-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathb_tree.py
289 lines (239 loc) · 8.38 KB
/
b_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import pandas as pd
import time
import random
import sys
from bisect import bisect_left
from sklearn.model_selection import train_test_split
import pdb
# Every node in the BTree stores a number of item objects
# Implementation of the item class
class Item():
def __init__(self, key, value):
self.k = key
self.v = value
def __str__(self):
return "Key: " + str(self.k) + " Value: " + str(self.v)
def __eq__(self, other):
return self.k == other.k
def __gt__(self, other):
return self.k > other.k
def __ge__(self, other):
return self.k >= other.k
def __lt__(self, other):
return self.k < other.k
def __le__(self, other):
return self.k <= other.k
# Every node in the B-Tree is implemented as a BTreeNode
class BTreeNode:
# numberOfKeys - number of non-null keys in the node
# items - keys in a node
# children - indexes of nodes that are the children of the current node
# index - position of the node in sorted order
def __init__(self, keys_per_node = 0):
self.items = [None] * keys_per_node
self.children = [None] * (keys_per_node + 1)
self.isLeaf = True
self.numberOfKeys = 0
self.index = None
def set_index(self, index):
self.index = index
def search(self, b_tree, an_item):
i = 0
while i < self.numberOfKeys and an_item > self.items[i]:
i += 1
if i < self.numberOfKeys and an_item == self.items[i]:
return {'found': True, 'fileIndex': self.index, 'nodeIndex': i}
if self.isLeaf:
return {'found': False, 'fileIndex': self.index, 'nodeIndex': i - 1}
else:
return b_tree.get_node(self.children[i]).search(b_tree, an_item)
# B-Tree stores the properties of the required B-Tree
class BTree:
# keys_per_node - page_size (number of keys in each node)
# degree - Number of keys to half-fill the node
# rootNode - root node in the B-Tree
# nodes - map of all nodes in the B-Tree (index to node mapping)
# rootIndex - index of the rootNode in the nodes map
# freeIndex - An incremental counter always pointing to next position to be filled
def __init__(self, keys_per_node = 0):
self.keys_per_node = keys_per_node
self.degree = (self.keys_per_node + 1) / 2
self.rootIndex = 1
self.freeIndex = self.rootIndex + 1
self.rootNode = BTreeNode(self.keys_per_node)
self.rootNode.set_index(self.rootIndex)
self.nodes = {}
self.write_at(self.rootIndex, self.rootNode)
def get_nodes(self):
return self.nodes
def build(self, keys, values):
if len(keys) != len(values):
return
for ind in range(len(keys)):
self.insert(Item(keys[ind], values[ind]))
def write_at(self, index, a_node):
self.nodes[index] = a_node
def representation(self):
return "BTree("+str(self.degree)+",\n function" + str(self.function()) + ","+ str(self.rootIndex)+","+str(self.freeIndex)
def get_free_index(self):
self.freeIndex += 1
return self.freeIndex - 1
def set_root_node(self, r):
self.rootNode = r
self.rootIndex = self.rootNode.index
def get_free_node(self):
new_node = BTreeNode(self.keys_per_node)
index = self.get_free_index()
new_node.set_index(index)
self.write_at(index, new_node)
return new_node
def print_nodes(self):
s = ''
for x in self.nodes:
s = s + str(x) + ' ';
return s
def function(self):
return 'BTree Degree:' + str(self.degree) + ' RootIndex:' + str(self.rootIndex)+ ' FreeIndex:' +str(self.freeIndex) + '\nNodes:' + str(self.print_nodes())
def predict(self, key):
search_result = self.search(Item(key, 0))
if not search_result['found']:
return -1
node = search_result['fileIndex']
item = search_result['nodeIndex']
return self.nodes[node].items[item].v
def get_node(self, index):
return self.nodes[index]
def split_child(self, p_node, i, c_node):
new_node = self.get_free_node()
new_node.isLeaf = c_node.isLeaf
new_node.numberOfKeys = self.degree - 1
for j in range(0, self.degree - 1):
new_node.items[j] = c_node.items[j + self.degree]
if not c_node.isLeaf:
for j in range(0, self.degree):
new_node.children[j] = c_node.children[j + self.degree]
c_node.numberOfKeys = self.degree - 1
j = p_node.numberOfKeys + 1
while j > i + 1:
p_node.children[j + 1] = p_node.children[j]
j -= 1
p_node.children[j] = new_node.index
j = p_node.numberOfKeys
while j > i:
p_node.items[j + 1] = p_node.items[j]
j -= 1
p_node.items[i] = c_node.items[self.degree - 1]
p_node.numberOfKeys += 1
def search(self, an_item):
return self.rootNode.search(self, an_item)
def insert(self, an_item):
search_result = self.search(an_item)
if search_result['found']:
return None
r = self.rootNode
if r.numberOfKeys == 2 * self.degree - 1:
s = self.get_free_node()
self.set_root_node(s)
s.isLeaf = False
s.numberOfKeys = 0
s.children[0] = r.index
self.split_child(s, 0, r)
self.insert_not_full(s, an_item)
else:
self.insert_not_full(r, an_item)
def insert_not_full(self, inNode, anItem):
i = inNode.numberOfKeys - 1
if inNode.isLeaf:
while i >= 0 and anItem < inNode.items[i]:
inNode.items[i + 1] = inNode.items[i]
i -= 1
inNode.items[i + 1] = anItem
inNode.numberOfKeys += 1
else:
while i >= 0 and anItem < inNode.items[i]:
i -= 1
i += 1
if self.get_node(inNode.children[i]).numberOfKeys == 2 * self.degree - 1:
self.split_child(inNode, i, self.get_node(inNode.children[i]))
if anItem > inNode.items[i]:
i += 1
self.insert_not_full(self.get_node(inNode.children[i]), anItem)
def b_tree_main(path, page_size):
data = pd.read_csv(path, header = None)
btree = BTree(page_size)
total_data_size = data.shape[0]
train, test = train_test_split(data, test_size=0.2)
train = train.sort_index()
test = test.sort_index()
train_keys = train.ix[:,0].tolist()
train_blocks = train.ix[:, 1].tolist()
test_keys = test.ix[:,0].tolist()
test_blocks = test.ix[:, 1].tolist()
model_start_time = time.time()
for i in range(total_data_size):
btree.insert(Item(data.ix[i, 0], data.ix[i, 1]))
model_end_time = time.time()
# print "Lookup in progress!"
keys_without_duplicates = list(dict.fromkeys(test_keys))
misses = 0.0
hits = 0.0
max_error = 0
total_time = 0
for key in keys_without_duplicates:
start = time.time()
est = btree.predict(key)
end = time.time()
total_time += end-start
hi = len(test_keys)
pos = bisect_left(test_keys, key, 0, hi)
index = (pos if pos != hi and test_keys[pos] == key else -1)
actual = test_blocks[index]
if est in range(actual - max_error, actual + max_error + 1):
hits += 1.0
else:
misses += 1.0
print("for page size = {}:".format(page_size))
# print("success rate is {}%".format(100*(hits / (hits + misses))))
print("build time is {} ms".format(1000*(model_end_time-model_start_time)))
print("search time is {} ms".format(1000*total_time))
# print("memory size is {} bytes".format(sys.getsizeof(btree.rootNode)))
depth = get_depth(btree)
memory = (page_size**(depth-1))*128
print("memory is {}".format(memory))
print("depth is {}".format(depth))
print('-------------------------------')
def print_tree(btree):
print_tree_aux(btree, btree.rootNode)
def print_tree_aux(btree, root, level=0):
children = filter(None, root.children)
num_of_child = len(children)
for i in range(0, num_of_child/2):
child = children[i]
if child is not None:
print_tree_aux(btree, btree.get_node(child), level + 1)
print(' ' * 8 * level + '->', 'O')
for i in range(num_of_child/2, num_of_child):
child = children[i]
if child is not None:
print_tree_aux(btree, btree.get_node(child), level + 1)
def get_depth(btree):
return get_depth_aux(btree, btree.rootNode)
def get_depth_aux(btree, root):
arr = [0]
for child in root.children:
if child is not None:
arr.append(get_depth_aux(btree, btree.get_node(child)))
return max(arr) + 1
# Pass path of file in argv[1] and page size in argv[2]
if __name__ == '__main__':
for page_size in [512]:
# depth is very big for 8,16 so memory is huge.
b_tree_main(sys.argv[1], page_size)
print("---------------------------------------")
# Page Size --- Btree size
# 10 - 196888
# 30 - 49432
# 70 - 12568
# 250 - 3352
# 1k - 1048
# 5k - 280