forked from smthemex/ComfyUI_Sonic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode_utils.py
223 lines (196 loc) · 8.04 KB
/
node_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# !/usr/bin/env python
# -*- coding: UTF-8 -*-
import os
import torch
from PIL import Image
import numpy as np
import cv2
import gc
from comfy.utils import common_upscale,ProgressBar
from huggingface_hub import hf_hub_download
cur_path = os.path.dirname(os.path.abspath(__file__))
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
def cv2pil(cv_image):
"""
将OpenCV图像转换为PIL图像
:param cv_image: OpenCV图像
:return: PIL图像
"""
# 将图像从BGR转换为RGB
rgb_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)
# 使用PIL的Image.fromarray方法将NumPy数组转换为PIL图像
pil_image = Image.fromarray(rgb_image)
return pil_image
def convert_cf2diffuser(model,unet_config_file):
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import convert_ldm_unet_checkpoint
from diffusers import UNet2DConditionModel
from .src.models.base.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
cf_state_dict = model.diffusion_model.state_dict()
unet_state_dict = model.model_config.process_unet_state_dict_for_saving(cf_state_dict)
unet_config = UNetSpatioTemporalConditionModel.load_config(unet_config_file)
Unet = UNetSpatioTemporalConditionModel.from_config(unet_config).to(device, torch.float16)
#cf_state_dict = convert_ldm_unet_checkpoint(unet_state_dict, Unet.config)
Unet.load_state_dict(unet_state_dict, strict=False)
del cf_state_dict
gc.collect()
torch.cuda.empty_cache()
return Unet
def tensor_to_pil(tensor):
image_np = tensor.squeeze().mul(255).clamp(0, 255).byte().numpy()
image = Image.fromarray(image_np, mode='RGB')
return image
def tensor2pil_list(image,width,height):
B,_,_,_=image.size()
if B==1:
ref_image_list=[tensor2pil_upscale(image,width,height)]
else:
img_list = list(torch.chunk(image, chunks=B))
ref_image_list = [tensor2pil_upscale(img,width,height) for img in img_list]
return ref_image_list
def tensor_upscale(img_tensor, width, height):
samples = img_tensor.movedim(-1, 1)
img = common_upscale(samples, width, height, "nearest-exact", "center")
samples = img.movedim(1, -1)
return samples
def tensor2pil_upscale(img_tensor, width, height):
samples = img_tensor.movedim(-1, 1)
img = common_upscale(samples, width, height, "nearest-exact", "center")
samples = img.movedim(1, -1)
img_pil = tensor_to_pil(samples)
return img_pil
def tensor2cv(tensor_image,RGB2BGR=True):
if len(tensor_image.shape)==4:#bhwc to hwc
tensor_image=tensor_image.squeeze(0)
if tensor_image.is_cuda:
tensor_image = tensor_image.cpu().detach()
tensor_image=tensor_image.numpy()
#反归一化
maxValue=tensor_image.max()
tensor_image=tensor_image*255/maxValue
img_cv2=np.uint8(tensor_image)#32 to uint8
if RGB2BGR:
img_cv2=cv2.cvtColor(img_cv2,cv2.COLOR_RGB2BGR)
return img_cv2
def cvargb2tensor(img):
assert type(img) == np.ndarray, 'the img type is {}, but ndarry expected'.format(type(img))
img = torch.from_numpy(img.transpose((2, 0, 1)))
return img.float().div(255).unsqueeze(0) # 255也可以改为256
def cv2tensor(img):
assert type(img) == np.ndarray, 'the img type is {}, but ndarry expected'.format(type(img))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose((2, 0, 1)))
return img.float().div(255).unsqueeze(0) # 255也可以改为256
def images_generator(img_list: list,):
#get img size
sizes = {}
for image_ in img_list:
if isinstance(image_,Image.Image):
count = sizes.get(image_.size, 0)
sizes[image_.size] = count + 1
elif isinstance(image_,np.ndarray):
count = sizes.get(image_.shape[:2][::-1], 0)
sizes[image_.shape[:2][::-1]] = count + 1
else:
raise "unsupport image list,must be pil or cv2!!!"
size = max(sizes.items(), key=lambda x: x[1])[0]
yield size[0], size[1]
# any to tensor
def load_image(img_in):
if isinstance(img_in, Image.Image):
img_in=img_in.convert("RGB")
i = np.array(img_in, dtype=np.float32)
i = torch.from_numpy(i).div_(255)
if i.shape[0] != size[1] or i.shape[1] != size[0]:
i = torch.from_numpy(i).movedim(-1, 0).unsqueeze(0)
i = common_upscale(i, size[0], size[1], "lanczos", "center")
i = i.squeeze(0).movedim(0, -1).numpy()
return i
elif isinstance(img_in,np.ndarray):
i=cv2.cvtColor(img_in,cv2.COLOR_BGR2RGB).astype(np.float32)
i = torch.from_numpy(i).div_(255)
#print(i.shape)
return i
else:
raise "unsupport image list,must be pil,cv2 or tensor!!!"
total_images = len(img_list)
processed_images = 0
pbar = ProgressBar(total_images)
images = map(load_image, img_list)
try:
prev_image = next(images)
while True:
next_image = next(images)
yield prev_image
processed_images += 1
pbar.update_absolute(processed_images, total_images)
prev_image = next_image
except StopIteration:
pass
if prev_image is not None:
yield prev_image
def load_images(img_list: list,):
gen = images_generator(img_list)
(width, height) = next(gen)
images = torch.from_numpy(np.fromiter(gen, np.dtype((np.float32, (height, width, 3)))))
if len(images) == 0:
raise FileNotFoundError(f"No images could be loaded .")
return images
def tensor2pil(tensor):
image_np = tensor.squeeze().mul(255).clamp(0, 255).byte().numpy()
image = Image.fromarray(image_np, mode='RGB')
return image
def pil2narry(img):
narry = torch.from_numpy(np.array(img).astype(np.float32) / 255.0).unsqueeze(0)
return narry
def equalize_lists(list1, list2):
"""
比较两个列表的长度,如果不一致,则将较短的列表复制以匹配较长列表的长度。
参数:
list1 (list): 第一个列表
list2 (list): 第二个列表
返回:
tuple: 包含两个长度相等的列表的元组
"""
len1 = len(list1)
len2 = len(list2)
if len1 == len2:
pass
elif len1 < len2:
print("list1 is shorter than list2, copying list1 to match list2's length.")
list1.extend(list1 * ((len2 // len1) + 1)) # 复制list1以匹配list2的长度
list1 = list1[:len2] # 确保长度一致
else:
print("list2 is shorter than list1, copying list2 to match list1's length.")
list2.extend(list2 * ((len1 // len2) + 1)) # 复制list2以匹配list1的长度
list2 = list2[:len1] # 确保长度一致
return list1, list2
def file_exists(directory, filename):
# 构建文件的完整路径
file_path = os.path.join(directory, filename)
# 检查文件是否存在
return os.path.isfile(file_path)
def download_weights(file_dir,repo_id,subfolder="",pt_name=""):
if subfolder:
file_path = os.path.join(file_dir,subfolder, pt_name)
sub_dir=os.path.join(file_dir,subfolder)
if not os.path.exists(sub_dir):
os.makedirs(sub_dir)
if not os.path.exists(file_path):
file_path = hf_hub_download(
repo_id=repo_id,
subfolder=subfolder,
filename=pt_name,
local_dir = file_dir,
)
return file_path
else:
file_path = os.path.join(file_dir, pt_name)
if not os.path.exists(file_dir):
os.makedirs(file_dir)
if not os.path.exists(file_path):
file_path = hf_hub_download(
repo_id=repo_id,
filename=pt_name,
local_dir=file_dir,
)
return file_path