair < int, int >> poly1 = inputAndDisplayPolynomial("P(x) ");
vector < pair < int, int >> poly2 = inputAndDisplayPolynomial("Q(x) ");
while (!isZeroPolynomial(poly2)) {
auto division = dividePolynomials(poly1, poly2);
poly1 = poly2;
poly2 = division.second;
}
cout << "gcd (P(x), Q(x)) = ";
displayPolynomial(poly1);
}
// Function to calculate and print the sum of the roots (x1 + x2 + ... + xn)
void calculateAndPrintSumOfRoots(const vector < pair < int, int >>& poly, int deg) {
for (int i = 0; i < deg; ++i) {
cout << "x" << i + 1;
if (i < deg - 1) {
cout << " + ";
}
}
pair < int, int > sumOfRoots = divideFractions({
-poly[deg - 1].first,
poly[deg - 1].second
},
poly[deg]
);
simplify(sumOfRoots);
cout << " = " << sumOfRoots.first << "/" << sumOfRoots.second << endl;
}
// Function to calculate and print the sum of the products of the roots taken two at a time (x1x2 + x1x3 + ... + x(n-1)xn)
void calculateAndPrintSumOfProductsTwoAtATime(const vector < pair < int, int >>& poly, int deg) {
for (int i = 0; i < deg; ++i) {
for (int j = i + 1; j < deg; ++j) {
cout << "x" << i + 1 << "x" << j + 1;
if (i < deg - 2) {
cout << " + ";
}
}
}
pair < int, int > sumOfProductsTwoAtATime = divideFractions(
poly[deg - 2],
poly[deg]
);
simplify(sumOfProductsTwoAtATime);
cout << " = " <<
sumOfProductsTwoAtATime.first << "/" << sumOfProductsTwoAtATime.second << endl;
}
// Function to calculate and print the sum of the products of the roots taken three at a time (x1x2x3 + x1x2x4 + ...)
void calculateAndPrintSumOfProductsThreeAtATime(const vector < pair < int, int >>& poly, int deg) {
for (int i = 0; i < deg; ++i) {
for (int j = i + 1; j < deg; ++j) {
for (int k = j + 1; k < deg; ++k) {
cout << "x" << i + 1 << "x" << j + 1 << "x" << k + 1;
if (i < deg - 3) {
cout << " + ";
}
}
}
}
pair < int, int > sumOfProductsThreeAtATime = divideFractions({
-poly[deg - 3].first,
poly[deg - 3].second
},
poly[deg]
);
simplify(sumOfProductsThreeAtATime);
cout << " = " <<
sumOfProductsThreeAtATime.first << "/" << sumOfProductsThreeAtATime.second << endl;
}
// Function to calculate and print the product of all the roots (x1x2x3...xn)
void calculateAndPrintProductOfRoots(const vector < pair < int, int >>& poly, int deg) {
for (int i = 0; i < deg; ++i) {
cout << "x" << i + 1;
if (i < deg - 1) {
cout << " * ";
}
}
pair < int, int > productOfRoots = divideFractions({
poly[0].first,
poly[0].second
},
poly[deg]
);
if (deg % 2 == 1) {
productOfRoots.first = -productOfRoots.first;
}
simplify(productOfRoots);
cout << " = " << productOfRoots.first << "/" << productOfRoots.second << endl;
}
// Main function to calculate and print all Viet's formulas
void vietFormulas() {
const vector < pair < int, int >>& poly = inputAndDisplayPolynomial("P(x) ");
int deg = poly.size() - 1;
if (deg < 1) {
cout << "Polynomial degree is too low to compute Viet's formulas!" << endl;
return;
}
calculateAndPrintSumOfRoots(poly, deg);
if (deg >= 2) {
calculateAndPrintSumOfProductsTwoAtATime(poly, deg);
}
if (deg >= 3) {
calculateAndPrintSumOfProductsThreeAtATime(poly, deg);
}
calculateAndPrintProductOfRoots(poly, deg);
}
// Add two polynomials
vector < pair < int, int >> addPolynomials(const vector < pair < int, int >>& p1,
const vector < pair < int, int >>& p2) {
return performPolynomialOperation(p1, p2, addRational);
}
// Subtract two polynomials
vector < pair < int, int >> subtractPolynomials(const vector < pair < int, int >>& p1,
const vector < pair < int, int >>& p2) {
return performPolynomialOperation(p1, p2, subtractRational);
}
void dividePolynomialsWithInput() {
// Get the polynomials
vector < pair < int, int >> numerator = inputAndDisplayPolynomial("P(x)");
vector < pair < int, int >> denominator = inputAndDisplayPolynomial("Q(x)");
// Divide the polynomials
auto result = dividePolynomials(numerator, denominator);
// Printing the Quotient and Remainder
cout << "Quotient: ";
displayPolynomial(result.first);
cout << "Remainder: ";
displayPolynomial(result.second);
}
// Perform and display a polynomial operation
void performAndDisplayOperation(
const string& operationName,
vector < pair < int, int >>(*operation)(const vector < pair < int, int >>&,
const vector < pair < int, int >>&)) {
// Input Polynomials
vector < pair < int, int >> poly1 = inputAndDisplayPolynomial("P(x) ");
vector < pair < int, int >> poly2 = inputAndDisplayPolynomial("Q(x) ");
cout << "P(x) " << operationName << " Q(x) = ";
vector < pair < int, int >> result = operation(poly1, poly2);
displayPolynomial(result);
}
// Function to multiply a polynomial by a scalar
vector < pair < int, int >> multiplyByScalar(const vector < pair < int, int >>& poly,
const pair < int, int >& scalar) {
vector < pair < int, int >> result;
for (const auto& term : poly) {
int numerator = term.first * scalar.first;
int denominator = term.second * scalar.second;
pair < int, int > newTerm = {
numerator,
denominator
};
simplify(newTerm);
result.push_back(newTerm);
}
return result;
}
//func 3 display below
void displayCaseThree() {
// Input two polynomials
vector<pair<int, int>> polyP = inputAndDisplayPolynomial("P(x) ");
vector<pair<int, int>> polyQ = inputAndDisplayPolynomial("Q(x) ");
// Multiply the polynomials
cout << "P(x) * Q(x) = ";
vector<pair<int, int>> result = multiplyPolynomials(polyP, polyQ);
// Display the result
displayPolynomial(result);
}
//func 5 is below that comment display
void multiplicationOfPolynomWithRationalNumber() {
// Input the polynomial
vector<pair<int, int>> polyP = inputAndDisplayPolynomial("P(x)");
// Input the scalar value
cout << "Enter scalar (format: numerator/denominator or just numerator)>> ";
int numerator, denominator = 1;
char slash;
cin >> numerator;
if (cin.peek() == '/') {
cin >> slash >> denominator;
}
pair<int, int> scalar = { numerator, denominator };
simplify(scalar); // Simplify the scalar if necessary
// Multiply the polynomial by the scalar
vector<pair<int, int>> result = multiplyByScalar(polyP, scalar);
// Display the result
cout << "Result: ";
displayPolynomial(result);
cout << endl;
}
//func 10 e pod tozi komentar, ne raboti mnogo dobre, poneje pri dvoen koren ne otbelqzva che e dvoen, ne znam kak da go opravq
vector<int> findDivisors(int num) {
vector<int> divisors;
num = abs(num);
for (int i = 1; i <= sqrt(num); ++i) {
if (num % i == 0) {
divisors.push_back(i);
if (i != num / i) {
divisors.push_back(num / i);
}
}
}
return divisors;
}
pair<int, int> evaluatePolynomial(const vector<pair<int, int>>& poly, const pair<int, int>& x) {
pair<int, int> result = { 0, 1 }; // Initialize to 0
for (int i = poly.size() - 1; i >= 0; --i) {
pair<int, int> term = poly[i];
pair<int, int> xPower = { 1, 1 }; // Initialize x^i as 1
// Compute x^i
for (int j = 0; j < i; ++j) {
xPower = multiplyFractions(xPower, x);
}
// Multiply coefficient by x^i
term = multiplyFractions(term, xPower);
// Add to the result
result = addFractions(result, term);
}
simplify(result); // Simplify the result
return result;
}
void findAndDisplayRationalRoots(const vector<pair<int, int>>& poly) {
int degree = poly.size() - 1;
if (degree < 1) {
cout << "Polynomial degree must be at least 1." << endl;
return;
}
// Leading coefficient and constant term
pair<int, int> leadingCoefficient = poly[degree];
pair<int, int> constantTerm = poly[0];
// Generate potential rational roots (p/q)
vector<int> pValues = findDivisors(constantTerm.first);
vector<int> qValues = findDivisors(leadingCoefficient.first);
vector<pair<int, int>> rationalRoots;
for (int p : pValues) {
for (int q : qValues) {
pair<int, int> root1 = { p, q };
pair<int, int> root2 = { -p, q };
simplify(root1);
simplify(root2);
// Check if root1 and root2 are actual roots
if (evaluatePolynomial(poly, root1) == make_pair(0, 1)) {
rationalRoots.push_back(root1);
}
if (evaluatePolynomial(poly, root2) == make_pair(0, 1)) {
rationalRoots.push_back(root2);
}
}
}
// Display rational roots
cout << "RATIONAL ROOTS:" << endl;
for (const auto& root : rationalRoots) {
cout << "x = " << root.first << "/" << root.second << endl;
}
}
int main() {
int numberOfChoice;
cout << "Welcome to Polynomial Calculator - ";
cout << "a mini project intended to work with polynomials with rational coefficients." << endl;
while (true) {
cout << "Choose one of the following functionalities:" << endl;
cout << "1) Add polynomials" << endl;
cout << "2) Subtract polynomials" << endl;
cout << "3) Multiply polynomials" << endl;
cout << "4) Divide polynomials" << endl;
cout << "5) Multiply polynomial by scalar" << endl;
cout << "6) Find value of polynomial at a given number" << endl;
cout << "7) Find GCD of two polynomials" << endl;
cout << "8) Display Vieta's formulas for a given polynomial" << endl;
cout << "9) Represent a polynomial in powers of (x+a)" << endl;
cout << "10) Factor polynomial and find its rational roots" << endl;
cout << "11) Quit program" << endl;
cout << "Enter your option: " << endl;
cin >> numberOfChoice;
switch (numberOfChoice) {
case 1: {
performAndDisplayOperation("+", addPolynomials);
}
break;
case 2: {
performAndDisplayOperation("-", subtractPolynomials);
}
break;
case 3:
displayCaseThree();
break;
case 4:
dividePolynomialsWithInput();
break;
case 5:
multiplicationOfPolynomWithRationalNumber();
break;
case 6:
evaluatePolynomial();
break;
case 7:
gcdPolynomials();
break;
case 8:
vietFormulas();
break;
case 9:
cout << "I'm sorry, this functionality is too hard to develop.";
break;
case 10: {
vector<pair<int, int>> poly = inputAndDisplayPolynomial("P(x)");
findAndDisplayRationalRoots(poly);
break;
}
case 11: {
cout << "I hope i helped, have a nice day!" << endl;
return 0;
}
break;
default:
cout << "Invalid input. Try again!" << endl;
}
}
return 0;
}